Skip to main content
Log in

Characteristic classes and Hilbert–Poincaré series for perverse sheaves on abelian varieties

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

The convolution powers of a perverse sheaf on an abelian variety define an interesting family of branched local systems whose geometry is still poorly understood. We show that the generating series for their generic rank is a rational function of a very simple shape and that a similar result holds for the symmetric convolution powers. We also give formulae for other Schur functors in terms of characteristic classes on the dual abelian variety, and as an example we discuss the case of Prym–Tjurin varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah, M.: Power operations in \(K\)-theory. Q. J. Math. 17, 165–193 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beauville, A.: Prym varieties and the Schottky problem. Invent. Math. 41, 149–196 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beauville, A.: Quelques remarques sur la transformation de Fourier dans l’anneau de Chow d’une variété abélienne, Lecture Notes in Mathematics, vol. 1016, pp. 238–260. Springer, New York (1983)

  4. Birkenhake, C., Lange, H.: Complex Abelian Varieties, Grundlehren der Mathematischen Wissenschaften, vol. 302, 2nd edn. Springer, New York (2004)

  5. Böckle, G., Khare, C.: Mod \(\ell \) representations of arithmetic fundamental groups. II. A conjecture of A. J. de Jong. Compos. Math. 142, 271–294 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cappell, S.E., Maxim, L., Schürmann, J., Shaneson, J.L., Yokura, S.: Characteristic classes of symmetric products of complex quasi-projective varieties. J. Reine Angew. Math. (2015). doi:10.1515/crelle-2014-0114

    Google Scholar 

  7. Debarre, O.: Sur la démonstration de A. Weil du théorème de Torelli pour les courbes. Compos. Math. 58, 3–11 (1986)

    MathSciNet  MATH  Google Scholar 

  8. Debarre, O.: The Schottky problem: An update. In: Complex algebraic geometry. Math. Sci. Res. Inst. Publ. 28, 57–64 (1995)

  9. Deligne, P.: Catégories tensorielles. Moscow Math. J. 2, 227–248 (2002)

    MathSciNet  MATH  Google Scholar 

  10. Donagi, R.: The fibers of the Prym map. Contemp. Math. 136, 55–125 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Drinfeld, V.: On a conjecture of Kashiwara. Math. Res. Lett. 8, 713–728 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gabber, O., Loeser, F.: Faisceaux pervers \(\ell \)-adiques sur un tore. Duke Math. J. 83, 501–606 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gaitsgory, D.: On de Jong’s conjecture. Isr. J. Math. 157, 155–191 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Heinloth, F.: A note on functional equations for zeta functions with values in Chow motives. Ann. Inst. Fourier (Grenoble) 57, 1927–1945 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hirzebruch, F.: Eulerian polynomials. Münster J. Math. 1, 9–14 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Izadi, E.: The geometric structure of \({\cal A}_4\), the structure of the Prym map, double solids and \(\Gamma _{00}\)-divisors. J. Reine Angew. Math. 462, 93–158 (1995)

    MathSciNet  Google Scholar 

  17. Katz, N.M.: Convolution and Equidistribution: Sato–Tate Theorems for Finite-Field Mellin transforms, Annals of Mathematics Studies, vol. 180. Princeton University Press, Princeton (2012)

    Google Scholar 

  18. Knutson, D.: \(\lambda \)-Rings and the Representation Theory of the Symmetric Group, Lecture Notes in Mathematics, vol. 308. Springer, New York (1973)

  19. Krämer, T.: Perverse sheaves on semiabelian varieties. Rend. Semin. Mat. Univ. Padova 132, 83–102 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Krämer, T.: Cubic threefolds, Fano surfaces and the monodromy of the Gauss map. Manuscr. Math. (2015). doi:10.1007/s00229-015-0785-z

    Google Scholar 

  21. Krämer, T.: On a family of surfaces of general type attached to abelian fourfolds and the Weyl group \(W(E_6)\). Int. Math. Res. Not. IMRN 2015(24), 13062–13105 (2015)

  22. Krämer, T., Weissauer, R.: The Tannaka group of the theta divisor on a generic principally polarized abelian variety. Math. Z. 281, 723–745 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Krämer, T., Weissauer, R.: Vanishing theorems for constructible sheaves on abelian varieties. J. Algebraic Geom. 24, 531–568 (2015)

  24. Kwieciński, M.: Formule du produit pour les classes caractéristiques de Chern–Schwartz–MacPherson et homologie d’intersection. Comptes Rendus Acad. Sci. Paris 314, 625–628 (1992)

    MATH  Google Scholar 

  25. Kwieciński, M., Yokura, S.: Product formula for twisted MacPherson classes. Proc. Jpn. Acad. Ser. A Math. Sci. 68, 167–171 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. MacPherson, R.D.: Chern classes for singular algebraic varieties. Ann. Math. 100, 423–432 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  27. Maxim, L., Schürmann, J.: Twisted genera of symmetric products. Sel. Math. (N.S.) 18, 283–317 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mochizuki, T.: Asymptotic behaviour of tame harmonic bundles and an application to pure twistor \(D\)-modules. Mem. Am. Math. Soc. 565, vol. 869 and 870 (2007)

  29. Sabbah, C.: Polarizable Twistor \(\fancyscript {D}\)-modules. Astérisque 208 (2005)

  30. Schnell, C.: Holonomic \({\fancyscript {D}}\)-modules on abelian varieties. Publ. Math. Inst. Hautes Études Sci. 121, 1–55 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schürmann, J.: Topology of Singular Spaces and Constructible Sheaves, Monografie Matematyczne, vol. 63. Birkhäuser, Basel (2003)

    Book  MATH  Google Scholar 

  32. Weissauer, R.: Brill–Noether Sheaves. arXiv:math/0610923

  33. Weissauer, R.: Modular forms on Schiermonnikoog. In: Edixhoven, B., van der Geer, G., Moonen, B. (eds.) Torelli’s Theorem from the Topological Point of View, pp. 275–284. Cambridge University Press, Cambridge (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Krämer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krämer, T. Characteristic classes and Hilbert–Poincaré series for perverse sheaves on abelian varieties. Sel. Math. New Ser. 22, 1337–1356 (2016). https://doi.org/10.1007/s00029-015-0222-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-015-0222-x

Keywords

Mathematics Subject Classification

Navigation