Skip to main content

Advertisement

Log in

Surviving in Changing Forests: Abiotic Disturbance Legacy Effects on Arthropod Communities of Temperate Forests

  • Forest Entomology (B Castagneyrol, Section Editor)
  • Published:
Current Forestry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The increasing impact of droughts, wildfires and windstorms in temperate areas poses a significant challenge to the adaptation capacity of forests and their associated arthropod communities. Organisms, organic material, and environmental conditions occurring after disturbances, i.e. the disturbance legacies, shape arthropod communities during their transition from pre- to post-disturbance conditions. We describe the contribution of disturbance legacies to the organization of forest arthropod communities following droughts, wildfires, or windstorms. We also highlight how forest conditions, arthropod traits and post-disturbance management influence disturbance legacies and their impact on arthropod communities.

Recent Findings

Key disturbance legacies include surviving arthropods, micro-environmental legacies, and tree- and ground-related resources. Most of these are driven by canopy openness and tree condition. For arthropods, dispersal ability and other biological and demographic traits determine their vulnerability to disturbances, but also their capacity to colonize post-disturbance microhabitats, and withstand micro-environmental legacies. Dominant tree species and management strategies influence disturbance regimes and mediate the pattern of their legacies. Droughts, wildfires and windstorms have idiosyncratic effects on disturbance legacies, and arthropod taxa can have specific responses to legacies, making it difficult to predict the likely composition of post-disturbance arthropod communities.

Summary

This review highlights a particular gap in our understanding of the effects of drought on forest arthropod communities and the need for more research in this area. In addition, a better understanding of how forest arthropod communities are altered by changes in disturbance regimes is urgently needed. Our goal is to foster an improved understanding of the role of disturbance legacies for forest arthropod communities in order to improve management decisions and promote the conservation of forest arthropod species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Girardin MP, Hogg EH, Bernier PY, et al. Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming. Glob Chang Biol. 2016;22:627–43. https://doi.org/10.1111/gcb.13072.

    Article  Google Scholar 

  2. Senf C, Pflugmacher D, Zhiqiang Y, et al. Canopy mortality has doubled in Europe’s temperate forests over the last three decades. Nat Commun. 2018;9:4978. https://doi.org/10.1038/s41467-018-07539-6.

    Article  CAS  Google Scholar 

  3. Senf C, Seidl R. Persistent impacts of the 2018 drought on forest disturbance regimes in Europe. Biogeosciences. 2021;18:5223–5230. https://doi.org/10.5194/bg-18-5223-2021

  4. Gregow H, Laaksonen A, Alper ME. Increasing large scale windstorm damage in Western, Central and Northern European forests, 1951–2010. Sci Rep. 2017;7:46397. https://doi.org/10.1038/srep46397.

    Article  CAS  Google Scholar 

  5. Forzieri G, Girardello M, Ceccherini G, et al. Emergent vulnerability to climate-driven disturbances in European forests. Nat Commun. 2021;12:1081. https://doi.org/10.1038/s41467-021-21399-7.

    Article  CAS  Google Scholar 

  6. Senf C, Seidl R. Storm and fire disturbances in Europe: distribution and trends. Glob Chang Biol. 2021;27:3605–19. https://doi.org/10.1111/gcb.15679.

    Article  CAS  Google Scholar 

  7. Dupuy J, Fargeon H, Martin-StPaul N, et al. Climate change impact on future wildfire danger and activity in southern Europe: a review. Ann For Sci. 2020;77:1–24. https://doi.org/10.1007/s13595-020-00933-5.

    Article  Google Scholar 

  8. Seidl R, Thom D, Kautz M, et al. Forest disturbances under climate change. Nat Clim Chang. 2017;7:395–402. https://doi.org/10.1038/nclimate3303.

    Article  Google Scholar 

  9. McDowell NG, Allen CD, Anderson-Teixeira K, et al. Pervasive shifts in forest dynamics in a changing world. Science. 2020;368:eaaz9463. https://doi.org/10.1126/science.aaz9463.

    Article  CAS  Google Scholar 

  10. Senf C, Buras A, Zang CS, et al. Excess forest mortality is consistently linked to drought across Europe. Nat Commun. 2020;11:6200. https://doi.org/10.1038/s41467-020-19924-1.

    Article  CAS  Google Scholar 

  11. Collins L, Bradstock RA, Clarke H, et al. The 2019/2020 mega-fires exposed Australian ecosystems to an unprecedented extent of high-severity fire. Environ Res Lett. 2021;16:044029. https://doi.org/10.1088/1748-9326/abeb9e.

    Article  Google Scholar 

  12. Seidl R, Schelhaas M-J, Rammer W, Verkerk PJ. Increasing forest disturbances in Europe and their impact on carbon storage. Nat Clim Chang. 2014;4:806–10. https://doi.org/10.1038/nclimate2318.

    Article  CAS  Google Scholar 

  13. Samaniego L, Thober S, Kumar R, et al. Anthropogenic warming exacerbates European soil moisture droughts. Nat Clim Chang. 2018;8:421. https://doi.org/10.1038/s41558-018-0138-5.

    Article  Google Scholar 

  14. Spinoni J, Vogt JV, Naumann G, et al. Will drought events become more frequent and severe in Europe? Int J Climatol. 2018;38:1718–36. https://doi.org/10.1002/joc.5291.

    Article  Google Scholar 

  15. Allen CD, Breshears DD, McDowell NG. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere. 2015;6:art129. https://doi.org/10.1890/ES15-00203.1.

    Article  Google Scholar 

  16. Thorn S, Müller J, Leverkus AB. Preventing European forest diebacks. Science. 2019;365:1388–1388. https://doi.org/10.1126/science.aaz3476.

    Article  CAS  Google Scholar 

  17. Franklin JF, Lindenmayer D, MacMahon JA, et al. Threads of continuity. Conserv Pract. 2000;1:8–17. https://doi.org/10.1111/j.1526-4629.2000.tb00155.x.

    Article  Google Scholar 

  18. Seidl R, Spies TA, Peterson DL, et al. REVIEW: searching for resilience: addressing the impacts of changing disturbance regimes on forest ecosystem services. J Appl Ecol. 2016;53:120–9. https://doi.org/10.1111/1365-2664.12511.

    Article  Google Scholar 

  19. Thom D, Sommerfeld A, Sebald J, et al. Effects of disturbance patterns and deadwood on the microclimate in European beech forests. Agric For Meteorol. 2020;291:108066. https://doi.org/10.1016/j.agrformet.2020.108066.

    Article  Google Scholar 

  20. De Frenne P, Lenoir J, Luoto M, et al. Forest microclimates and climate change: importance, drivers and future research agenda. Glob Chang Biol. 2021;27:2279–97. https://doi.org/10.1111/gcb.15569.

    Article  CAS  Google Scholar 

  21. Kopáček J, Bače R, Hejzlar J, et al. Changes in microclimate and hydrology in an unmanaged mountain forest catchment after insect-induced tree dieback. Sci Total Environ. 2020;720:137518. https://doi.org/10.1016/j.scitotenv.2020.137518.

    Article  CAS  Google Scholar 

  22. Swanson ME, Franklin JF, Beschta RL, et al. The forgotten stage of forest succession: early-successional ecosystems on forest sites. Front Ecol Environ. 2011;9:117–25. https://doi.org/10.1890/090157.

    Article  Google Scholar 

  23. Malmström A. Life-history traits predict recovery patterns in Collembola species after fire: a 10 year study. Appl Soil Ecol. 2012;56:35–42. https://doi.org/10.1016/j.apsoil.2012.02.007.

    Article  Google Scholar 

  24. Jõgiste K, Korjus H, Stanturf JA, et al. Hemiboreal forest: natural disturbances and the importance of ecosystem legacies to management. Ecosphere. 2017;8:e01706. https://doi.org/10.1002/ecs2.1706.

    Article  Google Scholar 

  25. • Sallé A, Cours J, Le Souchu E, et al. Climate change alters temperate forest canopies and indirectly reshapes arthropod communities. Front For Glob Chang. 2021;4:120. https://doi.org/10.3389/ffgc.2021.710854. This mini-review illustrates how climate change affects resources and microhabitats in the canopy, and has cascading effects on its associated arthropod fauna.

    Article  Google Scholar 

  26. Thom D, Seidl R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol Rev. 2016;91:760–81. https://doi.org/10.1111/brv.12193.

    Article  Google Scholar 

  27. •• Viljur M-L, Abella SR, Adámek M, et al. The effect of natural disturbances on forest biodiversity: an ecological synthesis. Biol Rev. 2022;97:1930–47. https://doi.org/10.1111/brv.12876. This meta-analysis synthesizes the effects of windstorms, outbreaks and wildfires, and their disturbance regime, on several taxonomical groups.

    Article  Google Scholar 

  28. Reaka-Kudla ML, Wilson DE, Wilson EO. Biodiversity II: Understanding and Protecting Our Biological Resources. Washington: A Joseph Henry Press Book; 1997.

    Google Scholar 

  29. Wermelinger B. Forest Insects in Europe: Diversity, Functions and Importance. Boca Raton: CRC Press; 2021.

    Book  Google Scholar 

  30. Evans WG. Infrared radiation sensors of Melanophila acuminata (Coleoptera: Buprestidae): a thermopneumatic model. Ann Entomol Soc Am. 2005;98:738–746. https://doi.org/10.1603/0013-8746(2005)098[0738:IRSOMA]2.0.CO;2.

  31. Dell J, O’Brien J, Doan L, et al. An arthropod survival strategy in a frequently burned forest. Ecology. 2017;98:2972–4. https://doi.org/10.1002/ecy.1939.

    Article  Google Scholar 

  32. Harvey JA, Tougeron K, Gols R, et al. Scientists’ warning on climate change and insects. Ecological Monographs. 2023;93:e1553. https://doi.org/10.1002/ecm.1553.

    Article  Google Scholar 

  33. Johnstone JF, Allen CD, Franklin JF, et al. Changing disturbance regimes, ecological memory, and forest resilience. Front Ecol Environ. 2016;14:369–378. https://doi.org/10.1002/fee.1311

  34. Marzano R, Garbarino M, Marcolin E, et al. Deadwood anisotropic facilitation on seedling establishment after a stand-replacing wildfire in Aosta Valley (NW Italy). Ecol Eng. 2013;51:117–122. https://doi.org/10.1016/j.ecoleng.2012.12.030

  35. Mayer M, Rosinger C, Gorfer M, et al. Surviving trees and deadwood moderate changes in soil fungal communities and associated functioning after natural forest disturbance and salvage logging. Soil Biol Biochem. 2022;166:108558. https://doi.org/10.1016/j.soilbio.2022.108558.

    Article  CAS  Google Scholar 

  36. Thorn S, Bässler C, Gottschalk T, et al. New insights into the consequences of post-windthrow salvage logging revealed by functional structure of saproxylic beetles assemblages. PLOS ONE. 2014;9:e101757. https://doi.org/10.1371/journal.pone.0101757

  37. Cours J, Larrieu L, Lopez-Vaamonde C, et al. Contrasting responses of habitat conditions and insect biodiversity to pest- or climate-induced dieback in coniferous mountain forests. For Ecol Manag. 2021; 482. https://doi.org/10.1016/j.foreco.2020.118811

  38. • Pulsford SA, Lindenmayer DB, Driscoll DA. A succession of theories: purging redundancy from disturbance theory. Biol Rev. 2016;91:148–167. https://doi.org/10.1111/brv.12163This paper reviewed all ecological concept and theories at stake in disturbance ecology.

  39. Chang CC, Halpern CB, Antos JA, et al. Testing conceptual models of early plant succession across a disturbance gradient. J Ecol. 2019;107:517–30. https://doi.org/10.1111/1365-2745.13120.

    Article  Google Scholar 

  40. Krawchuk MA, Meigs GW, Cartwright JM, et al. Disturbance refugia within mosaics of forest fire, drought, and insect outbreaks. Front Ecol Environ. 2020;18:235–244. https://doi.org/10.1002/fee.2190

  41. Turner MG, Romme WH, Gardner RH. Prefire heterogeneity, fire severity, and early postfire plant reestablishment in subalpine forests of Yellowstone National Park, Wyoming. Int J Wildland Fire. 1999;9:21–36. https://doi.org/10.1071/wf99003.

    Article  Google Scholar 

  42. Levine JI, Collins BM, Steel ZL, et al. Higher incidence of high-severity fire in and near industrially managed forests. Front Ecol Environ. 2022. https://doi.org/10.1002/fee.2499. (n/a).

    Article  Google Scholar 

  43. Lindenmayer DB, Bowd EJ, Taylor C, Likens GE. The interactions among fire, logging, and climate change have sprung a landscape trap in Victoria’s montane ash forests. Plant Ecol. 2022. https://doi.org/10.1007/s11258-021-01217-2

  44. Ulyshen MD, Horn S, Barnes B, Gandhi KJK. Impacts of prescribed fire on saproxylic beetles in loblolly pine logs. Insect Conserv Divers. 2010;3:247–51. https://doi.org/10.1111/j.1752-4598.2010.00095.x.

