Skip to main content
Log in

Nonautonomous fractional Hamiltonian system with critical exponential growth

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

In this paper, we study the following nonlocal nonautonomous Hamiltonian system on whole \({\mathbb {R}}\)

$$\begin{aligned} \left\{ \begin{array}{ll} (-\Delta )^\frac{1}{2}~ u +u=Q(x) g(v)&{}\quad \text{ in } {\mathbb {R}},\\ (-\Delta )^\frac{1}{2}~ v+v = P(x)f(u)&{}\quad \text{ in } {\mathbb {R}}, \end{array}\right. \end{aligned}$$

where \((-\Delta )^\frac{1}{2}\) is the square root Laplacian operator. We assume that the nonlinearities fg have critical growth at \(+\,\infty \) in the sense of Trudinger–Moser inequality and the nonnegative weights P(x) and Q(x) vanish at \(+\infty \). Using suitable variational method combined with the generalized linking theorem, we obtain the existence of at least one positive solution for the above system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdelhedi, W., Chtioui, H.: On a Nirenberg-type problem involving the square root of the Laplacian. J. Funct. Anal. 265, 2937–2955 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio, V., Bisci, G .M., Repovs̆, D.: Nonlinear equations involving the square root of the Laplacian. Discrete Contin. Dyn. Syst. S 12(2), 151–170 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benci, V., Rabinowitz, P.H.: Critical point theorems for indefinite functionals. Invent. Math. 52(3), 241–273 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonheure, D., dos Santos, E.M., Tavares, H.: Hamiltonian elliptic systems: a guide to variational frameworks. Port. Math. 71(3–4), 301–395 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cabré, X., Tan, J.: Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224, 2052–2093 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Clément, P., de Figueiredo, D.G., Mitidieri, E.: Positive solutions of semilinear elliptic systems. Commun. Partial Differ. Equ. 17(5–6), 923–940 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. de Figueiredo, D .G., do Ó, J .M., Ruf, B.: Critical and subcritical elliptic systems in dimension two. Indiana Univ. Math. J. 53(4), 1037–1054 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. de Figueiredo, D .G., do Ó, J .M., Ruf, B.: An Orlicz-space approach to superlinear elliptic systems. J. Funct. Anal. 224(2), 471–496 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. de Figueiredo, D.G., do Ó, J.M., Zhang, J.: Ground state solutions of hamiltonian elliptic systems in dimension two. Proc. R. Soc. Edinb. https://doi.org/10.1017/prm.2018.78 (to appear)

  10. de Figueiredo, D.G., Felmer, P.L.: On superquadratic elliptic systems. Trans. Am. Math. Soc. 343(1), 99–116 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. de Figueiredo, D.G., Yang, J.: Decay, symmetry and existence of solutions of semilinear elliptic systems. Nonlinear Anal. 33(3), 211–234 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. de Figueiredo, D .G., do Ó, J .M., Ruf, B.: Critical and subcritical elliptic systems in dimension two. Indiana Univ. Math. J. 53(3), 1037–1054 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. de Silva, E.A.B.: Linking theorems and applications to semilinear elliptic problems at resonance. Nonlinear Anal. 16(5), 455–477 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. de Souza, M., do Ó, J .M.: Hamiltonian elliptic systems in \({\mathbb{R}}^2\) with subcritical and critical exponential growth. Ann. Mat. Pura Appl. (4) 195(3), 935–956 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. do Ó, J .M., Miyagaki, O .H., Squassina, M.: Nonautonomous fractional problems with exponential growth. NoDEA Nonlinear Differ. Equ. Appl. 22(5), 1395–1410 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Giacomoni, J., Mishra, P.K., Sreenadh, K.: Critical growth problems for \(1/2\)-Laplacian in \({\mathbb{R}}\). Differ. Equ. Appl. 8(3), 295–317 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Giacomoni, J., Mishra, P.K., Sreenadh, K.: Fractional elliptic equations with critical exponential nonlinearity. Adv. Nonlinear Anal. 5(1), 57–74 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Hulshof, J., van der Vorst, R.: Differential systems with strongly indefinite variational structure. J. Funct. Anal. 114(1), 32–58 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Iannizzotto, A., Squassina, M.: 1/2-Laplacian problems with exponential nonlinearity. J. Math. Anal. Appl. 414, 372–385 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kryszewski, W., Szulkin, A.: An infinite-dimensional Morse theory with applications. Trans. Am. Math. Soc. 349(8), 3181–3234 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lam, N., Lu, G.: Elliptic equations and systems with subcritical and critical exponential growth without the Ambrosetti–Rabinowitz condition. J. Geom. Anal. 24(1), 118–143 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, G., Yang, J.: Asymptotically linear elliptic systems. Commun. Partial Differ. Equ. 29(5–6), 925–954 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Martinazzi, L.: Fractional Adams–Moser–Trudinger type inequalities. Nonlinear Anal. 127, 263–278 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ozawa, T.: On critical cases of Sobolev’s inequalities. J. Funct. Anal. 127(2), 259–269 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rabinowitz, P.H.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7, 487–513 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rabinowitz, P.H.: Periodic solutions of Hamiltonian systems. Commun. Pure Appl. Math. 31(2), 157–184 (1978)

