Skip to main content

Advertisement

Log in

Does the loss of climate sensitive detritivore species alter leaf decomposition?

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Climate change is predicted to increase average temperatures and the frequency of extreme weather events, and thus might alter the composition of freshwater communities through effects on climate-sensitive taxa, with uncertain outcomes for the ecosystem processes they regulate. Here we investigated how loses of more environmentally sensitive detritivores alter the key ecosystem process of leaf litter decomposition in a field experiment in two pristine streams with different local shredder assemblages in the Palatinate forest, south-western Germany. We compared bulk leaf decomposition rate and the leaf processing efficiency of shredders in enclosures containing three shredder diversity treatments, where species loss was simulated based on their climate sensitivity. Litter decomposition rates contrasted markedly between survey sites, with a 33% increase and 41% decrease in decomposition following species loss at the first and second site, respectively. Results for the first site suggest that the least sensitive taxa, which were also larger in biomass, contributed most to leaf mass loss, and these were able to compensate for losses of sensitive species, ultimately increasing bulk leaf processing. By contrast, at the second site sensitive species played a more important role in litter decomposition and their loss was not compensated when accounting for detritivore biomass. Our findings demonstrate the importance of the species trait composition of local species pools in regulating the potential effects of changes in assemblage composition caused by climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allan JD, Castillo MM (2007) Stream ecology: structure and function of running waters. Springer, Dordrecht

    Book  Google Scholar 

  • Bärlocher F (2005) Leaf mass loss estimated by litter bag technique. In: Graça MAS, Bärlocher F, Gessner MO (eds) Methods to study litter decomposition: a practical guide. Springer, Netherlands, pp 37–42

    Chapter  Google Scholar 

  • Benke AC, Huryn AD, Smock LA, Wallace JB (1999) Length-mass relationships for freshwater macroinvertebrates in north America with particular reference to the southeastern United States. J N Am Benthol Soc 18:308–343

    Article  Google Scholar 

  • Berg MP, Kiers ET, Driessen G et al (2010) Adapt or disperse: understanding species persistence in a changing world. Global Change Biol 16:587–598

    Article  Google Scholar 

  • Bhowmik AK, Schäfer RB (2015) Large scale relationship between aquatic insect traits and climate. PLOS One 10:e0130025

    Article  PubMed  PubMed Central  Google Scholar 

  • Bjelke U, Herrmann J (2005) Processing of two detritus types by lake-dwelling shredders: species-specific impacts and effects of species richness. J Anim Ecol 74:92–98

    Article  Google Scholar 

  • Bogan MT, Boersma KS, Lytle DA (2015) Resistance and resilience of invertebrate communities to seasonal and supraseasonal drought in arid-land headwater streams. Freshw Biol 60:2547–2558

    Article  Google Scholar 

  • Bonada N, Dolédec S, Statzner B (2007) Taxonomic and biological trait differences of stream macroinvertebrate communities between mediterranean and temperate regions: implications for future climatic scenarios. Global Change Biol 13:1658–1671

    Article  Google Scholar 

  • Boyero L, Pearson RG, Bastian M (2007) How biological diversity influences ecosystem function: a test with a tropical stream detritivore guild. Ecol Res 22:551–558

    Article  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP et al (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  • Bundschuh M, McKie BG (2016) An ecological and ecotoxicological perspective on fine particulate organic matter in streams. Freshw Biol 61:2063–2074

    Article  CAS  Google Scholar 

  • Buzby KM, Perry SA (2000) Modeling the potential effects of climate change on leaf pack processing in central Appalachian streams. Can J Fish Aquat Sci 57:1773–1783

    Article  Google Scholar 

  • Cardinale BJ, Nelson K, Palmer MA (2000) Linking species diversity to the functioning of ecosystems: on the importance of environmental context. Oikos 91:175–183

    Article  Google Scholar 

  • Cardinale BJ, Srivastava DS, Emmett Duffy J et al (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992

    Article  CAS  PubMed  Google Scholar 

  • Cardinale BJ, Duffy JE, Gonzalez A et al (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67