    Article  Google Scholar 

  45. Biedermann P, Vega F. Ecology and evolution of insect-fungus mutualisms. Annu Rev Entomol. 2020;65:431–55. https://doi.org/10.1146/annurev-ento-011019-024910.

    Article  CAS  Google Scholar 

  46. Lindenmayer DB, Noss RF. Salvage Logging, Ecosystem Processes, and Biodiversity Conservation. Conserv Biol. 2006;20:949–958. https://doi.org/10.1111/j.1523-1739.2006.00497.x

  47. Müller J, Noss RF, Bussler H, Brandl R. Learning from a “benign neglect strategy” in a national park: response of saproxylic beetles to dead wood accumulation. Biol Cons. 2010;143:2559–69. https://doi.org/10.1016/j.biocon.2010.06.024.

    Article  Google Scholar 

  48. Thorn S, Chao A, Georgiev KB, et al. Estimating retention benchmarks for salvage logging to protect biodiversity. Nat Commun. 2020;11:4762. https://doi.org/10.1038/s41467-020-18612

  49. Wikars L-O, Schimmel J. Immediate effects of fire-severity on soil invertebrates in cut and uncut pine forests. For Ecol Manag. 2001;141:189–200. https://doi.org/10.1016/S0378-1127(00)00328-5.

    Article  Google Scholar 

  50. Moretti M, Duelli P, Obrist MK. Biodiversity and resilience of arthropod communities after fire disturbance in temperate forests. Oecologia. 2006;149:312–27. https://doi.org/10.1007/s00442-006-0450-z.

    Article  Google Scholar 

  51. Lindberg N, Engtsson JB, Persson T. Effects of experimental irrigation and drought on the composition and diversity of soil Fauna in a coniferous stand. J Appl Ecol. 2002;39:924–36. https://doi.org/10.1046/j.1365-2664.2002.00769.x.

    Article  Google Scholar 

  52. Gely C, Laurance SGW, Stork NE. How do herbivorous insects respond to drought stress in trees? Biol Rev. 2020;95:434–48. https://doi.org/10.1111/brv.12571.

    Article  Google Scholar 

  53. Peguero G, Folch E, Liu L, et al. Divergent effects of drought and nitrogen deposition on microbial and arthropod soil communities in a Mediterranean forest. Eur J Soil Biol. 2021;103:103275. https://doi.org/10.1016/j.ejsobi.2020.103275.

    Article  CAS  Google Scholar 

  54. Wehner K, Simons NK, Blüthgen N, Heethoff M. Drought, windthrow and forest operations strongly affect oribatid mite communities in different microhabitats. Glob Ecol Conserv. 2021;30:e01757. https://doi.org/10.1016/j.gecco.2021.e01757.

    Article  Google Scholar 

  55. Jouveau S, Poeydebat C, Castagneyrol B, et al. Restoring tree species mixtures mitigates the adverse effects of pine monoculture and drought on forest carabids. Insect Conserv Divers. 2022. https://doi.org/10.1111/icad.12599. (n/a).

    Article  Google Scholar 

  56. Brennan KEC, Moir ML, Wittkuhn RS. Fire refugia: The mechanism governing animal survivorship within a highly flammable plant. Austral Ecol. 2011;36:131–41. https://doi.org/10.1111/j.1442-9993.2010.02127.x.

    Article  Google Scholar 

  57. Pryke J, Samways M. Importance of using many taxa and having adequate controls for monitoring impacts of fire for arthropod conservation. J Insect Conserv. 2012;16:177–85. https://doi.org/10.1007/s10841-011-9404-9.

    Article  Google Scholar 

  58. Gongalsky KB, Persson T. Recovery of soil macrofauna after wildfires in boreal forests. Soil Biol Biochem. 2013;57:182–91. https://doi.org/10.1016/j.soilbio.2012.07.005.

    Article  CAS  Google Scholar 

  59. Pincebourde S, Woods HA. There is plenty of room at the bottom: microclimates drive insect vulnerability to climate change. Curr Opin Insect Sci. 2020;41:63–70. https://doi.org/10.1016/j.cois.2020.07.001.

    Article  Google Scholar 

  60. Stork NE, Grimbacher PS. Beetle assemblages from an Australian tropical rainforest show that the canopy and the ground strata contribute equally to biodiversity. Proc R Soc B Biol Sci. 2006;273:1969–75. https://doi.org/10.1098/rspb.2006.3521.

    Article  Google Scholar 

  61. Michaletz ST, Johnson EA. How forest fires kill trees: a review of the fundamental biophysical processes. Scand J For Res. 2007;22:500–15. https://doi.org/10.1080/02827580701803544.

    Article  Google Scholar 

  62. Bréda N, Huc R, Granier A, Dreyer E. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci. 2006;63:625–44. https://doi.org/10.1051/forest:2006042.

    Article  Google Scholar 

  63. Mitchell SJ. Wind as a natural disturbance agent in forests: a synthesis. Forest Int J For Res. 2013;86:147–57. https://doi.org/10.1093/forestry/cps058.

    Article  Google Scholar 

  64. Ruthrof KX, Fontaine JB, Matusick G, et al. How drought-induced forest die-off alters microclimate and increases fuel loadings and fire potentials. Int J Wildland Fire. 2016;25:819–30. https://doi.org/10.1071/WF15028.

    Article  Google Scholar 

  65. Bär A, Michaletz ST, Mayr S. Fire effects on tree physiology. New Phytol. 2019;223:1728–41. https://doi.org/10.1111/nph.15871.

    Article  Google Scholar 

  66. Beloiu M, Stahlmann R, Beierkuhnlein C. Drought impacts in forest canopy and deciduous tree saplings in Central European forests. For Ecol Manag. 2022;509:120075. https://doi.org/10.1016/j.foreco.2022.120075.

    Article  Google Scholar 

  67. Abd Latif Z, Blackburn GA. The effects of gap size on some microclimate variables during late summer and autumn in a temperate broadleaved deciduous forest. Int J Biometeorol. 2010;54:119–29. https://doi.org/10.1007/s00484-009-0260-1.

    Article  Google Scholar 

  68. Zellweger F, De Frenne P, Lenoir J, et al. Forest microclimate dynamics drive plant responses to warming. Science. 2020;368:772–5. https://doi.org/10.1126/science.aba6880.

    Article  CAS  Google Scholar 

  69. Seibold S, Bässler C, Brandl R, et al. Microclimate and habitat heterogeneity as the major drivers of beetle diversity in dead wood. J Appl Ecol. 2016;53:934–943. https://doi.org/10.1111/1365-2664.12607

  70. • Lettenmaier L, Seibold S, Bässler C, et al. Beetle diversity is higher in sunny forests due to higher microclimatic heterogeneity in deadwood. Oecologia. 2022;198:825–34. https://doi.org/10.1007/s00442-022-05141-8. A good example of the effects of canopy openness and its micro-environmental legacies on forest arthropods.

    Article  Google Scholar 

  71. Hartshorn J. A review of forest management effects on terrestrial leaf litter inhabiting arthropods. Forests. 2021;12:23. https://doi.org/10.3390/f12010023.

    Article  Google Scholar 

  72. Coyle DR, Nagendra UJ, Taylor MK, et al. Soil fauna responses to natural disturbances, invasive species, and global climate change: Current state of the science and a call to action. Soil Biol Biochem. 2017;110:116–33. https://doi.org/10.1016/j.soilbio.2017.03.008.

    Article  CAS  Google Scholar 

  73. Chanasyk DS, Whitson IR, Mapfumo E, et al. The impacts of forest harvest and wildfire on soils and hydrology in temperate forests: a baseline to develop hypotheses for the Boreal Plain. J Environ Eng Sci. 2003;2:S51–62. https://doi.org/10.1139/s03-034.

    Article  Google Scholar 

  74. Certini G. Effects of fire on properties of forest soils: a review. Oecologia. 2005;143:1–10. https://doi.org/10.1007/s00442-004-1788-8.

    Article  Google Scholar 

  75. Nave LE, Gough CM, Maurer KD, et al. Disturbance and the resilience of coupled carbon and nitrogen cycling in a north temperate forest. J Geophys Res Biogeosci. 2011;116. https://doi.org/10.1029/2011JG001758.

  76. Bowd EJ, Banks SC, Strong CL, Lindenmayer DB. Long-term impacts of wildfire and logging on forest soils. Nat Geosci. 2019;12:113–118. 10/gftvcw.

  77. Everham EM, Brokaw NVL. Forest damage and recovery from catastrophic wind. Bot Rev. 1996;62:113–85. https://doi.org/10.1007/BF02857920.

    Article  Google Scholar 

  78. Waldron K, Ruel J-C, Gauthier S. Forest structural attributes after windthrow and consequences of salvage logging. For Ecol Manag. 2013;289:28–37. https://doi.org/10.1016/j.foreco.2012.10.006

  79. Bouget C, Duelli P. The effects of windthrow on forest insect communities: a literature review. Biol Cons. 2004;118:281–99. https://doi.org/10.1016/j.biocon.2003.09.009.

    Article  Google Scholar 

  80. Thorn S, Bußler H, Fritze M-A, et al. Canopy closure determines arthropod assemblages in microhabitats created by windstorms and salvage logging. For Ecol Manag. 2016;381:188–95. https://doi.org/10.1016/j.foreco.2016.09.029.

    Article  Google Scholar 

  81. Véle A, Holuša J, Horák J. Ant abundance increases with clearing size. J For Res. 2016;21:110–4. https://doi.org/10.1007/s10310-016-0520-y.

    Article  Google Scholar 

  82. Perry KI, Sivakoff FS, Wallin KF, et al. Forest disturbance and arthropods: small-scale canopy and understory disturbances alter movement of mobile arthropods. Ecosphere. 2021;12:e03771. https://doi.org/10.1002/ecs2.3771.

    Article  Google Scholar 

  83. Potts SG, Vulliamy B, Dafni A, et al. Response of plant-pollinator communities to fire: changes in diversity, abundance and floral reward structure. Oikos. 2003;101:103–12. https://doi.org/10.1034/j.1600-0706.2003.12186.x.

    Article  Google Scholar 

  84. Barreiro A, Díaz-Raviña M. Fire impacts on soil microorganisms: mass, activity, and diversity. Curr Opin Environ Sci Health. 2021;22:100264. https://doi.org/10.1016/j.coesh.2021.100264.

    Article  Google Scholar 

  85. Fernández-Martínez M, Belmonte J, Maria Espelta J. Masting in oaks: disentangling the effect of flowering phenology, airborne pollen load and drought. Acta Oecol. 2012;43:51–9. https://doi.org/10.1016/j.actao.2012.05.006.

    Article  Google Scholar 

  86. Nussbaumer A, Meusburger K, Schmitt M, et al. Extreme summer heat and drought lead to early fruit abortion in European beech. Sci Rep. 2020;10:5334. https://doi.org/10.1038/s41598-020-62073-0.

    Article  CAS  Google Scholar 

  87. Gavinet J, Ourcival J-M, Limousin J-M. Rainfall exclusion and thinning can alter the relationships between forest functioning and drought. New Phytol. 2019;223:1267–79. https://doi.org/10.1111/nph.15860.

    Article  Google Scholar 

  88. Ascoli D, Vacchiano G, Maringer J, et al. The synchronicity of masting and intermediate severity fire effects favors beech recruitment. For Ecol Manag. 2015;353:126–135.https://doi.org/10.1016/j.foreco.2015.05.031

  89. Vacchiano G, Garbarino M, Lingua E, Motta R. Forest dynamics and disturbance regimes in the Italian Apennines. For Ecol Manag. 2017;388:57–66. https://doi.org/10.1016/j.foreco.2016.10.033.

    Article  Google Scholar 

  90. Vacchiano G, Pesendorfer MB, Conedera M, et al. Natural disturbances and masting: from mechanisms to fitness consequences. Philos Trans R Soc B Biol Sci. 2021;376:20200384. https://doi.org/10.1098/rstb.2020.0384

  91. Losseau J, Jonard M, Vincke C. Pedunculate oak decline in southern Belgium: a long-term process highlighting the complex interplay among drought, winter frost, biotic attacks, and masting. Can J For Res. 2020;50:380–9. https://doi.org/10.1139/cjfr-2019-0341.

    Article  Google Scholar 

  92. Rieske LK, Housman HH, Arthur MA. Effects of prescribed fire on canopy foliar chemistry and suitability for an insect herbivore. For Ecol Manag. 2002;160:177–87. https://doi.org/10.1016/S0378-1127(01)00444-3.

    Article  Google Scholar 

  93. Huberty AF, Denno RF. Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecology. 2004;85:1383–98. https://doi.org/10.1890/03-0352.

    Article  Google Scholar 

  94. Jactel H, Petit J, Desprez-Loustau M-L, et al. Drought effects on damage by forest insects and pathogens: a meta-analysis. Glob Chang Biol. 2012;18:267–76. https://doi.org/10.1111/j.1365-2486.2011.02512.x.