    Article  MathSciNet  Google Scholar 

  28. Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations, volume 65 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (1986)

  29. Sirakov, B.: On the existence of solutions of Hamiltonian elliptic systems in \({\mathbb{R}}^N\). Adv. Differ. Equ. 5(10–12), 1445–1464 (2000)

    MATH  Google Scholar 

  30. Sirakov, B., Soares, S.H.M.: Soliton solutions to systems of coupled Schrödinger equations of Hamiltonian type. Trans. Am. Math. Soc. 362(11), 5729–5744 (2010)

    Article  MATH  Google Scholar 

  31. Takahasi, F.: Critical and subcritical fractional Trudinger–Moser-type inequalities on \({\mathbb{R}}\). Adv. Nonlinear Anal. 8(1), 868–884 (2019)

    MathSciNet  MATH  Google Scholar 

  32. Tan, J.: The Brezis-Nirenberg type problem involving the square root of the Laplacian. Calc. Var. Partial Differ. Equ. 36(1–2), 21–41 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yu, X.: The Nehari manifold for elliptic equation involving the square root of the Laplacian. J. Differ. Equ. 252, 1283–1308 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Research was supported in part by INCTmat/MCT/Brazil, CNPq and CAPES/Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Giacomoni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Validation of Remark 1.2

Appendix: Validation of Remark 1.2

In this appendix, we show the claim that under the assumptions (H2) and (H5), f (respectively g) belongs to the class \({\mathbb {C}}_{\mathrm P}\) (respectively \({\mathbb {C}}_{\mathrm Q}\)) and that if \(f(t)=O(t^2)\) then \(u_n\rightharpoonup 0\) and \(\{\int _{\mathbb {R}} P(x)f(u_n)u_n \,\mathrm {d}x\}\) bounded imply that \(\int _{\mathbb {R}} P(x)f(u_n)\,\mathrm {d}x\rightarrow 0\).

Proof

Let \(\{u_n\} \subset H^{1/2, 2}({\mathbb {R}})\) be a sequence such that

$$\begin{aligned} u_n\rightharpoonup 0,\;\; \text {and}\;\; \int _{\mathbb {R}} P(x)f(u_n)u_n \,\mathrm {d}x<C. \end{aligned}$$
(5.20)

For any given \(\epsilon >0\), using (H2) and (H5), there exists \(c_o=c_o(\epsilon )>0\) sufficiently small and \(M>0\) sufficiently large such that

$$\begin{aligned} F(t)\le \epsilon |t|^2 \quad \text {for}\quad |t|<c_o \quad \text { and } \quad F(t)\le \epsilon f(t)t \quad \text { for } t>M. \end{aligned}$$

Hence from (5.20), we have

$$\begin{aligned} \begin{aligned} \int _{{\mathbb {R}}} P(x)F(u_n)\, \mathrm {d}x&\le \epsilon \int _{\{u_n\le c_o\}}P(x)|u_n|^2\, \mathrm {d}x+\int _{\{c_o\le u_n\le M\}}P(x)F(u_n)\, \mathrm {d}x\\&\quad +\epsilon \int _{\{u_n\ge M\}}P(x)f(u_n)u_n\, \mathrm {d}x\\&\le \epsilon C+\int _{\{c_o\le u_n\le M\}}P(x)F(u_n)\, \mathrm {d}x. \end{aligned} \end{aligned}$$
(5.21)

