Skip to main content
Log in

Holonomic D-modules on abelian varieties

  • Published:
Publications mathématiques de l'IHÉS Aims and scope Submit manuscript

An Erratum to this article was published on 16 November 2015

Abstract

We study the Fourier-Mukai transform for holonomic D-modules on complex abelian varieties. Among other things, we show that the cohomology support loci of a holonomic D-module are finite unions of linear subvarieties, which go through points of finite order for objects of geometric origin; that the standard t-structure on the derived category of holonomic complexes corresponds, under the Fourier-Mukai transform, to a certain perverse coherent t-structure in the sense of Kashiwara and Arinkin-Bezrukavnikov; and that Fourier-Mukai transforms of simple holonomic D-modules are intersection complexes in this t-structure. This supports the conjecture that Fourier-Mukai transforms of holonomic D-modules are “hyperkähler perverse sheaves”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Arapura, Higgs line bundles, Green-Lazarsfeld sets, and maps of Kähler manifolds to curves, Bull., New Ser., Am. Math. Soc., 26 (1992), 310–314.

    Article  MATH  MathSciNet  Google Scholar 

  2. D. Arinkin and R. Bezrukavnikov, Perverse coherent sheaves, Mosc. Math. J., 10 (2010), 3–29.

    MATH  MathSciNet  Google Scholar 

  3. S. Bando and Y.-T. Siu, Stable Sheaves and Einstein-Hermitian Metrics, Geometry and Analysis on Complex Manifolds, pp. 39–50, World Sci. Publ., River Edge, 1994.

    Google Scholar 

  4. A. A. Beĭlinson, J. Bernstein and P. Deligne, Faisceaux pervers, in Analysis and Topology on Singular Spaces, I, Luminy, 1981, Astérisque, vol. 100, pp. 5–171, Soc. Math. France, Paris, 1982.

    Google Scholar 

  5. J. Bonsdorff, Autodual connection in the Fourier transform of a Higgs bundle, Asian J. Math., 14 (2010), 153–173.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Dimca, Sheaves in Topology, Universitext, Springer, Berlin, 2004, xvi+236.

    Book  MATH  Google Scholar 

  7. J. Franecki and M. Kapranov, The Gauss map and a noncompact Riemann-Roch formula for constructible sheaves on semiabelian varieties, Duke Math. J., 104 (2000), 171–180.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Green and R. Lazarsfeld, Deformation theory, generic vanishing theorems, and some conjectures of Enriques, Catanese and Beauville, Invent. Math., 90 (1987), 389–407.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Green and R. Lazarsfeld, Higher obstructions to deforming cohomology groups of line bundles, J. Am. Math. Soc., 1 (1991), 87–103.

    MathSciNet  Google Scholar 

  10. C. Hacon, A derived category approach to generic vanishing, J. Reine Angew. Math., 575 (2004), 173–187.

    MATH  MathSciNet  Google Scholar 

  11. R. Hotta, K. Takeuchi, T. Tanisaki, D-Modules, Perverse Sheaves, and Representation Theory, Progress in Mathematics, vol. 236, Birkhäuser Boston Inc., Boston, 2008, xii+407.

    Book  MATH  Google Scholar 

  12. M. Jardim, Nahm transform and spectral curves for doubly-periodic instantons, Commun. Math. Phys., 225 (2002), 639–668.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Kashiwara, t-structures on the derived categories of holonomic D-modules and coherent 𝒪-modules, Mosc. Math. J., 4 (2004), 847–868.

    MATH  MathSciNet  Google Scholar 

  14. T. Krämer and R. Weissauer, Vanishing theorems for constructible sheaves on abelian varieties, arXiv:1111.4947, 2011.

  15. G. Laumon, Transformation de Fourier généralisée, arXiv:alg-geom/9603004, 1996.

  16. B. Malgrange, On irregular holonomic D-modules, in Éléments de la théorie des systèmes différentiels géométriques, Sémin. Congr., vol. 8, pp. 391–410, Soc. Math. France, Paris, 2004.