    Article  Google Scholar 

  95. Chiang J-M, Brown KJ. The effects of thinning and burning treatments on within-canopy variation of leaf traits in hardwood forests of southern Ohio. For Ecol Manag. 2010;260:1065–75. https://doi.org/10.1016/j.foreco.2010.06.033.

    Article  Google Scholar 

  96. Ishii HT, Tanabe S, Hiura T. Exploring the relationships among canopy structure, stand productivity, and biodiversity of temperate. For Ecosyst For Sci. 2004;50:342–55. https://doi.org/10.1093/forestscience/50.3.342.

    Article  Google Scholar 

  97. Clements FE. Plant succession; an analysis of the development of vegetation. Washington: Carnegie Institution of Washington; 1916.

    Book  Google Scholar 

  98. Peterson CJ, Pickett STA. Forest reorganization: a case study in an old-growth forest catastrophic blowdown. Ecology. 1995;76:763–74. https://doi.org/10.2307/1939342.

    Article  Google Scholar 

  99. Dietz L, Collet C, Dupouey J-L, et al. Windstorm-induced canopy openings accelerate temperate forest adaptation to global warming. Glob Ecol Biogeogr. 2020;29:2067–2077. https://doi.org/10.1111/geb.13177

  100. Turner MG, Romme WH, Gardner RH, Hargrove WW. Effects of fire size and pattern on early succession in Yellowstone National Park. Ecol Monogr. 1997;67:411–433. https://doi.org/10.2307/2963464

  101. Lu D, Zhang G, Zhu J, et al. Early natural regeneration patterns of woody species within gaps in a temperate secondary forest. Eur J For Res. 2019;138:991–1003. https://doi.org/10.1007/s10342-019-01219-w.

    Article  Google Scholar 

  102. Burkle LA, Simanonok MP, Durney JS, et al. Wildfires influence abundance, diversity, and intraspecific and interspecific trait variation of native bees and flowering plants across burned and unburned landscapes. Front Ecol Evol. 2019;7. https://doi.org/10.3389/fevo.2019.00252.

  103. Day NJ, White AL, Johnstone JF, et al. Fire characteristics and environmental conditions shape plant communities via regeneration strategy. Ecography. 2020;43:1464–74. https://doi.org/10.1111/ecog.05211.

    Article  Google Scholar 

  104. Cacciatori C, Bacaro G, Chećko E, et al. Windstorm effects on herbaceous vegetation in temperate forest ecosystems: changes in plant functional diversity and species trait values along a disturbance severity gradient. For Ecol Manag. 2022;505:119799. https://doi.org/10.1016/j.foreco.2021.119799.

    Article  Google Scholar 

  105. Romey WL, Ascher JS, Powell DA, Yanek M. Impacts of logging on midsummer diversity of native bees (Apoidea) in a Northern Hardwood forest. Kent. 2007;80:327–38. https://doi.org/10.2317/0022-8567(2007)80[327:IOLOMD]2.0.CO;2.

    Article  Google Scholar 

  106. Runkle JR. Disturbance regimes in temperate forests. Disturbance Regimes in Temperate Forests. In: Pickett, S.T. and White, P.S., Eds. The Ecology of Natural Disturbance and Patch Dynamics, Academic Press, New York, 17-33. 1985;17–33. https://doi.org/10.1016/B978-0-08-050495-7.50007-7

  107. Perry KI, Wallin KF, Wenzel JW, Herms DA. Forest disturbance and arthropods: small-scale canopy gaps drive invertebrate community structure and composition. Ecosphere. 2018;9:e02463. https://doi.org/10.1002/ecs2.2463.

    Article  Google Scholar 

  108. DeBano LF, Neary DG, Ffolliott PF. Fire Effects on Ecosystems. Wiley; 1998.

    Google Scholar 

  109. DeLuca TH, Aplet GH. Charcoal and carbon storage in forest soils of the Rocky Mountain West. Front Ecol Environ. 2008;6:18–24. https://doi.org/10.1890/070070.

    Article  Google Scholar 

  110. Verble-Pearson RM (2014) Effects of fire intensity on litter arthropod communities in Ozark Oak Forests, Arkansas, U.S.A. 172:14–24. https://doi.org/10.1674/0003-0031-172.1.14 (amid).

  111. Pressler Y, Moore JC, Cotrufo MF. Belowground community responses to fire: meta-analysis reveals contrasting responses of soil microorganisms and mesofauna. Oikos. 2019;128:309–27. https://doi.org/10.1111/oik.05738.

    Article  Google Scholar 

  112. Bastida F, Torres IF, Andrés-Abellán M, et al. Differential sensitivity of total and active soil microbial communities to drought and forest management. Glob Chang Biol. 2017;23:4185–203. https://doi.org/10.1111/gcb.13790.

    Article  Google Scholar 

  113. Santonja M, Fernandez C, Proffit M, et al. Plant litter mixture partly mitigates the negative effects of extended drought on soil biota and litter decomposition in a Mediterranean oak forest. J Ecol. 2017;105:801–15. https://doi.org/10.1111/1365-2745.12711.

    Article  Google Scholar 

  114. Pollierer MM, Dyckmans J, Scheu S, Haubert D. Carbon flux through fungi and bacteria into the forest soil animal food web as indicated by compound-specific 13C fatty acid analysis. Funct Ecol. 2012;26:978–90. https://doi.org/10.1111/j.1365-2435.2012.02005.x.

    Article  Google Scholar 

  115. Liu L, Estiarte M, Bengtson P, et al. Drought legacies on soil respiration and microbial community in a Mediterranean forest soil under different soil moisture and carbon inputs. Geoderma. 2022;405:115425. https://doi.org/10.1016/j.geoderma.2021.115425.

    Article  CAS  Google Scholar 

  116. Siitonen J. Forest management, coarse woody debris and saproxylic organisms: fennoscandian boreal forests as an example. Ecol Bull. 2001; 49:11–41. https://doi.org/10.2307/20113262

  117. Kulakowski D, Seidl R, Holeksa J, et al. A walk on the wild side: Disturbance dynamics and the conservation and management of European mountain forest ecosystems. For Ecol Manag. 2017;388:120–31. https://doi.org/10.1016/j.foreco.2016.07.037.

    Article  Google Scholar 

  118. Meigs GW, Morrissey RC, Bače R, et al. More ways than one: mixed-severity disturbance regimes foster structural complexity via multiple developmental pathways. For Ecol Manag. 2017;406:410–26. https://doi.org/10.1016/j.foreco.2017.07.051.

    Article  Google Scholar 

  119. Thorn S, Bässler C, Svoboda M, Müller J. Effects of natural disturbances and salvage logging on biodiversity – Lessons from the Bohemian Forest. For Ecol Manag. 2017;388:113–9. https://doi.org/10.1016/j.foreco.2016.06.006.

    Article  Google Scholar 

  120. Ojeda VS, Suarez ML, Kitzberger T. Crown dieback events as key processes creating cavity habitat for magellanic woodpeckers. Austral Ecol. 2007;32:436–45. https://doi.org/10.1111/j.1442-9993.2007.01705.x.

    Article  Google Scholar 

  121. • Kozák D, Svitok M, Wiezik M, et al. Historical disturbances determine current taxonomic, functional and phylogenetic diversity of saproxylic beetle communities in temperate primary forests. Ecosystems. 2021;24:37–55. https://doi.org/10.1007/s10021-020-00502-x. This article demonstrates the long-term effects of disturbances on saproxylic beetles.

    Article  CAS  Google Scholar 

  122. • Larrieu L, Courbaud B, Drénou C, et al. Key factors determining the presence of Tree-related Microhabitats: a synthesis of potential factors at site, stand and tree scales, with perspectives for further research. For Ecol Manag. 2022;515:120235. https://doi.org/10.1016/j.foreco.2022.120235. A key article on the factors affecting the amount and diversity of tree-related microhabitats, a prominent resource for saproxylic arthropods.

    Article  Google Scholar 

  123. Paillet Y, Debaive N, Archaux F, et al. Nothing else matters? Tree diameter and living status have more effects than biogeoclimatic context on microhabitat number and occurrence: an analysis in French forest reserves. PLOS ONE. 2019;14:e0216500. https://doi.org/10.1371/journal.pone.0216500.

    Article  Google Scholar 

  124. Asbeck T, Kozák D, Spînu AP, et al. Tree-related microhabitats follow similar patterns but are more diverse in primary compared to managed temperate mountain forests. Ecosystems. 2022;25:712–26. https://doi.org/10.1007/s10021-021-00681-1.

    Article  Google Scholar 

  125. Boucher J, Hébert C, Ibarzabal J, Bauce É. High conservation value forests for burn-associated saproxylic beetles: an approach for developing sustainable post-fire salvage logging in boreal forest. Insect Conserv Divers. 2016;9:402–15. https://doi.org/10.1111/icad.12175.

    Article  Google Scholar 

  126. Paine RT, Tegner MJ, Johnson EA. Compounded perturbations yield ecological surprises. Ecosystems. 1998;1:535–45. https://doi.org/10.1007/s100219900049.

    Article  Google Scholar 

  127. Korolyova N, Buechling A, Ďuračiová R, et al. The last trees standing: Climate modulates tree survival factors during a prolonged bark beetle outbreak in Europe. Agric For Meteorol. 2022;322:109025. https://doi.org/10.1016/j.agrformet.2022.109025.

    Article  Google Scholar 

  128. Kausrud KL, Grégoire J-C, Skarpaas O, et al. Trees wanted—dead or alive! Host selection and population dynamics in tree-killing bark beetles. PLOS ONE. 2011;6:e18274. https://doi.org/10.1371/journal.pone.0018274.

    Article  CAS  Google Scholar 

  129. Schoennagel T, Smithwick EAH, Turner MG. Landscape heterogeneity following large fires: insights from Yellowstone National Park, USA. Int J Wildland Fire. 2008;17:742–53. https://doi.org/10.1071/WF07146.

    Article  Google Scholar 

  130. Horák J. Niche partitioning among dead wood-dependent beetles. Sci Rep. 2021;11:15178. https://doi.org/10.1038/s41598-021-94396-x.

    Article  CAS  Google Scholar 

  131. • Ulyshen MD, Hiers JK, Pokswinksi SM, Fair C. Pyrodiversity promotes pollinator diversity in a fire-adapted landscape. Front Ecol Environ. 2022;20:78–83. https://doi.org/10.1002/fee.2436. This article highlights the contribution of past disturbances to local arthropod diversity through an increase in habitat heterogeneity at landscape scales.

    Article  Google Scholar 

  132. Camp A, Oliver C, Hessburg P, Everett R. Predicting late-successional fire refugia pre-dating European settlement in the Wenatchee Mountains. For Ecol Manag. 1997;95:63–77.https://doi.org/10.1016/S0378-1127(97)00006-6

  133. Turner MG, Donato DC, Romme WH. Consequences of spatial heterogeneity for ecosystem services in changing forest landscapes: priorities for future research. Landscape Ecol. 2013;28:1081–97. https://doi.org/10.1007/s10980-012-9741-4.

    Article  Google Scholar 

  134. Meddens AJH, Kolden CA, Lutz JA, et al. Fire refugia: what are they, and why do they matter for global change? Bioscience. 2018;68:944–54. https://doi.org/10.1093/biosci/biy103.

    Article  Google Scholar 

  135. Seidl R, Rammer W, Spies TA. Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning. Ecol Appl. 2014;24:2063–2077. https://doi.org/10.1890/14-0255.1

  136. Robinson NM, Leonard SWJ, Ritchie EG, et al. REVIEW: refuges for fauna in fire-prone landscapes: their ecological function and importance. J Appl Ecol. 2013;50:1321–9. https://doi.org/10.1111/1365-2664.12153.

    Article  Google Scholar 

  137. Smirnova E, Bergeron Y, Brais S. Influence of fire intensity on structure and composition of jack pine stands in the boreal forest of Quebec: live trees, understory vegetation and dead wood dynamics. For Ecol Manage. 2008;255:2916–27. https://doi.org/10.1016/j.foreco.2008.01.071.

    Article  Google Scholar 

  138. Bento-Gonçalves A, Vieira A, Úbeda X, Martin D. Fire and soils: key concepts and recent advances. Geoderma. 2012;191:3–13. https://doi.org/10.1016/j.geoderma.2012.01.004.

    Article  Google Scholar 

  139. Turner MG. Disturbance and landscape dynamics in a changing world. Ecology. 2010;91:2833–2849. https://doi.org/10.2307/20788110

  140. Keeley JE, Pausas JG, Rundel PW, et al. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 2011;16:406–11. https://doi.org/10.1016/j.tplants.2011.04.002.

    Article  CAS  Google Scholar 

  141. Pausas JG, Parr CL. Towards an understanding of the evolutionary role of fire in animals. Evol Ecol. 2018;32:113–25. https://doi.org/10.1007/s10682-018-9927-6.

    Article  Google Scholar 

  142. Thom D, Rammer W, Seidl R. Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions. Glob Chang Biol. 2017;23:269–82. https://doi.org/10.1111/gcb.13506.

    Article  Google Scholar 

  143. Kulakowski D, Veblen TT. Influences of fire history and topography on the pattern of a severe wind blowdown in a Colorado subalpine forest. J Ecol. 2002;90:806–19. https://doi.org/10.1046/j.1365-2745.2002.00722.x.