    Article  CAS  PubMed  Google Scholar 

  • Clements WH, Kashian DR, Kiffney PM, Zuellig RE (2015) Perspectives on the context-dependency of stream community responses to contaminants. Freshw Biol

  • Creed RP, Cherry RP, Pflaum JR, Wood CJ (2009) Dominant species can produce a negative relationship between species diversity and ecosystem function. Oikos 118:723–732

    Article  Google Scholar 

  • Daufresne M, Lengfellner K, Sommer U (2009) Global warming benefits the small in aquatic ecosystems. PNAS 106:12788–12793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domisch S, Araújo MB, Bonada N, Pauls SU, Jähnig SC, Haase P (2013) Modelling distribution in European stream macroinvertebrates under future climates. Glob Change Biol 19:752–762

    Article  Google Scholar 

  • Eggers TO, Martens A (2001) Bestimmungsschlüssel der Süßwasser-Amphipoda (Crustacea) Deutschlands: = a key to the freshwater Amphipoda (Crustacea) of Germany. Lauterbonia 42:1–68

    Google Scholar 

  • Feeley H, Baars J-R, Kelly-Quinn M (2009) The life history of Perla bipunctata Pictet, 1833 (Plecoptera: Perlidae) in the upper river Liffey, Ireland. Aquat Insect 31:261–270.

    Article  Google Scholar 

  • Frainer A, McKie BG (2015) Chapter seven—shifts in the diversity and composition of consumer traits constrain the effects of land use on stream ecosystem functioning. In: Samraat Pawar GW, and AID (eds) Adv Ecol Res. Academic Press, pp 169–200

  • Gessner MO, Swan CM, Dang CK, et al (2010) Diversity meets decomposition. Trends Ecol Evol (Amst) 25:372–380.

    Article  Google Scholar 

  • Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293:2248–2251

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves JF, Graça MAS, Callisto M (2006) Leaf-litter breakdown in 3 streams in temperate, Mediterranean, and tropical Cerrado climates. J N Am Benthol Soc 25:344–355

    Article  Google Scholar 

  • Graça MAS (2001) The Role of Invertebrates on leaf litter decomposition in streams—a review. Int Rev Hydrobiol 86:383–393

    Article  Google Scholar 

  • Handa IT, Aerts R, Berendse F et al (2014) Consequences of biodiversity loss for litter decomposition across biomes. Nature 509:218–221

    Article  CAS  PubMed  Google Scholar 

  • Heino J, Virkkala R, Toivonen H (2009) Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biol Rev Camb Philos Soc 84:39–54

    Article  PubMed  Google Scholar 

  • Hershkovitz Y, Dahm V, Lorenz AW, Hering D (2015) A multi-trait approach for the identification and protection of European freshwater species that are potentially vulnerable to the impacts of climate change. Ecol Indic 50:150–160.

    Article  Google Scholar 

  • Hieber M, Gessner MO (2002) Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology 83:1026–1038

    Article  Google Scholar 

  • Rasband W ImageJ. (2014) U.S. National Institutes of Health, Bethesda, Maryland, USA

  • Johnston TA, Cunjak RA (1999) Dry mass–length relationships for benthic insects: a review with new data from Catamaran Brook, New Brunswick, Canada. Freshwater Biol 41:653–674

    Article  Google Scholar 

  • Jonsson M, Malmqvist B (2000) Ecosystem process rate increases with animal species richness: evidence from leaf-eating, aquatic insects. Oikos 89:519–523

    Article  Google Scholar 

  • Jonsson M, Malmqvist B (2003) Mechanisms behind positive diversity effects on ecosystem functioning: testing the facilitation and interference hypotheses. Oecologia 134:554–559

    Article  PubMed  Google Scholar 

  • Jonsson M, Malmqvist B, Hoffsten P-O (2001) Leaf litter breakdown rates in boreal streams: does shredder species richness matter? Freshw Biol 46:161–171

    Article  Google Scholar 

  • Jonsson M, Dangles O, Malmqvist B, Guérold F (2002) Simulating species loss following perturbation: assessing the effects on process rates. Proc Biol Sci 269:1047–1052