Further for \(L=L(\epsilon )>0\) large enough such that \(P(x)<\epsilon \) for \(x\in B^c_L(0)\), we have

$$\begin{aligned} \int _{\{c_o\le u_n\le M\}\cap B^c_L(0)}P(x)F(u_n)\, \mathrm {d}x\le \epsilon C, \end{aligned}$$
(5.22)

where C is independent of n. Indeed,

$$\begin{aligned} c_o^2| \{c_o\le u_n\le M\}|\le \int _{\{c_o\le u_n\le M\}}|u_n|^2 \,\mathrm {d}x \le \int _{{\mathbb {R}}}|u_n|^2\,\mathrm {d}x \le C. \end{aligned}$$

Now by Lebesgue theorem, for a such fixed \(L>0\), we have also

$$\begin{aligned} \int _{\{c_o\le u_n\le M\}\cap [-L, L]}P(x)F(u_n)\, \mathrm {d}x\rightarrow 0. \end{aligned}$$
(5.23)

Gathering (5.21)–(5.23), we get

$$\begin{aligned} \int _{{\mathbb {R}}} P(x)F(u_n) \, \mathrm {d}x \rightarrow 0. \end{aligned}$$

It finishes the proof of the first part of the claim. Next, we show the second statement of the claim. From \(f(t)=O(t^2)\) and for \(c_o\), \(M>0\) respectively small and large enough, we have

$$\begin{aligned} \int _{\mathbb {R}} P(x) f(u_n)\,\mathrm {d}x&=\int _{\{u_n< c_o\}}P(x) f(u_n) \,\mathrm {d}x+\int _{\{c_o\le u_n\le M\}}P(x) f(u_n) \,\mathrm {d}x\\&\quad + 1/M\int _{\{u_n> M\}} P(x)f(u_n)u_n \,\mathrm {d}x\\&\le C \int _{\mathbb {R}} P(x) u_n^2 \,\mathrm {d}x +\int _{\{c_o\le u_n\le M\}}P(x) f(u_n) \,\mathrm {d}x+C/M. \end{aligned}$$

Using Lemma 2.1 and estimating the second integral in the above inequality in a similar way as in (5.22) and (5.23), we get the required result. \(\square \)

Remark 5.1

Let the function P be defined as \(P(x)=\frac{1}{(|x|+1)^\epsilon }\), for \(\epsilon >0\) sufficiently small. Consider the sequence \(\{u_n\}\subset H^{1/2,2}({\mathbb {R}})\) such that

$$\begin{aligned} u_n(x)=\displaystyle {\left\{ \begin{array}{ll} \frac{1}{n^\alpha },&{} \text{ for } x\in [n,2n],\\ \frac{(x-(n-1))}{n^\alpha },&{} \text{ for } x\in [n-1,n],\\ \frac{((2n+1)-x)}{n^\alpha },&{} \text{ for } x\in [2n,2n+1],\\ 0&{} \text{ elsewhere } \end{array}\right. } \end{aligned}$$

with \(\alpha \in [1/2,1)\). Then, by straighforward calculations, we can prove \(\{u_n\}\) is bounded in \(H^{1/2,2}({\mathbb {R}})\). Furthermore, as \(n\rightarrow \infty \)

$$\begin{aligned} \int _{{\mathbb {R}}}P(x)u_n^q\,\mathrm {d}x\rightarrow 0 \end{aligned}$$

if and only if q satisfies \(\alpha q+\epsilon >1\). Therefore if f is of \(O(t^{1+\ell })\) near 0 with \(0<\ell \le \frac{1-\alpha -\epsilon }{\alpha }\), we easily get that \(u_n\rightharpoonup 0\) weakly in \(H^{1/2,2}({\mathbb {R}})\) and

$$\begin{aligned} \int _{{\mathbb {R}}}P(x)f(u_n)u_n\,\mathrm {d}x\rightarrow 0 \end{aligned}$$

as \(n\rightarrow \infty \). However, \(\int _{{\mathbb {R}}}P(x)f(u_n)\,\mathrm {d}x\rightarrow 0\) is not verified.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Ó, J.M., Giacomoni, J. & Mishra, P.K. Nonautonomous fractional Hamiltonian system with critical exponential growth. Nonlinear Differ. Equ. Appl. 26, 28 (2019). https://doi.org/10.1007/s00030-019-0575-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-019-0575-5

Mathematics Subject Classification

Keywords

Navigation