    Article  Google Scholar 

  144. Littell JS, Peterson DL, Riley KL, et al. A review of the relationships between drought and forest fire in the United States. Glob Chang Biol. 2016;22:2353–69. https://doi.org/10.1111/gcb.13275.

    Article  Google Scholar 

  145. Simard M, Romme WH, Griffin JM, Turner MG. Do mountain pine beetle outbreaks change the probability of active crown fire in lodgepole pine forests? Ecol Monogr. 2011;81:3–24. https://doi.org/10.1890/10-1176.1.

    Article  Google Scholar 

  146. Buma B. Disturbance interactions: characterization, prediction, and the potential for cascading effects. Ecosphere. 2015;6:art70. https://doi.org/10.1890/ES15-00058.1.

    Article  Google Scholar 

  147. Cannon JB, Peterson CJ, O’Brien JJ, Brewer JS. A review and classification of interactions between forest disturbance from wind and fire. For Ecol Manag. 2017;406:381–90. https://doi.org/10.1016/j.foreco.2017.07.035.

    Article  Google Scholar 

  148. Myers RK, van Lear DH. Hurricane-fire interactions in coastal forests of the south: a review and hypothesis. For Ecol Manag. 1998;103:265–76. https://doi.org/10.1016/S0378-1127(97)00223-5.

    Article  Google Scholar 

  149. Donato DC, Fontaine JB, Campbell JL, et al. Post-wildfire logging hinders regeneration and increases fire risk. Science. 2006;311:352–352. https://doi.org/10.1126/science.1122855.

    Article  CAS  Google Scholar 

  150. Buma B, Wessman CA. Disturbance interactions can impact resilience mechanisms of forests. Ecosphere. 2011;2:art64. https://doi.org/10.1890/ES11-00038.1.

    Article  Google Scholar 

  151. Davis KT, Robles MD, Kemp KB, et al. Reduced fire severity offers near-term buffer to climate-driven declines in conifer resilience across the western United States. Proc Natl Acad Sci. 2023;120:e2208120120. https://doi.org/10.1073/pnas.2208120120.

    Article  CAS  Google Scholar 

  152. Donato DC, Fontaine JB, Campbell JL. Burning the legacy? Influence of wildfire reburn on dead wood dynamics in a temperate conifer forest. Ecosphere. 2016;7:e01341. https://doi.org/10.1002/ecs2.1341.

    Article  Google Scholar 

  153. Dale VH, Joyce LA, McNulty S, et al. Climate change and forest disturbances. Bioscience. 2001;51:723–34. https://doi.org/10.1641/0006-3568(2001)051[0723:CCAFD]2.0.CO;2.

    Article  Google Scholar 

  154. Steel ZL, Jones GM, Collins BM, et al. Mega-disturbances cause rapid decline of mature conifer forest habitat in California. Ecol Appl. 2022;n/a:e2763. https://doi.org/10.1002/eap.2763.

  155. Evans MJ, Barton P, Niwa S, et al. Climate-driven divergent long-term trends of forest beetles in Japan. Ecol Lett. 2022;25:2009–21. https://doi.org/10.1111/ele.14082.

    Article  Google Scholar 

  156. Tello F, González ME, Micó E, et al. Short-interval, severe wildfires alter saproxylic beetle diversity in Andean Araucaria Forests in Northwest Chilean Patagonia. Forests. 2022;13:441. https://doi.org/10.3390/f13030441.

    Article  Google Scholar 

  157. Batllori E, Lloret F, Aakala T, et al. Forest and woodland replacement patterns following drought-related mortality. PNAS. 2020;117:29720–9. https://doi.org/10.1073/pnas.2002314117.

    Article  CAS  Google Scholar 

  158. Johnstone JF, McIntire EJB, Pedersen EJ, et al. A sensitive slope: estimating landscape patterns of forest resilience in a changing climate. Ecosphere. 2010;1:art14. https://doi.org/10.1890/ES10-00102.1.

    Article  Google Scholar 

  159. Johnstone JF, Celis G, Chapin FS III, et al. Factors shaping alternate successional trajectories in burned black spruce forests of Alaska. Ecosphere. 2020;11:e03129. https://doi.org/10.1002/ecs2.3129.

    Article  Google Scholar 

  160. Gustafsson L, Johansson V, Leverkus AB, et al. Disturbance interval modulates the starting point for vegetation succession. Ecology. 2021;102. https://doi.org/10.1002/ecy.3439

  161. Keeley JE, Keeley MB, Bond WJ. Stem demography and post-fire recruitment of a resprouting serotinous conifer. J Veg Sci. 1999;10:69–76. https://doi.org/10.2307/3237162.

    Article  Google Scholar 

  162. Buma B, Brown CD, Donato DC, et al. The impacts of changing disturbance regimes on serotinous plant populations and communities. Bioscience. 2013;63:866–76. https://doi.org/10.1525/bio.2013.63.11.5.

    Article  Google Scholar 

  163. Hart SJ, Henkelman J, McLoughlin PD, et al. Examining forest resilience to changing fire frequency in a fire-prone region of boreal forest. Glob Chang Biol. 2019;25:869–84. https://doi.org/10.1111/gcb.14550.

    Article  Google Scholar 

  164. Busby SU, Moffett KB, Holz A. High-severity and short-interval wildfires limit forest recovery in the Central Cascade Range. Ecosphere. 2020;11:e03247. https://doi.org/10.1002/ecs2.3247.

    Article  Google Scholar 

  165. Turner MG, Braziunas KH, Hansen WD, et al. The magnitude, direction, and tempo of forest change in Greater Yellowstone in a warmer world with more fire. Ecol Monogr. 2021;92. https://doi.org/10.1002/ecm.1485

  166. Rowe JS. Concepts of Fire Effects on Plant Individuals and Species. In: The Role of Fire in Northern Circumpolar Ecosystems. Wiley; 1983. pp 135–154.

  167. Suggitt AJ, Wilson RJ, Isaac NJB, et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat Clim Chang. 2018;8:713–7. https://doi.org/10.1038/s41558-018-0231-9.

    Article  Google Scholar 

  168. Romero GQ, Gonçalves-Souza T, Roslin T, et al. Climate variability and aridity modulate the role of leaf shelters for arthropods: a global experiment. Glob Chang Biol. 2022;28:3694–710. https://doi.org/10.1111/gcb.16150.

    Article  CAS  Google Scholar 

  169. Mason SC, Shirey V, Ponisio LC, Gelhaus JK. Responses from bees, butterflies, and ground beetles to different fire and site characteristics: a global meta-analysis. Biol Conserv. 2021;261:109265. https://doi.org/10.1016/j.biocon.2021.109265.

    Article  Google Scholar 

  170. Jue DK, Merwin AC, Jue SS, et al. Effects of frequency and season of fire on a metapopulation of an imperiled butterfly in a longleaf pine forest. Conserv Sci Pract. 2022;4:e12739. https://doi.org/10.1111/csp2.12739.

    Article  Google Scholar 

  171. Verble RM, Yanoviak SP. Short-term effects of prescribed burning on ant (Hymenoptera: Formicidae) assemblages in Ozark Forests. Ann Entomol Soc Am. 2013;106:198–203. https://doi.org/10.1603/AN12108.

    Article  Google Scholar 

  172. Henig-Sever N, Poliakov D, Broza M. A novel method for estimation of wild fire intensity based on ash pH and soil microarthropod community. Pedobiologia. 2001;45:98–106. https://doi.org/10.1078/0031-4056-00072.

    Article  Google Scholar 

  173. Langlands PR, Brennan KEC, Framenau VW, Main BY. Predicting the post-fire responses of animal assemblages: testing a trait-based approach using spiders. J Anim Ecol. 2011;80:558–68. https://doi.org/10.1111/j.1365-2656.2010.01795.x.

    Article  Google Scholar 

  174. Marx MT, Guhmann P, Decker P. Adaptations and predispositions of different Middle European Arthropod Taxa (Collembola, Araneae, Chilopoda, Diplopoda) to flooding and drought conditions. Animals. 2012;2:564–90. https://doi.org/10.3390/ani2040564.

    Article  Google Scholar 

  175. Bokhorst S, Phoenix GK, Bjerke JW, et al. Extreme winter warming events more negatively impact small rather than large soil fauna: shift in community composition explained by traits not taxa. Glob Chang Biol. 2012;18:1152–62. https://doi.org/10.1111/j.1365-2486.2011.02565.x.

    Article  Google Scholar 

  176. Buckingham S, Murphy N, Gibb H. Effects of fire severity on the composition and functional traits of litter-dwelling macroinvertebrates in a temperate forest. For Ecol Manag. 2019;434:279–88. https://doi.org/10.1016/j.foreco.2018.12.030.

    Article  Google Scholar 

  177. Ferrenberg S, Martinez AS, Faist AM. Aboveground and belowground arthropods experience different relative influences of stochastic versus deterministic community assembly processes following disturbance. PeerJ. 2016;4:e2545. https://doi.org/10.7717/peerj.2545.

    Article  Google Scholar 

  178. Miller DR, Rabaglia RJ. Ethanol and (−)-α-Pinene: attractant kairomones for bark and ambrosia beetles in the Southeastern US. J Chem Ecol. 2009;35:435–48. https://doi.org/10.1007/s10886-009-9613-9.

    Article  CAS  Google Scholar 

  179. Graf M, Lettenmaier L, Müller J, Hagge J. Saproxylic beetles trace deadwood and differentiate between deadwood niches before their arrival on potential hosts. Insect Conserv Divers. 2022;15:48–60. https://doi.org/10.1111/icad.12534.

    Article  Google Scholar 

  180. Moretti M, Legg C. Combining plant and animal traits to assess community functional responses to disturbance. Ecography. 2009;32:299–309. https://doi.org/10.1111/j.1600-0587.2008.05524.x.

    Article  Google Scholar 

  181. Saint-Germain M, Drapeau P, Hibbert A. Saproxylic beetle tolerance to habitat fragmentation induced by salvage logging in a boreal mixed-cover burn. Insect Conserv Divers. 2013;6:381–92. https://doi.org/10.1111/j.1752-4598.2012.00216.x.

    Article  Google Scholar 

  182. Bouget C. Short-term effect of windstorm disturbance on saproxylic beetles in broadleaved temperate forests: Part II. Effects of gap size and gap isolation. For Ecol Manag. 2005;216:15–27. https://doi.org/10.1016/j.foreco.2005.05.036.

    Article  Google Scholar 

  183. Samu F, Kádár F, Ónodi G, et al. Differential ecological responses of two generalist arthropod groups, spiders and carabid beetles (Araneae, Carabidae), to the effects of wildfire. Community Ecol. 2010;11:129–39. https://doi.org/10.1556/comec.11.2010.2.1.

    Article  Google Scholar 

  184. Sklodowski J, Garbalinska P. Ground beetle (Coleoptera, Carabidae) assemblages inhabiting Scots pine stands of Puszcza Piska Forest: six-year responses to a tornado impact. ZooKeys. 2011;100:371–92. https://doi.org/10.3897/zookeys.100.1360.

    Article  Google Scholar 

  185. Hirao T, Murakami M, Iwamoto J, et al. Scale-dependent effects of windthrow disturbance on forest arthropod communities. Ecol Res. 2008;23:189–96. https://doi.org/10.1007/s11284-007-0370-3.

    Article  Google Scholar 

  186. Simmons SA, Bossart JL. Apparent resilience to fire of native bee (Hymenoptera: Apoidea) communities from Upland Longleaf Pine Forests in Louisiana and Mississippi. 2020;19:567–581. https://doi.org/10.1656/058.019.0316 (sena).

  187. Bess EC, Parmenter RR, Mccoy S, Molles MC. Responses of a riparian forest-floor arthropod community to wildfire in the Middle Rio Grande Valley, New Mexico. Environ Entomol. 2002;31:774–84. https://doi.org/10.1603/0046-225X-31.5.774.

    Article  Google Scholar 

  188. Scandurra A, Magliozzi L, Aria M, D’Aniello B. Short-term effects of fire on Papilionoidea (Lepidoptera) communities: a pilot study in Mediterranean maquis shrubland. Ital J Zool. 2014;81:599–609. https://doi.org/10.1080/11250003.2014.953218.

    Article  Google Scholar 

  189. Atchison RA, Hulcr J, Lucky A. Managed fire frequency significantly influences the litter arthropod community in longleaf pine flatwoods. Environ Entomol. 2018;47:575–85. https://doi.org/10.1093/ee/nvy038.

    Article  Google Scholar 

  190. Pausas JG, Belliure J, Mínguez E, Montagud S. Fire benefits flower beetles in a Mediterranean ecosystem. PLOS ONE. 2018;13:e0198951. https://doi.org/10.1371/journal.pone.0198951.

    Article  CAS  Google Scholar 

  191. Radea C, Arianoutsou M. Soil arthropod communities and population dynamics following wildfires in pine forests of the Mediterranean Basin: a review. Israel J Ecol Evol. 2012;58:137–49. https://doi.org/10.1560/IJEE.58.2-3.137.