    Article  PubMed  PubMed Central  Google Scholar 

  • Kernan M, Battarbee RW, Moss B (eds) (2010) Climate change impacts on freshwater ecosystems. Wiley-Blackwell, Oxford

    Google Scholar 

  • Lawrence JE, Lunde KB, Mazor RD et al (2010) Long-term macroinvertebrate responses to climate change: implications for biological assessment in mediterranean-climate streams. J NA Benthol Soc 29:1424–1440

    Article  Google Scholar 

  • Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–76

    Article  CAS  PubMed  Google Scholar 

  • Malmqvist B, Wotton RS, Zhang Y (2001) Suspension feeders transform massive amounts of seston in large northern rivers. Oikos 92:35–43

    Article  Google Scholar 

  • McKie BG, Woodward G, Hladyz S et al (2008) Ecosystem functioning in stream assemblages from different regions: contrasting responses to variation in detritivore richness, evenness and density. J Anim Ecol 77:495–504. doi:10.1111/j.1365-2656.2008.01357.x

    Article  CAS  PubMed  Google Scholar 

  • McKie BG, Schindler M, Gessner MO, Malmqvist B (2009) Placing biodiversity and ecosystem functioning in context: environmental perturbations and the effects of species richness in a stream field experiment. Oecologia 160:757–770

    Article  PubMed  Google Scholar 

  • MEA (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DC

    Google Scholar 

  • Meier C, Haase P, et al. (2006) “Methodisches Handbuch Fließgewässerbewertung- Handbuch zur Untersuchung und Bewertung von Fließgewässern auf der Basis des Makrozoobenthos vor dem Hintergrund der EGWasserrahmenrichtlinie.

  • Mendiburu F (2014) agricolae: Statistical procedures for agricultural research. R package version 1.2-4

  • Noyes PD, McElwee MK, Miller HD, Clark BW, Van Tiem LA, Walcott KC, Erwin KN, Levin ED (2009) The toxicology of climate change: Environmental contaminants in a warming world. Environ Int 35:971–986

    Article  CAS  PubMed  Google Scholar 

  • Patterson BD, Atmar W (2000) Analyzing species composition in fragments. In: Proceedings of 4th Int Symp Bonn: isolated vertebrate communities in the tropics. Bonn Zool Monogr 46:93–108

    Google Scholar 

  • Perkins DM, McKie BG, Malmqvist B et al (2010) Environmental warming and biodiversity–ecosystem functioning in freshwater microcosms: partitioning the effects of species identity, richness and metabolism. In: Woodward G (ed) Adv Ecol Res. Academic Press, pp 177–209

  • Pilière AFH, Verberk WCEP, Gräwe M et al (2016) On the importance of trait interrelationships for understanding environmental responses of stream macroinvertebrates. Freshw Biol 61:181–194

    Article  Google Scholar 

  • Poff NL, Olden JD, Vieira NKM et al (2006) Functional trait niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relationships. J N Am Benthol Soc 25:730–755

    Article  Google Scholar 

  • Poff NL, Pyne MI, Bledsoe BP et al (2010) Developing linkages between species traits and multiscaled environmental variation to explore vulnerability of stream benthic communities to climate change. J N Am Benthol Soc 29:1441–1458

    Article  Google Scholar 

  • R Development Core Team R (2016) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Ruesink JL, Srivastava DS (2001) Numerical and per capita responses to species loss: mechanisms maintaining ecosystem function in a community of stream insect detritivores. Oikos 93:221–234

    Article  Google Scholar 

  • Sato T, El-Sabaawi RW, Campbell K, Ohta T, Richardson JS (2016) A test of the effects of timing of a pulsed resource subsidy on stream ecosystems. J Anim Ecol 85, 1136–1146.

