Skip to main content

Chapter XI: The Arithmetic Riemann–Roch Theorem and the Jacquet–Langlands Correspondence

  • Chapter
  • First Online:
Arakelov Geometry and Diophantine Applications

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2276))

  • 1350 Accesses

Abstract

The arithmetic Riemann–Roch theorem refines both the algebraic geometric and differential geometric counterparts, and it is stated within the formalism of Arakelov geometry. For some simple Shimura varieties and automorphic vector bundles, the cohomological part of the formula can be understood via the theory of automorphic representations. Functoriality principles from this theory may then be applied to derive relations between arithmetic intersection numbers for different Shimura varieties. In this lectures we explain this philosophy in the case of modular curves and compact Shimura curves. This indicates that there is some relationship between the arithmetic Riemann–Roch theorem and trace type formulae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.-M. Bismut, H. Gillet, C. Soulé, Analytic torsion and holomorphic determinant bundles. I. Bott-Chern forms and analytic torsion. Comm. Math. Phys. 115, 49–78 (1988). MR 929146

    Google Scholar 

  2. J.-M. Bismut, H. Gillet, C. Soulé, Analytic torsion and holomorphic determinant bundles. II. Direct images and Bott-Chern forms. Comm. Math. Phys. 115, 79–126 (1988). MR 929147

    Google Scholar 

  3. J.-M. Bismut, H. Gillet, C. Soulé, Analytic torsion and holomorphic determinant bundles. III. Quillen metrics on holomorphic determinants. Comm. Math. Phys. 115, 301–351 (1988). MR 931666

    Google Scholar 

  4. S. Bloch, H. Gillet, C. Soulé, Non-Archimedean Arakelov theory. J. Algebraic Geom. 4, 427–485 (1995). MR 1325788

    Google Scholar 

  5. J.-B. Bost, Potential theory and Lefschetz theorems for arithmetic surfaces. Ann. Sci. École Norm. Sup. (4) 32, 241–312 (1999)

    Google Scholar 

  6. J.I. Burgos Gil, J. Kramer, U. Kühn, Arithmetic characteristic classes of automorphic vector bundles. Doc. Math. 10, 619–716 (2005)

    MathSciNet  MATH  Google Scholar 

  7. J.I. Burgos Gil, J. Kramer, U. Kühn, Cohomological arithmetic Chow rings. J. Inst. Math. Jussieu 6, 1–172 (2007)

    Article  MathSciNet  Google Scholar 

  8. K. Buzzard, Integral models of certain Shimura curves. Duke Math. J. 87, 591–612 (1997)

    Article  MathSciNet  Google Scholar 

  9. P. Deligne, M. Rapoport, Les Schémas de Modules de courbes Elliptiques. Lecture Notes in Mathematical, vol. 349 , 143–316 (1973)

    Article  Google Scholar 

  10. G. Faltings, Finiteness theorems for abelian varieties over number fields, in Arithmetic Geometry (Storrs, Conn., 1984) (Springer, New York, 1986). Translated from the German original [Invent. Math. 7, 349–366; ibid. 75, 381, pp. 9–27 (1984)

    Google Scholar 

  11. G. Freixas i Montplet, An arithmetic Riemann-Roch theorem for pointed stable curves. Ann. Sci. Éc. Norm. Supér. (4) 42, 335–369 (2009)

    Google Scholar 

  12. G. Freixas i Montplet, An arithmetic Hilbert-Samuel theorem for pointed stable curves. J. Eur. Math. Soc. (JEMS) 14, 321–351 (2012)

    Google Scholar 

  13. G. Freixas i Montplet, The Jacquet-Langlands correspondence and the arithmetic Riemann-Roch theorem for pointed curves. Int. J. Number Theory 8, 1–29 (2012)

    Google Scholar 

  14. G. Freixas i Montplet, A. von Pippich, Riemann-Roch isometries in the non-compact orbifold setting. J. Eur. Math. Soc. 22, 3491–3564 (2020)

    Google Scholar 

  15. W. Fulton, Intersection Theory, 2nd edn., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2 (Springer, Berlin, 1998)

    Google Scholar 

  16. S.S. Gelbart, Automorphic Forms on adèle Groups (Princeton University/University of Tokyo, Princeton/Tokyo, 1975). Annals of Mathematics Studies, No. 83