    Article  Google Scholar 

  192. Fattorini S. Effects of fire on tenebrionid communities of a Pinus pinea plantation: a case study in a Mediterranean site. Biodivers Conserv. 2010;19:1237–50. https://doi.org/10.1007/s10531-009-9749-5.

    Article  Google Scholar 

  193. Busse A, Cizek L, Čížková P, et al. Forest dieback in a protected area triggers the return of the primeval forest specialist Peltis grossa (Coleoptera, Trogossitidae). Conserv Sci Pract. 2022;4:e612. https://doi.org/10.1111/csp2.612.

    Article  Google Scholar 

  194. Rodrigo A, Sardà-Palomera F, Bosch J, Retana J. Changes of dominant ground beetles in black pine forests with fire severity and successional age. Écoscience. 2008;15:442–52. https://doi.org/10.2980/15-4-3117.

    Article  Google Scholar 

  195. Černecká Ľ, Mihál I, Gajdoš P, Jarčuška B. The effect of canopy openness of European beech (Fagus sylvatica) forests on ground-dwelling spider communities. Insect Conserv Divers. 2020;13:250–61. https://doi.org/10.1111/icad.12380.

    Article  Google Scholar 

  196. Bouget C. Short-term effect of windthrow disturbance on ground beetle communities: gap and gap size effects. In: European Carabidology 2003: Proceedings of the 11th European Carabidologists Meeting, Aarhus (DK). Danish Institute of Agricultural Sciences report. 2005. pp 25–40.

  197. Urbanovičová V, Miklisová D, Kováč Ľ. Forest disturbance enhanced the activity of epedaphic collembola in windthrown stands of the High Tatra mountains. J Mt Sci. 2014;11:449–63. https://doi.org/10.1007/s11629-013-2736-z.

    Article  Google Scholar 

  198. Košulič O, Michalko R, Hula V. Impact of canopy openness on spider communities: implications for conservation management of formerly coppiced Oak forests. PLOS ONE. 2016;11:e0148585. https://doi.org/10.1371/journal.pone.0148585.

    Article  CAS  Google Scholar 

  199. • Georgiev KB, Bässler C, Feldhaar H, et al. Windthrow and salvage logging alter β-diversity of multiple species groups in a mountain spruce forest. For Ecol Manag. 2022;520:120401. https://doi.org/10.1016/j.foreco.2022.120401. This study shows how post-disturbance management can modulate disturbance impact on forest biodiversity and contribute to heterogeneity at landscape scale.

    Article  Google Scholar 

  200. Hanula JL, Wade DD. Influence of long-term dormant-season burning and fire exclusion on ground-dwelling arthropod populations in longleaf pine flatwoods ecosystems. For Ecol Manag. 2003;175:163–84. https://doi.org/10.1016/S0378-1127(02)00130-5.

    Article  Google Scholar 

  201. Apigian KO, Dahlsten DL, Stephens SL. Fire and fire surrogate treatment effects on leaf litter arthropods in a western Sierra Nevada mixed-conifer forest. For Ecol Manag. 2006;221:110–22. https://doi.org/10.1016/j.foreco.2005.09.009.

    Article  Google Scholar 

  202. Campbell JW, Vigueira PA, Viguiera CC, Greenberg CH. The effects of repeated prescribed fire and thinning on bees, wasps, and other flower visitors in the understory and midstory of a temperate forest in North Carolina. For Sci. 2018;64:299–306. https://doi.org/10.1093/forsci/fxx008.

    Article  Google Scholar 

  203. • Cours J, Sire L, Ladet S, et al. Drought-induced forest dieback increases taxonomic, functional, and phylogenetic diversity of saproxylic beetles at both local and landscape scales. Landsc Ecol. 2022. https://doi.org/10.1007/s10980-022-01453-5. This paper underlines the relevance of landscape scales when considering disturbance impacts at local scales.

    Article  Google Scholar 

  204. Sire L, Yáñez PS, Wang C, et al. Climate-induced forest dieback drives compositional changes in insect communities that are more pronounced for rare species. Commun Biol. 2022;5:1–17. https://doi.org/10.1038/s42003-021-02968-4.

    Article  Google Scholar 

  205. Ferrenberg SM, Schwilk DW, Knapp EE, et al. Fire decreases arthropod abundance but increases diversity: early and late season prescribed fire effects in a Sierra Nevada mixed-conifer forest. Fire Ecol. 2006;2:79–102. https://doi.org/10.4996/fireecology.0202079.

    Article  Google Scholar 

  206. Simanonok MP, Burkle LA. Nesting success of wood-cavity-nesting bees declines with increasing time since wildfire. Ecol Evol. 2019;9:12436–45. https://doi.org/10.1002/ece3.5657.

    Article  Google Scholar 

  207. Wikars L-O. Dependence on fire in wood-living insects: an experiment with burned and unburned spruce and birch logs. J Insect Conserv. 2002;6:1–12. https://doi.org/10.1023/A:1015734630309.

    Article  Google Scholar 

  208. Tello F, González ME, Valdivia N, et al. Diversity loss and changes in saproxylic beetle assemblages following a high-severity fire in Araucaria-Nothofagus forests. J Insect Conserv. 2020;24:585–601. https://doi.org/10.1007/s10841-020-00223-5.

    Article  Google Scholar 

  209. Sallé A, Parmain G, Nusillard B, et al. Forest decline differentially affects trophic guilds of canopy-dwelling beetles. Ann For Sci. 2020;77:86. https://doi.org/10.1007/s13595-020-00990-w.

    Article  Google Scholar 

  210. Fettig CJ, Runyon JB, Homicz CS, et al. Fire and insect interactions in North American forests. Curr Forestry Rep. 2022. https://doi.org/10.1007/s40725-022-00170-1.

    Article  Google Scholar 

  211. Carbone LM, Tavella J, Pausas JG, Aguilar R. A global synthesis of fire effects on pollinators. Glob Ecol Biogeogr. 2019;28:1487–98. https://doi.org/10.1111/geb.12939.

    Article  Google Scholar 

  212. Thompson HM, Lesser MR, Myers L, Mihuc TB. Insect community response following wildfire in an Eastern North American pine barrens. Forests. 2022;13:66. https://doi.org/10.3390/f13010066.

    Article  Google Scholar 

  213. Kwon T-S, Park YK, Lim J-H, et al. Change of arthropod abundance in burned forests: different patterns according to functional guilds. J Asia-Pac Entomol. 2013;16:321–8. https://doi.org/10.1016/j.aspen.2013.04.008.

    Article  Google Scholar 

  214. Iida K, Hayasaka D, Suzuki Y, et al. Legacy of pre-eruption vegetation affects ground-dwelling arthropod communities after different types of volcanic disturbance. Ecol Evol. 2021;11:9110–22. https://doi.org/10.1002/ece3.7755.

    Article  Google Scholar 

  215. Ferrenberg S, Wickey P, Coop JD. Ground-dwelling arthropod community responses to recent and repeated wildfires in conifer forests of Northern New Mexico, USA. Forests. 2019;10:667. https://doi.org/10.3390/f10080667.

    Article  Google Scholar 

  216. Čuchta P, Miklisová D, Kováč Ľ. The impact of disturbance and ensuing forestry practices on Collembola in monitored stands of windthrown forest in the Tatra National Park (Slovakia). Environ Monit Assess. 2013;185:5085–98. https://doi.org/10.1007/s10661-012-2927-z.

    Article  CAS  Google Scholar 

  217. Sterzyńska M, Shrubovych J, Tajovský K, et al. Responses of soil microarthropod taxon (Hexapoda: Protura) to natural disturbances and management practices in forest-dominated subalpine lake catchment areas. Sci Rep. 2020;10:5572. https://doi.org/10.1038/s41598-020-62522-w.

    Article  CAS  Google Scholar 

  218. Underwood EC, Quinn JF. Response of ants and spiders to prescribed fire in oak woodlands of California. J Insect Conserv. 2010;14:359–66. https://doi.org/10.1007/s10841-010-9265-7.

    Article  Google Scholar 

  219. Vincent A, Tillier P, Vincent-Barbaroux C, et al. Influence of forest decline on the abundance and diversity of Raphidioptera and Mecoptera species dwelling in oak canopies. Eur J Entomol. 2020;117:372–379. https://doi.org/10.14411/eje.2020.041

  220. Delph RJ, Clifford MJ, Cobb NS, et al. Pinyon pine mortality alters communities of ground-dwelling arthropods. wnan. 2014;74:162–84. https://doi.org/10.3398/064.074.0203.

    Article  Google Scholar 

  221. Lindenmayer DB, Blanchard W, Bowd E, et al. Rapid bird species recovery following high-severity wildfire but in the absence of early successional specialists. Divers Distrib. 2022;28:110–2123. https://doi.org/10.1111/ddi.13611.

    Article  Google Scholar 

  222. Kortmann M, Hurst J, Brinkmann R, et al. Beauty and the beast: how a bat utilizes forests shaped by outbreaks of an insect pest. Anim Conserv. 2018;21:21–30. https://doi.org/10.1111/acv.12359

  223. Rachwald A, Ciesielski M, Szurlej M, Żmihorski M. Following the damage: Increasing western barbastelle bat activity in bark beetle infested stands in Białowieża Primeval forest. For Ecol Manag. 2022;503:119803. https://doi.org/10.1016/j.foreco.2021.119803.

    Article  Google Scholar 

  224. Moretti M, De Cáceres M, Pradella C, et al. Fire-induced taxonomic and functional changes in saproxylic beetle communities in fire sensitive regions. Ecography. 2010;33:760–71. https://doi.org/10.1111/j.1600-0587.2009.06172.x.

    Article  Google Scholar 

  225. Tews J, Brose U, Grimm V, et al. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr. 2004;31:79–92. https://doi.org/10.1046/j.0305-0270.2003.00994.x.

    Article  Google Scholar 

  226. Martin RE, Sapsis DB. Fires as agents of biodiversity: pyrodiversity promotes biodiversity. In: Proceedings of the conference on biodiversity of northwest California ecosystems. Cooperative Extension. University of California, Berkeley; 1992. pp 150–157.

  227. Ponisio LC, Wilkin K, M’Gonigle LK, et al. Pyrodiversity begets plant–pollinator community diversity. Glob Chang Biol. 2016;22:1794–808. https://doi.org/10.1111/gcb.13236.

    Article  Google Scholar 

  228. Fahrig L. Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr. 2013;40:1649–63. https://doi.org/10.1111/jbi.12130.

    Article  Google Scholar 

  229. Biedermann PHW, Müller J, Grégoire J-C, et al. Bark beetle population dynamics in the Anthropocene: challenges and solutions. Trends Ecol Evol. 2019;34:914–24. https://doi.org/10.1016/j.tree.2019.06.002.

    Article  Google Scholar 

  230. Bentz BJ, Régnière J, Fettig CJ, et al. Climate change and bark beetles of the Western United States and Canada: direct and indirect effects. Bioscience. 2010;60:602–13. https://doi.org/10.1525/bio.2010.60.8.6.

    Article  Google Scholar 

  231. Rouault G, Candau J-N, Lieutier F, et al. Effects of drought and heat on forest insect populations in relation to the 2003 drought in Western Europe. Ann For Sci. 2006;63:613–24. https://doi.org/10.1051/forest:2006044.

    Article  Google Scholar 

  232. Müller J, Bußler H, Goßner M, et al. The European spruce bark beetle Ips typographus in a national park: from pest to keystone species. Biodivers Conserv. 2008;17:2979. https://doi.org/10.1007/s10531-008-9409-1.

    Article  Google Scholar 

  233. Sallé A, Nageleisen L-M, Lieutier F. Bark and wood boring insects involved in oak declines in Europe: current knowledge and future prospects in a context of climate change. For Ecol Manag. 2014;328:79–93. https://doi.org/10.1016/j.foreco.2014.05.027.

  234. Pineau X, Bourguignon M, Jactel H, et al. Pyrrhic victory for bark beetles: Successful standing tree colonization triggers strong intraspecific competition for offspring of Ips sexdentatus. For Ecol Manag. 2017;399:188–96. https://doi.org/10.1016/j.foreco.2017.05.044.

    Article  Google Scholar 

  235. Kulakowski D, Jarvis D, Veblen TT, Smith J. Stand-replacing fires reduce susceptibility of lodgepole pine to mountain pine beetle outbreaks in Colorado. J Biogeogr. 2012;39:2052–60. https://doi.org/10.1111/j.1365-2699.2012.02748.x.

    Article  Google Scholar 

  236. Powell EN, Townsend PA, Raffa KF. Wildfire provides refuge from local extinction but is an unlikely driver of outbreaks by mountain pine beetle. Ecol Monogr. 2012;82:69–84. https://doi.org/10.1890/11-0607.1.

    Article  Google Scholar 

  237. Jenkins MJ, Runyon JB, Fettig CJ, et al. Interactions among the mountain pine beetle, fires, and fuels. For Sci. 2014;60:489–501. https://doi.org/10.5849/forsci.13-017.