    Article  PubMed  Google Scholar 

  • Schaefer M (2009) Brohmer - Fauna von Deutschland: Ein Bestimmungsbuch unserer heimischen Tierwelt, 23rd edn. Quelle & Meyer, Wiebelsheim

    Google Scholar 

  • Schmidt-Kloiber A, Hering D (2015) An online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecol Indic 53:271–282. http://www.freshwaterecology.info

  • Strayer DL, Dudgeon D (2010) Freshwater biodiversity conservation: recent progress and future challenges. J N Am Benthol Soc 29:344–358

    Article  Google Scholar 

  • Thomas CD (2010) Climate, climate change and range boundaries. Divers Distrib 16:488–495

    Article  Google Scholar 

  • Truchy A, Angeler DG, Sponseller RA, Johnson RK, McKie BG (2015) Linking biodiversity, ecosystem functioning and services, and ecological resilience: towards an integrative framework for improved management. Adv Ecol Res 53:55–96

    Article  Google Scholar 

  • Usseglio-Polatera P, Richoux P, Bournaud M, Tachet H (2001) A functional classification of benthic macroinvertebrates based on biological and ecological traits: application to river condition assessment and stream management. Archiv für Hydrobiologie Supplementband Monographische Beiträge 139:53–83.

    Google Scholar 

  • Vörösmarty CJ, McIntyre PB, Gessner MO et al (2010) Global threats to human water security and river biodiversity. Nature 467:555–561

    Article  PubMed  Google Scholar 

  • Wallace JB, Eggert SL, Meyer JL, Webster JR (1997) Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 102–104.

  • Walther G-R, Post E, Convey P et al (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  PubMed  Google Scholar 

  • Waringer J, Graf W (2004) Atlas der österreichischen Köcherfliegenlarven: Unter Einschluss der angrenzenden Gebiete. Facultas, Wien

    Google Scholar 

  • Webster JR (2007) Spiraling down the river continuum: stream ecology and the U-shaped curve. J N Am Benthol Soc 26:375–389

    Article  Google Scholar 

  • Woodward G, Perkins DM, Brown LE (2010) Climate change and freshwater ecosystems: impacts across multiple levels of organization. Phil Trans R Soc B 365:2093–2106

    Article  PubMed  PubMed Central  Google Scholar 

  • Wotton RS, Malmqvist B (2001) Feces in Aquatic Ecosystems. Bioscience 51:537

    Article  Google Scholar 

Download references

Acknowledgements

The study was funded by the German Research Foundation (DFG) (Grant number: SCHA 1720/3-1). We thank all members of the working group Quantitative Landscape Ecology for help with the field work and Sandra Schneider is acknowledged for contributing to all practical work of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bonny Wenisch.

Appendix 1

Appendix 1

Dry mass -length relationship

The model fit of the non-linear body mass–length regression was high for: Odontocerum albicorne (D (deviance) = 0.87), Gammarus fossarum (D = 0.83), Halesus sp. (D = 0.81) and Sericostoma personatum (D = 0.72), whereas the model fit was lower for Potamophylax rotundipennis (D = 0.34) and (Apppendix 1). Most of our models had a similar goodness of fit as those reported in a meta-analysis (Benke et al. 1999). The low goodness of fit for some models was associated with a relatively low sample size and low gradient of length (Fig. 3).

Fig. 3
figure 3

Dry mass–length relationship of the individual taxa, with DM dry mass, BL body length and D (deviance) of a C. major, regression formula DM = 0.9035 × BL3.145, D = 0.55, n = 90; b G. fossarum, DM = 0.0023 × BL2.9033, D = 0.83, n = 366; c Halesus sp. DM = 1.551 × BL2.4913, D = 0.81, n = 199; d O. albicorne, DM = 2.611 × BL2.775, D = 0.87, n = 102; e P. rotundipennis, DM = 4.5485 × BL2.3359, D = 0.34, n = 37; f S. personatum, DM = 2.457 × BL2.3351, D = 0.72, n = 51

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wenisch, B., Fernández, D.G., Szöcs, E. et al. Does the loss of climate sensitive detritivore species alter leaf decomposition?. Aquat Sci 79, 869–879 (2017). https://doi.org/10.1007/s00027-017-0538-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-017-0538-z

Keywords

Navigation