    Google Scholar 

  17. H. Gillet, C. Soulé, An arithmetic Riemann-Roch theorem. Invent. Math. 110, 473–543 (1992)

    Article  MathSciNet  Google Scholar 

  18. D.A. Hejhal, The Selberg Trace Formula for PSL(2, R), vol. 2. Lecture Notes in Mathematics, vol. 1001 (Springer, Berlin, 1983)

    Google Scholar 

  19. D. Helm, On maps between modular Jacobians and Jacobians of Shimura curves. Israel J. Math. 160, 61–117 (2007). MR 2342491

    Google Scholar 

  20. H. Iwaniec, Spectral Methods of Automorphic Forms, 2nd edn., in Graduate Studies in Mathematics, vol. 53 (American Mathematical Society/Revista Matemática Iberoamericana, Providence/Madrid, 2002)

    Google Scholar 

  21. H. Jacquet, R.P. Langlands, in Automorphic forms on GL(2). Lecture Notes in Mathematics, vol. 114 (Springer, Berlin, 1970). MR 0401654

    Google Scholar 

  22. N.M. Katz, B. Mazur, Arithmetic moduli of elliptic curves, in Annals of Mathematics Studies, vol. 108 (Princeton University, Princeton, 1985). MR 772569

    Google Scholar 

  23. U. Kühn, Generalized arithmetic intersection numbers. J. Reine Angew. Math. 534, 209–236 (2001)

    MathSciNet  MATH  Google Scholar 

  24. V. Maillot, D. Roessler, Conjectures sur les dérivées logarithmiques des fonctions L d’Artin aux entiers négatifs. Math. Res. Lett. 9, 715–724 (2002)

    Article  MathSciNet  Google Scholar 

  25. L. Moret-Bailly, La formule de Noether pour les surfaces arithmétiques. Invent. Math. 98, 491–498 (1989)

    Article  MathSciNet  Google Scholar 

  26. R.S. Phillips, P. Sarnak, On cusp forms for co-finite subgroups of PSL(2, R). Invent. Math. 80, 339–364 (1985). MR 788414

    Google Scholar 

  27. K. Prasanna, Integrality of a ratio of Petersson norms and level-lowering congruences. Ann. Math. (2) 163, 901–967 (2006)

    Google Scholar 

  28. D.B. Ray, I.M. Singer, Analytic torsion for complex manifolds. Ann. Math. (2) 98, 154–177 (1973). MR 383463

    Google Scholar 

  29. K.A. Ribet, On modular representations of \(\mathrm {Gal}(\overline {\mathbf {Q}}/\mathbf {Q})\) arising from modular forms. Invent. Math. 100, 431–476 (1990). MR 1047143

    Google Scholar 

  30. C. Soulé, Géométrie d’Arakelov des surfaces arithmétiques, Astérisque (177–178), Exp. No. 713 (1989), pp. 327–343. Séminaire, Bourbaki, vol. 1988/89

    Google Scholar 

  31. M.-F. Vignéras, Arithmétique des algèbres de Quaternions. Lecture Notes in Mathematics, vol. 800 (Springer, Berlin, 1980). MR 580949

    Google Scholar 

  32. C. Voisin, Hodge theory and complex algebraic geometry. I, english ed., Cambridge Studies in Advanced Mathematics, vol. 76 (Cambridge University, Cambridge, 2007), Translated from the French by Leila Schneps. MR 2451566

    Google Scholar 

  33. S.A. Wolpert, Cusps and the family hyperbolic metric. Duke Math. J. 138, 423–443 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I am indebted to Huayi Chen, Emmanuel Peyre and Gaël Rémond for giving me the opportunity to participate in the summer school of the “Institut Fourier” in Grenoble, and their warm hospitality that made a kidney stone attack much less painful. Thanks as well to the students and other colleagues for attending the lectures and making encouraging comments on this circle of ideas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard Freixas i Montplet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Montplet, G.F.i. (2021). Chapter XI: The Arithmetic Riemann–Roch Theorem and the Jacquet–Langlands Correspondence. In: Peyre, E., Rémond, G. (eds) Arakelov Geometry and Diophantine Applications. Lecture Notes in Mathematics, vol 2276. Springer, Cham. https://doi.org/10.1007/978-3-030-57559-5_12

Download citation

Publish with us

Policies and ethics