    Article  Google Scholar 

  238. Carter TA, Hayes K, Buma B. Putting more fuel on the fire… or maybe not? A synthesis of spruce beetle and fire interactions in North American subalpine forests. Landsc Ecol. 2022;37:2241–54. https://doi.org/10.1007/s10980-022-01481-1.

    Article  Google Scholar 

  239. Breece CR, Kolb TE, Dickson BG, et al. Prescribed fire effects on bark beetle activity and tree mortality in southwestern ponderosa pine forests. For Ecol Manag. 2008;255:119–28. https://doi.org/10.1016/j.foreco.2007.08.026.

    Article  Google Scholar 

  240. Lombardero MJ, Ayres MP. Factors influencing bark beetle outbreaks after forest fires on the Iberian Peninsula. Environ Entomol. 2011;40:1007–18. https://doi.org/10.1603/EN11022.

    Article  Google Scholar 

  241. Tabacaru CA, Park J, Erbilgin N. Prescribed fire does not promote outbreaks of a primary bark beetle at low-density populations. J Appl Ecol. 2016;53:222–32. https://doi.org/10.1111/1365-2664.12546.

    Article  Google Scholar 

  242. Lloret F, Kitzberger T. Historical and event-based bioclimatic suitability predicts regional forest vulnerability to compound effects of severe drought and bark beetle infestation. Glob Chang Biol. 2018;24:1952–64. https://doi.org/10.1111/gcb.14039.

    Article  Google Scholar 

  243. Pile LS, Meyer MD, Rojas R, et al. Drought impacts and compounding mortality on forest trees in the Southern Sierra Nevada. Forests. 2019;10:237. https://doi.org/10.3390/f10030237.

    Article  Google Scholar 

  244. Lehnert LW, Bässler C, Brandl R, et al. Conservation value of forests attacked by bark beetles: highest number of indicator species is found in early successional stages. J Nat Conserv. 2013;21:97–104. https://doi.org/10.1016/j.jnc.2012.11.003.

    Article  Google Scholar 

  245. Beudert B, Bässler C, Thorn S, et al. Bark beetles increase biodiversity while maintaining drinking water quality. Conserv Lett. 2015;8:272–81. https://doi.org/10.1111/conl.12153.

    Article  Google Scholar 

  246. Thom D, Rammer W, Dirnböck T, et al. The impacts of climate change and disturbance on spatio-temporal trajectories of biodiversity in a temperate forest landscape. J Appl Ecol. 2017;54:28–38. https://doi.org/10.1111/1365-2664.12644.

    Article  Google Scholar 

  247. Kortmann M, Roth N, Buse J, et al. Arthropod dark taxa provide new insights into diversity responses to bark beetle infestations. Ecol Appl. 2022;32:e2516. https://doi.org/10.1002/eap.2516.

    Article  Google Scholar 

  248. Davis TS, Rhoades PR, Mann AJ, Griswold T. Bark beetle outbreak enhances biodiversity and foraging habitat of native bees in alpine landscapes of the southern Rocky Mountains. Sci Rep. 2020;10:16400. https://doi.org/10.1038/s41598-020-73273-z.

    Article  CAS  Google Scholar 

  249. Winter M-B, Ammer C, Baier R, et al. Multi-taxon alpha diversity following bark beetle disturbance: evaluating multi-decade persistence of a diverse early-seral phase. For Ecol Manag. 2015;338:32–45. https://doi.org/10.1016/j.foreco.2014.11.019.

    Article  Google Scholar 

  250. Štursová M, Šnajdr J, Cajthaml T, et al. When the forest dies: the response of forest soil fungi to a bark beetle-induced tree dieback. ISME J. 2014;8:1920–31. https://doi.org/10.1038/ismej.2014.37.

    Article  Google Scholar 

  251. Bässler C, Müller J. Importance of natural disturbance for recovery of the rare polypore Antrodiella citrinella Niemelä & Ryvarden. Fungal Biol. 2010;114:129–33. https://doi.org/10.1016/j.funbio.2009.11.001.

    Article  Google Scholar 

  252. Hilszczański J, Jaworski T, Plewa R, Horák J. Tree species and position matter: the role of pests for survival of other insects. Agric For Entomol. 2016;18:340–8. https://doi.org/10.1111/afe.12165.

    Article  Google Scholar 

  253. Mikoláš M, Svitok M, Bollmann K, et al. Mixed-severity natural disturbances promote the occurrence of an endangered umbrella species in primary forests. For Ecol Manag. 2017;405:210–8. https://doi.org/10.1016/j.foreco.2017.09.006.

    Article  Google Scholar 

  254. Hicke JA, Johnson MC, Hayes JL, Preisler HK. Effects of bark beetle-caused tree mortality on wildfire. For Ecol Manag. 2012;271:81–90. https://doi.org/10.1016/j.foreco.2012.02.005.

    Article  Google Scholar 

  255. Harvey BJ, Donato DC, Turner MG. Recent mountain pine beetle outbreaks, wildfire severity, and postfire tree regeneration in the US Northern Rockies. Proc Natl Acad Sci. 2014;111:15120–5. https://doi.org/10.1073/pnas.1411346111.

    Article  CAS  Google Scholar 

  256. Meigs GW, Zald HSJ, Campbell JL, et al. Do insect outbreaks reduce the severity of subsequent forest fires? Environ Res Lett. 2016;11:045008. https://doi.org/10.1088/1748-9326/11/4/045008.

    Article  Google Scholar 

  257. Koelemeijer IA, Ehrlén J, Jönsson M, et al. Interactive effects of drought and edge exposure on old-growth forest understory species. Landsc Ecol. 2022. https://doi.org/10.1007/s10980-022-01441-9.

    Article  Google Scholar 

  258. Carlson AR, Sibold JS, Assal TJ, Negrón JF. Evidence of compounded disturbance effects on vegetation recovery following high-severity wildfire and spruce beetle outbreak. PLOS ONE. 2017;12:e0181778. https://doi.org/10.1371/journal.pone.0181778.

    Article  CAS  Google Scholar 

  259. Kleinman JS, Goode JD, Fries AC, Hart JL. Ecological consequences of compound disturbances in forest ecosystems: a systematic review. Ecosphere. 2019;10:e02962. https://doi.org/10.1002/ecs2.2962.

    Article  Google Scholar 

  260. Schapira Z, Stevens-Rumann C, Shorrock D, et al. Beetlemania: Is the bark worse than the bite? Rocky Mountain subalpine forests recover differently after spruce beetle outbreaks and wildfires. For Ecol Manag. 2021;482:118879. https://doi.org/10.1016/j.foreco.2020.118879.

    Article  Google Scholar 

  261. DeRose RJ, Long JN. Regeneration response and seedling bank dynamics on a Dendroctonus rufipennis-killed Picea engelmannii landscape. J Veg Sci. 2010;21:377–87. https://doi.org/10.1111/j.1654-1103.2009.01150.x.

    Article  Google Scholar 

  262. Frelich LE, Reich PB. Neighborhood effects, disturbance severity, and community stability in forests. Ecosystems. 1999;2:151–66. https://doi.org/10.1007/s100219900066.

    Article  Google Scholar 

  263. Webb SL, Scanga SE. Windstorm disturbance without patch dynamics: twelve years of change in a Minnesota forest. Ecology. 2001;82:893–7. https://doi.org/10.1890/0012-9658(2001)082[0893:WDWPDT]2.0.CO;2.

    Article  Google Scholar 

  264. Reyes GP, Kneeshaw D. Moderate-severity disturbance dynamics in Abies balsamea-Betula spp. forests: The relative importance of disturbance type and local stand and site characteristics on woody vegetation response. Écoscience. 2008;15:241–249. https://doi.org/10.2980/15-2-3082.

  265. Seidl R, Turner MG. Post-disturbance reorganization of forest ecosystems in a changing world. Proc Natl Acad Sci. 2022;119:e2202190119. https://doi.org/10.1073/pnas.2202190119.

    Article  CAS  Google Scholar 

  266. Canham CD, Papaik MJ, Latty EF. Interspecific variation in susceptibility to windthrow as a function of tree size and storm severity for northern temperate tree species. Can J For Res. 2001;31:1–10. https://doi.org/10.1139/x00-124.

    Article  Google Scholar 

  267. Choat B, Brodribb TJ, Brodersen CR, et al. Triggers of tree mortality under drought. Nature. 2018;558:531–9. https://doi.org/10.1038/s41586-018-0240-x.

    Article  CAS  Google Scholar 

  268. Bär A, Schröter DM, Mayr S. When the heat is on: high temperature resistance of buds from European tree species. Plant Cell Environ. 2021;44:2593–603. https://doi.org/10.1111/pce.14097.

    Article  CAS  Google Scholar 

  269. Charnley S, Spies T, Barros A, et al. Diversity in forest management to reduce wildfire losses: implications for resilience. Ecol Soc. 2017;22. https://doi.org/10.5751/ES-08753-220122.

  270. Jahani A, Saffariha M. Modeling of trees failure under windstorm in harvested Hyrcanian forests using machine learning techniques. Sci Rep. 2021;11:1124. https://doi.org/10.1038/s41598-020-80426-7.

    Article  CAS  Google Scholar 

  271. Barrere J, Reineking B, Cordonnier T, et al. Functional traits and climate drive interspecific differences in disturbance-induced tree mortality. Glob Chang Biol. 2023. https://doi.org/10.1111/gcb.16630. (n/a).

    Article  Google Scholar 

  272. Gauthier S, Bergeron Y, Simon J-P. Effects of fire regime on the serotiny level of jack pine. J Ecol. 1996;84:539–48. https://doi.org/10.2307/2261476.

    Article  Google Scholar 

  273. Collins L, Bennett AF, Leonard SWJ, Penman TD. Wildfire refugia in forests: Severe fire weather and drought mute the influence of topography and fuel age. Glob Chang Biol. 2019;25:3829–43. https://doi.org/10.1111/gcb.14735.

    Article  Google Scholar 

  274. Bowd EJ, Blair DP, Lindenmayer DB. Prior disturbance legacy effects on plant recovery post-high-severity wildfire. Ecosphere. 2021;12:e03480. https://doi.org/10.1002/ecs2.3480.

    Article  Google Scholar 

  275. Popović Z, Bojović S, Marković M, Cerdà A. Tree species flammability based on plant traits: a synthesis. Sci Total Environ. 2021;800:149625. https://doi.org/10.1016/j.scitotenv.2021.149625.

    Article  CAS  Google Scholar 

  276. Carlson DJ, Reich PB, Frelich LE. Fine-scale heterogeneity in overstory composition contributes to heterogeneity of wildfire severity in southern boreal forest. J For Res. 2011;16:203–214. https://doi.org/10.1007/s10310-011-0251-z.

  277. Vuidot A, Paillet Y, Archaux F, Gosselin F. Influence of tree characteristics and forest management on tree microhabitats. Biol Cons. 2011;144:441–50. https://doi.org/10.1016/j.biocon.2010.09.030.

    Article  Google Scholar 

  278. Asbeck T, Pyttel P, Frey J, Bauhus J. Predicting abundance and diversity of tree-related microhabitats in Central European montane forests from common forest attributes. For Ecol Manag. 2019;432:400–8. https://doi.org/10.1016/j.foreco.2018.09.043.

    Article  Google Scholar 

  279. Asbeck T, Basile M, Stitt J, et al. Tree-related microhabitats are similar in mountain forests of Europe and North America and their occurrence may be explained by tree functional groups. Trees. 2020;34:1453–66. https://doi.org/10.1007/s00468-020-02017-3.

    Article  Google Scholar 

  280. Etzold S, Ziemińska K, Rohner B, et al. One century of forest monitoring data in switzerland reveals species- and site-specific trends of climate-induced tree mortality. Front Plant Sci. 2019;10. https://doi.org/10.3389/fpls.2019.00307.

  281. Kahl T, Arnstadt T, Baber K, et al. Wood decay rates of 13 temperate tree species in relation to wood properties, enzyme activities and organismic diversities. For Ecol Manag. 2017;391:86–95. https://doi.org/10.1016/j.foreco.2017.02.012.

    Article  Google Scholar 

  282. Harmon ME, Fasth BG, Yatskov M, et al. Release of coarse woody detritus-related carbon: a synthesis across forest biomes. Carbon Balance Manag. 2020;15:1. https://doi.org/10.1186/s13021-019-0136-6.

    Article  CAS  Google Scholar 

  283. Seibold S, Weisser WW, Ambarlı D, et al. Drivers of community assembly change during succession in wood-decomposing beetle communities. J Anim Ecol. 2022. https://doi.org/10.1111/1365-2656.13843. (n/a).

    Article  Google Scholar 

  284. Courbaud B, Larrieu L, Kozak D, et al. Factors influencing the rate of formation of tree-related microhabitats and implications for biodiversity conservation and forest management. J Appl Ecol. 2022;59:492–503. https://doi.org/10.1111/1365-2664.14068.

    Article  Google Scholar 

  285. Kuuluvainen T. Conceptual models of forest dynamics in environmental education and management: keep it as simple as possible, but no simpler. For Ecosyst. 2016;3:18. https://doi.org/10.1186/s40663-016-0075-6.