    Google Scholar 

  17. B. Mazur and W. Messing, Universal Extensions and One Dimensional Crystalline Cohomology, Lecture Notes in Math., vol. 370, Springer, Berlin, 1974.

    MATH  Google Scholar 

  18. T. Mochizuki, Holonomic D-module with Betti structure, arXiv:1001.2336v3, 2010.

  19. T. Mochizuki, Wild harmonic bundles and wild pure twistor D-modules, Astérisque, 340 (2011).

  20. T. Mochizuki, Asymptotic behaviour and the Nahm transform of doubly periodic instantons with square integrable curvature, arXiv:1303.2394, 2013.

  21. S. Mukai, Duality between D(X) and \(D(\hat{X})\) with its application to Picard sheaves, Nagoya Math. J., 81 (1981), 153–175.

    MATH  MathSciNet  Google Scholar 

  22. A. Polishchuk and M. Rothstein, Fourier transform for D-algebras. I, Duke Math. J., 109 (2001), 123–146.

    Article  MATH  MathSciNet  Google Scholar 

  23. M. Popa, Generic vanishing filtrations and perverse objects in derived categories of coherent sheaves, in Derived Categories in Algebraic Geometry, Tokyo, 2011, EMS Ser. Congr. Rep., vol. 8, pp. 251–278, Eur. Math. Soc., Zürich, 2012.

    Google Scholar 

  24. M. Popa and C. Schnell, Kodaira dimension and zeros of holomorphic one-forms, Ann. Math., 179 (2014), 1–12.

    Article  MathSciNet  Google Scholar 

  25. M. Popa and C. Schnell, Generic vanishing theory via mixed Hodge modules, Forum Math., Sigma, 1, e1, 60pp (2013). doi:10.1017/fms.2013.1.

  26. M. Rothstein, Sheaves with connection on abelian varieties, Duke Math. J., 84 (1996), 565–598.

    Article  MATH  MathSciNet  Google Scholar 

  27. C. Sabbah, Théorie de Hodge et correspondance de Kobayashi-Hitchin sauvages (d’après T. Mochizuki), Astérisque, 352 (2013), 201–243, Séminaire Bourbaki. Vol. 2011/2012, Exposés 1043–1058.

    Google Scholar 

  28. M. Saito, Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci., 24 (1988), 849–995.

    Article  MATH  MathSciNet  Google Scholar 

  29. M. Saito, Mixed Hodge modules, Publ. Res. Inst. Math. Sci., 26 (1990), 221–333.

    Article  MATH  MathSciNet  Google Scholar 

  30. M. Saito, Hodge conjecture and mixed motives. I, in Complex Geometry and Lie Theory, Sundance, UT, 1989, Proc. Sympos. Pure Math., vol. 53, pp. 283–303, Amer. Math. Soc., Providence, 1991.

    Chapter  Google Scholar 

  31. C. Schnell, Torsion points on cohomology support loci: from D-modules to Simpson’s theorem, 2013, to appear in Recent Advances in Algebraic Geometry (Ann Arbor, 2013). arXiv:1207.0901.

  32. C. Simpson, Subspaces of moduli spaces of rank one local systems, Ann. Sci. Éc. Norm. Super., 26 (1993), 361–401.

    MATH  Google Scholar 

  33. C. E. Watts, Intrinsic characterizations of some additive functors, Proc. Am. Math. Soc., 11 (1960), 5–8.

    Article  MATH  MathSciNet  Google Scholar 

  34. R. Weissauer, Degenerate perverse sheaves on abelian varieties, arXiv:1204.2247, 2012.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Schnell.

About this article

Cite this article

Schnell, C. Holonomic D-modules on abelian varieties. Publ.math.IHES 121, 1–55 (2015). https://doi.org/10.1007/s10240-014-0061-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10240-014-0061-x

Keywords

Navigation