    Article  Google Scholar 

  286. Martin M, Fenton NJ, Morin H. Tree-related microhabitats and deadwood dynamics form a diverse and constantly changing mosaic of habitats in boreal old-growth forests. Ecol Indic. 2021;128:107813. https://doi.org/10.1016/j.ecolind.2021.107813.

    Article  Google Scholar 

  287. Kozák D, Mikoláš M, Svitok M, et al. Profile of tree-related microhabitats in European primary beech-dominated forests. For Ecol Manag. 2018;429:363–74. https://doi.org/10.1016/j.foreco.2018.07.021.

    Article  Google Scholar 

  288. Ormeño E, Céspedes B, Sánchez IA, et al. The relationship between terpenes and flammability of leaf litter. For Ecol Manag. 2009;257:471–82. https://doi.org/10.1016/j.foreco.2008.09.019.

    Article  Google Scholar 

  289. Varner JM, Kane JM, Kreye JK, Engber E. The flammability of forest and woodland litter: a synthesis. Curr Forestry Rep. 2015;1:91–9. https://doi.org/10.1007/s40725-015-0012-x.

    Article  Google Scholar 

  290. Stephens SL, Moghaddas JJ. Silvicultural and reserve impacts on potential fire behavior and forest conservation: twenty-five years of experience from Sierra Nevada mixed conifer forests. Biol Cons. 2005;125:369–79. https://doi.org/10.1016/j.biocon.2005.04.007.

    Article  Google Scholar 

  291. Thompson JR, Spies TA, Ganio LM. Reburn severity in managed and unmanaged vegetation in a large wildfire. Proc Natl Acad Sci. 2007;104:10743–10748. https://doi.org/10.1073/pnas.0700229104

  292. Leverkus AB, Thorn S, Lindenmayer DB, Pausas JG. Tree planting goals must account for wildfires. Science. 2022;376:588–9. https://doi.org/10.1126/science.abp8259.

    Article  CAS  Google Scholar 

  293. Gobin R. Contribution relative de la végétation du sous-bois dans la consommation en eau des placettes forestières soumises aux changements de climat et de pratiques. Sciences de l’environnement, Université d’Orléans. 2014.

  294. Elkin C, Giuggiola A, Rigling A, Bugmann H. Short- and long-term efficacy of forest thinning to mitigate drought impacts in mountain forests in the European Alps. Ecol Appl. 2015;25:1083–98. https://doi.org/10.1890/14-0690.1.

    Article  Google Scholar 

  295. Castagneri D, Vacchiano G, Hacket-Pain A, et al. Meta-analysis reveals different competition effects on tree growth resistance and resilience to drought. Ecosystems. 2022;25:30–43. https://doi.org/10.1007/s10021-021-00638-4.

    Article  Google Scholar 

  296. Manrique-Alba À, Beguería S, Camarero JJ. Long-term effects of forest management on post-drought growth resilience: an analytical framework. Sci Total Environ. 2022;810:152374. https://doi.org/10.1016/j.scitotenv.2021.152374.

    Article  CAS  Google Scholar 

  297. Tubbesing CL, Fry DL, Roller GB, et al. Strategically placed landscape fuel treatments decrease fire severity and promote recovery in the northern Sierra Nevada. For Ecol Manag. 2019;436:45–55. https://doi.org/10.1016/j.foreco.2019.01.010.

    Article  Google Scholar 

  298. Torun P, Altunel AO. Effects of environmental factors and forest management on landscape-scale forest storm damage in Turkey. Ann For Sci. 2020;77:39. https://doi.org/10.1007/s13595-020-00945-1.

    Article  Google Scholar 

  299. Jactel H, Bauhus J, Boberg J, et al. Tree diversity drives forest stand resistance to natural disturbances. Curr For Rep. 2017;3:223–43. https://doi.org/10.1007/s40725-017-0064-1.

    Article  Google Scholar 

  300. Pardos M, del Río M, Pretzsch H, et al. The greater resilience of mixed forests to drought mainly depends on their composition: analysis along a climate gradient across Europe. For Ecol Manag. 2021;481:118687. https://doi.org/10.1016/j.foreco.2020.118687.

    Article  Google Scholar 

  301. Jactel H, Moreira X, Castagneyrol B. Tree diversity and forest resistance to insect pests: patterns, mechanisms, and prospects. Annu Rev Entomol. 2021;66:277–96. https://doi.org/10.1146/annurev-ento-041720-075234.

    Article  CAS  Google Scholar 

  302. Hyvärinen E, Kouki J, Martikainen P. Fire and green-tree retention in conservation of red-listed and rare deadwood-dependent beetles in finnish boreal forests. Conserv Biol. 2006;20:1710–9. https://doi.org/10.1111/j.1523-1739.2006.00511.x.

    Article  Google Scholar 

  303. Sebek P, Altman J, Platek M, Cizek L. Is Active management the key to the conservation of saproxylic biodiversity? Pollarding promotes the formation of tree hollows. PLOS ONE. 2013;8:e60456. https://doi.org/10.1371/journal.pone.0060456.

    Article  CAS  Google Scholar 

  304. Larrieu L, Cabanettes A, Delarue A. Impact of silviculture on dead wood and on the distribution and frequency of tree microhabitats in montane beech-fir forests of the Pyrenees. Eur J Forest Res. 2012;131:773–86. https://doi.org/10.1007/s10342-011-0551-z.

    Article  Google Scholar 

  305. Cosyns H, Joa B, Mikoleit R, et al. Resolving the trade-off between production and biodiversity conservation in integrated forest management: comparing tree selection practices of foresters and conservationists. Biodivers Conserv. 2020;29:3717–37. https://doi.org/10.1007/s10531-020-02046-x.

    Article  Google Scholar 

  306. Chevaux L, Mårell A, Baltzinger C, et al. Effects of stand structure and ungulates on understory vegetation in managed and unmanaged forests. Ecol Appl. 2022;32:e2531. https://doi.org/10.1002/eap.2531.

    Article  Google Scholar 

  307. Grove SJ. Saproxylic Insect ecology and the sustainable management of forests. Annu Rev Ecol Syst. 2002;33:1–23. https://doi.org/10.1146/annurev.ecolsys.33.010802.150507.

    Article  Google Scholar 

  308. Stokland JN, Siitonen J, Jonsson BG. Biodiversity in Dead Wood. Cambridge: Cambridge University Press; 2012.

    Book  Google Scholar 

  309. Hanula JL, Ulyshen MD, Horn S. Conserving Pollinators in North American Forests: a review. naar. 2016;36:427–439. https://doi.org/10.3375/043.036.0409.

  310. Heil LJ, Burkle LA. Recent post-wildfire salvage logging benefits local and landscape floral and bee communities. For Ecol Manag. 2018;424:267–275. https://doi.org/10.1016/j.foreco.2018.05.009.

  311. Carmo M, Moreira F, Casimiro P, Vaz P. Land use and topography influences on wildfire occurrence in northern Portugal. Landsc Urban Plan. 2011;100:169–76. https://doi.org/10.1016/j.landurbplan.2010.11.017.

    Article  Google Scholar 

  312. Rogeau M-P, Barber QE, Parisien M-A. Effect of topography on persistent fire refugia of the Canadian rocky mountains. Forests. 2018;9:285. https://doi.org/10.3390/f9060285.

    Article  Google Scholar 

  313. Harcombe PA, Greene SE, Kramer MG, et al. The influence of fire and windthrow dynamics on a coastal spruce–hemlock forest in Oregon, USA, based on aerial photographs spanning 40 years. For Ecol Manag. 2004;194:71–82. https://doi.org/10.1016/j.foreco.2004.02.016.

    Article  Google Scholar 

  314. Panferov O, Sogachev A. Influence of gap size on wind damage variables in a forest. Agric For Meteorol. 2008;148:1869–81. https://doi.org/10.1016/j.agrformet.2008.06.012.

    Article  Google Scholar 

  315. Šustek Z, Vido J, Škvareninová J, et al. Drought impact on ground beetle assemblages (Coleoptera, Carabidae) in Norway spruce forests with different management after windstorm damage – a case study from Tatra Mts. (Slovakia). J Hydrol Hydromech. 2017;65:333–42. https://doi.org/10.1515/johh-2017-0048.

    Article  Google Scholar 

  316. Bače R, Schurman JS, Brabec M, et al. Long-term responses of canopy–understorey interactions to disturbance severity in primary Picea abies forests. J Veg Sci. 2017;28:1128–39. https://doi.org/10.1111/jvs.12581.

    Article  Google Scholar 

  317. Mollier S, Kunstler G, Dupouey J-L, Bergès L. Historical landscape matters for threatened species in French mountain forests. Biol Conserv. 2022;269:109544. https://doi.org/10.1016/j.biocon.2022.109544.

    Article  Google Scholar 

  318. Janssen P, Fuhr M, Cateau E, et al. Forest continuity acts congruently with stand maturity in structuring the functional composition of saproxylic beetles. Biol Cons. 2017;205:1–10. https://doi.org/10.1016/j.biocon.2016.11.021.

    Article  Google Scholar 

  319. Conedera M, Colombaroli D, Tinner W, et al. Insights about past forest dynamics as a tool for present and future forest management in Switzerland. For Ecol Manag. 2017;388:100–12. https://doi.org/10.1016/j.foreco.2016.10.027.

    Article  Google Scholar 

  320. Hermy M, Verheyen K. Legacies of the past in the present-day forest biodiversity: a review of past land-use effects on forest plant species composition and diversity. Ecol Res. 2007;22:361–71. https://doi.org/10.1007/s11284-007-0354-3.

    Article  Google Scholar 

  321. Fraterrigo JM, Turner MG, Pearson SM. Previous land use alters plant allocation and growth in forest herbs. J Ecol. 2006;94:548–57. https://doi.org/10.1111/j.1365-2745.2006.01081.x.

    Article  Google Scholar 

  322. Puerta-Piñero C, Espelta JM, Sánchez-Humanes B, et al. History matters: Previous land use changes determine post-fire vegetation recovery in forested Mediterranean landscapes. For Ecol Manag. 2012;279:121–7. https://doi.org/10.1016/j.foreco.2012.05.020.

    Article  Google Scholar 

  323. Duncker PS, Barreiro SM, Hengeveld GM, et al. Classification of forest management approaches: a new conceptual framework and its applicability to european forestry. Ecol Soc. 2012;17. https://doi.org/10.5751/ES-05262-170451.

  324. Lindenmayer DB, Burton PJ, Franklin JF. Salvage logging and its ecological consequences. Island Press; 2008.

    Google Scholar 

  325. Chylarecki P, Selva N. Ancient forest: spare it from clearance. Nature. 2016;530:419–419. https://doi.org/10.1038/530419b.

    Article  CAS  Google Scholar 

  326. Mikusiński G, Bubnicki JW, Churski M, et al. Is the impact of loggings in the last primeval lowland forest in Europe underestimated? The conservation issues of Białowieża Forest. Biol Cons. 2018;227:266–74. https://doi.org/10.1016/j.biocon.2018.09.001.

    Article  Google Scholar 

  327. Orczewska A, Czortek P, Jaroszewicz B. The impact of salvage logging on herb layer species composition and plant community recovery in Białowieża Forest. Biodivers Conserv. 2019;28:3407–3428. https://doi.org/10.1007/s10531-019-01795-8.

  328. Stadelmann G, Bugmann H, Meier F, et al. Effects of salvage logging and sanitation felling on bark beetle (Ips typographus L.) infestations. For Ecol Manag. 2013;305:273–281. https://doi.org/10.1016/j.foreco.2013.06.003

  329. Fraver S, Jain T, Bradford JB, et al. The efficacy of salvage logging in reducing subsequent fire severity in conifer-dominated forests of Minnesota, USA. Ecol Appl. 2011;21:1895–901. https://doi.org/10.1890/11-0380.1.

    Article  Google Scholar 

  330. Leverkus AB, Buma B, Wagenbrenner J, et al. Tamm review: Does salvage logging mitigate subsequent forest disturbances? For Ecol Manag. 2021;481:118721. https://doi.org/10.1016/j.foreco.2020.118721

  331. Leverkus AB, Lindenmayer DB, Thorn S, Gustafsson L. Salvage logging in the world’s forests: Interactions between natural disturbance and logging need recognition. Glob Ecol Biogeogr. 2018;27:1140–1154. https://doi.org/10.1111/geb.12772

  332. Leverkus AB, Gustafsson L, Lindenmayer DB, et al. Salvage logging effects on regulating ecosystem services and fuel loads. Front Ecol Environ. 2020;18:391–400.https://doi.org/10.1002/fee.2219

  333. Merganič J, Merganičová K, Vlčková M, et al. Deadwood amount at disturbance plots after sanitary felling. Plants. 2022;11:987. https://doi.org/10.3390/plants11070987.

    Article  Google Scholar 

  334. Georgiev KB, Beudert B, Bässler C, et al. Forest disturbance and salvage logging have neutral long-term effects on drinking water quality but alter biodiversity. For Ecol Manag. 2021;495:119354. https://doi.org/10.1016/j.foreco.2021.119354

  335. Hutto RL. Toward meaningful snag-management guidelines for postfire salvage logging in North American conifer forests. Conserv Biol. 2006;20:984–93. https://doi.org/10.1111/j.1523-1739.2006.00494.x.

    Article  Google Scholar 

  336. Bouget C, Lassauce A, Jonsell M. Effects of fuelwood harvesting on biodiversity — a review focused on the situation in Europe1This article is one of a selection of papers from the International Symposium on Dynamics and Ecological Services of Deadwood in Forest Ecosystems. Can J For Res. 2012;42:1421–32. https://doi.org/10.1139/x2012-078.

    Article  Google Scholar 

  337. Thorn S, Bässler C, Brandl R, et al. Impacts of salvage logging on biodiversity: a meta-analysis. J Appl Ecol. 2018;55:279–289. https://doi.org/10.1111/1365-2664.12945

  338. Cobb TP, Morissette JL, Jacobs JM, et al. Effects of postfire salvage logging on deadwood-associated beetles. Conserva Biol. 2011;25:94–104. https://doi.org/10.1111/j.1523-1739.2010.01566.x

  339. Bouget C, Larrieu L, Brin A. Key features for saproxylic beetle diversity derived from rapid habitat assessment in temperate forests. Ecol Indic. 2014;36:656–664. https://doi.org/10.1016/j.ecolind.2013.09.031

  340. Foster DR, Orwig DA. Preemptive and salvage harvesting of New England forests: when doing nothing is a viable alternative. Conserv Biol. 2006;20:959–970. https://doi.org/10.1111/j.1523-1739.2006.00495.x

  341. Peterson CJ, Leach AD. Salvage logging after windthrow alters microsite diversity, abundance and environment, but not vegetation. For Int J For Res. 2008;81:361–76. https://doi.org/10.1093/forestry/cpn007.

    Article  Google Scholar 

  342. Kendrick JA, Ribbons RR, Classen AT, Ellison AM. Changes in canopy structure and ant assemblages affect soil ecosystem variables as a foundation species declines. Ecosphere. 2015;6:art77. https://doi.org/10.1890/ES14-00447.1

  343. Lucas-Borja ME, Ortega R, Miralles I, et al. Effects of wildfire and logging on soil functionality in the short-term in Pinus halepensis M. forests. Eur J Forest Res. 2020;139:935–945. https://doi.org/10.1007/s10342-020-01296-2

  344. Martineau C, Beguin J, Séguin A, Paré D. Cumulative effects of disturbances on soil nutrients: predominance of antagonistic short-term responses to the salvage logging of insect-killed stands. Ecosystems. 2020;23:812–827. https://doi.org/10.1007/s10021-019-00432-3

  345. McIver JD, Starr L. A literature review on the environmental effects of postfire logging. West J Appl For. 2001;16:159–68. https://doi.org/10.1093/wjaf/16.4.159.

    Article  Google Scholar 

  346. Marañón-Jiménez S, Castro J, Fernández-Ondoño E, Zamora R. Charred wood remaining after a wildfire as a reservoir of macro- and micronutrients in a Mediterranean pine forest. Int J Wildland Fire. 2013;22:681–695. https://doi.org/10.1071/WF12030

  347. García-Orenes F, Arcenegui V, Chrenková K, et al. Effects of salvage logging on soil properties and vegetation recovery in a fire-affected Mediterranean forest: a two year monitoring research. Sci Total Environ. 2017;586:1057–1065. https://doi.org/10.1016/j.scitotenv.2017.02.090

  348. Pereg L, Mataix-Solera J, McMillan M, García-Orenes F. The impact of post-fire salvage logging on microbial nitrogen cyclers in Mediterranean forest soil. Sci Total Environ. 2018;619–620:1079–1087. https://doi.org/10.1016/j.scitotenv.2017.11.147

  349. Juan-Ovejero R, Molinas-González CR, Leverkus AB, et al. Decadal effect of post-fire management treatments on soil carbon and nutrient concentrations in a burnt Mediterranean forest. For Ecol Manag. 2021;498:119570. https://doi.org/10.1016/j.foreco.2021.119570.

    Article  Google Scholar 

  350. Rab MA. Recovery of soil physical properties from compaction and soil profile disturbance caused by logging of native forest in Victorian Central Highlands, Australia. For Ecol Manag. 2004;191:329–340. https://doi.org/10.1016/j.foreco.2003.12.010

  351. Wagenbrenner JW, MacDonald LH, Coats RN, et al. Effects of post-fire salvage logging and a skid trail treatment on ground cover, soils, and sediment production in the interior western United States. For Ecol Manag. 2015;335:176–193. https://doi.org/10.1016/j.foreco.2014.09.016

  352. Waldron K, Ruel J-C, Gauthier S, et al. Effects of post-windthrow salvage logging on microsites, plant composition and regeneration. Appl Veg Sci. 2014;17:323–37. https://doi.org/10.1111/avsc.12061.

    Article  Google Scholar 

  353. Taeroe A, de Koning JHC, Löf M, et al. Recovery of temperate and boreal forests after windthrow and the impacts of salvage logging. A quantitative review. For Ecol Manag. 2019; 446:304–316. https://doi.org/10.1016/j.foreco.2019.03.048

  354. Kishchuk BE, Thiffault E, Lorente M, et al. Decadal soil and stand response to fire, harvest, and salvage-logging disturbances in the western boreal mixedwood forest of Alberta, Canada. Can J For Res. 2015;45:141–152. https://doi.org/10.1139/cjfr-2014-0148

  355. Molinas-González CR, Castro J, González-Megías A, Leverkus AB. Effects of post-fire deadwood management on soil macroarthropod communities. Forests. 2019;10:1046. https://doi.org/10.3390/f10111046

  356. Wermelinger B, Moretti M, Duelli P, et al. Impact of windthrow and salvage-logging on taxonomic and functional diversity of forest arthropods. For Ecol Manag. 2017;391:9–18. https://doi.org/10.1016/j.foreco.2017.01.033

  357. Phillips ID, Cobb TP, Spence JR, Brigham RM. Salvage logging, edge effects, and carabid beetles: connections to conservation and sustainable forest management. Environ Entomol. 2006;35:950–7. https://doi.org/10.1603/0046-225X-35.4.950.

    Article  Google Scholar 

  358. Mikoláš M, Svitok M, Teodosiu M, et al. Land use planning based on the connectivity of tree species does not ensure the conservation of forest biodiversity. Land Use Policy. 2019;83:63–5. https://doi.org/10.1016/j.landusepol.2019.01.036.

    Article  Google Scholar 

  359. Leverkus AB, Polo I, Baudoux C, et al. Resilience impacts of a secondary disturbance: Meta-analysis of salvage logging effects on tree regeneration. J Ecol. 2021; 109:3224-3232. https://doi.org/10.1111/1365-2745.13581.

  360. Jonášová M, Prach K. Central-European mountain spruce (Picea abies (L.) Karst.) forests: regeneration of tree species after a bark beetle outbreak. Ecol Eng. 2004;23:15–27. https://doi.org/10.1016/j.ecoleng.2004.06.010

  361. Palik B, Kastendick D. Woody plant regeneration after blowdown, salvage logging, and prescribed fire in a northern Minnesota forest. For Ecol Manag. 2009;258:1323–1330. https://doi.org/10.1016/j.foreco.2009.06.034

  362. Leverkus AB, Lorite J, Navarro FB, et al. Post-fire salvage logging alters species composition and reduces cover, richness, and diversity in Mediterranean plant communities. J Environ Manag. 2014;133:323–331. https://doi.org/10.1016/j.jenvman.2013.12.014

  363. Fidej G, Rozman A, Nagel TA, et al. Influence of salvage logging on forest recovery following intermediate severity canopy disturbances in mixed beech dominated forests of Slovenia. iForest - Biogeosci For. 2016;9:430. https://doi.org/10.3832/ifor1616-008

  364. Michalová Z, Morrissey RC, Wohlgemuth T, et al. Salvage-logging after windstorm leads to structural and functional homogenization of understory layer and delayed spruce tree recovery in Tatra Mts., Slovakia. Forests. 2017;8:88. https://doi.org/10.3390/f8030088

  365. Royo AA, Peterson CJ, Stanovick JS, Carson WP. Evaluating the ecological impacts of salvage logging: can natural and anthropogenic disturbances promote coexistence? Ecology. 2016;97:1566–82. https://doi.org/10.1890/15-1093.1.

    Article  Google Scholar 

  366. Sass EM, D’Amato AW, Foster DR. Lasting legacies of historical clearcutting, wind, and salvage logging on old-growth Tsuga canadensis-Pinus strobus forests. For Ecol Manag. 2018;419–420:31–41. https://doi.org/10.1016/j.foreco.2018.03.012.

    Article  Google Scholar 

  367. Morimoto J, Umebayashi T, Suzuki SN, et al. Long-term effects of salvage logging after a catastrophic wind disturbance on forest structure in northern Japan. Landscape Ecol Eng. 2019;15:133–141. https://doi.org/10.1007/s11355-019-00375-w

  368. Quine CP, Humphrey JW. Plantations of exotic tree species in Britain: irrelevant for biodiversity or novel habitat for native species? Biodivers Conserv. 2010;19:1503–12. https://doi.org/10.1007/s10531-009-9771-7.

    Article  Google Scholar 

  369. Brändle M, Brandl R. Species richness of insects and mites on trees: expanding Southwood. J Anim Ecol. 2001;70:491–504. https://doi.org/10.1046/j.1365-2656.2001.00506.x.

    Article  Google Scholar 

  370. Vehviläinen H, Koricheva J, Ruohomäki K. Tree species diversity influences herbivore abundance and damage: meta-analysis of long-term forest experiments. Oecologia. 2007;152:287–98. https://doi.org/10.1007/s00442-007-0673-7.

    Article  Google Scholar 

  371. Leidinger J, Blaschke M, Ehrhardt M, et al. Shifting tree species composition affects biodiversity of multiple taxa in Central European forests. For Ecol Manag. 2021;498:119552. https://doi.org/10.1016/j.foreco.2021.119552.

    Article  Google Scholar 

  372. Müller J, Wende B, Strobl C, et al. Forest management and regional tree composition drive the host preference of saproxylic beetle communities. J Appl Ecol. 2015;52:753–62. https://doi.org/10.1111/1365-2664.12421.

    Article  Google Scholar 

  373. Kärvemo S, Schroeder M, Ranius T. Beetle diversity in dead wood is lower in non-native than native tree species, especially those more distantly related to native species. J Appl Ecol. 2023;60:170-180. https://doi.org/10.1111/1365-2664.14318.

    Article  Google Scholar 

  374. Jonsell M, Weslien J, Ehnström B. Substrate requirements of red-listed saproxylic invertebrates in Sweden. Biodivers Conserv. 1998;7:749–64. https://doi.org/10.1023/A:1008888319031.

    Article  Google Scholar 

  375. Bouget C, Brin A, Larrieu L. The use of sentinel logs to assess host shifts in early beetle colonisers of deadwood under climate- and forestry-induced tree species substitutions. Insect Conserv Divers. 2021;14:117–31. https://doi.org/10.1111/icad.12434.

    Article  Google Scholar 

  376. Mitchell RJ, Hewison RL, Haghi RK, et al. Functional and ecosystem service differences between tree species: implications for tree species replacement. Trees. 2021;35:307–17. https://doi.org/10.1007/s00468-020-02035-1.

    Article  CAS  Google Scholar 

  377. Brockerhoff EG, Jactel H, Parrotta JA, et al. Plantation forests and biodiversity: oxymoron or opportunity? Biodivers Conserv. 2008;17:925–51. https://doi.org/10.1007/s10531-008-9380-x.

    Article  Google Scholar 

  378. Ampoorter E, Barbaro L, Jactel H, et al. Tree diversity is key for promoting the diversity and abundance of forest-associated taxa in Europe. Oikos. 2020;129:133–46. https://doi.org/10.1111/oik.06290.

    Article  Google Scholar 

  379. Hlásny T, König L, Krokene P, et al. Bark beetle outbreaks in Europe: State of knowledge and ways forward for management. Curr Forestry Rep. 2021;7:138–165. https://doi.org/10.1007/s40725-021-00142-x

  380. Horak J, Vodka S, Kout J, et al. Biodiversity of most dead wood-dependent organisms in thermophilic temperate oak woodlands thrives on diversity of open landscape structures. For Ecol Manag. 2014;315:80–5. https://doi.org/10.1016/j.foreco.2013.12.018.

    Article  Google Scholar 

  381. Horák J, Kout J, Vodka Š, Donato DC. Dead wood dependent organisms in one of the oldest protected forests of Europe: investigating the contrasting effects of within-stand variation in a highly diversified environment. For Ecol Manag. 2016;363:229–36. https://doi.org/10.1016/j.foreco.2015.12.041.

    Article  Google Scholar 

  382. Jaworski T, Plewa R, Tarwacki G, et al. Ecologically similar saproxylic beetles depend on diversified deadwood resources: From habitat requirements to management implications. For Ecol Manag. 2019;449:117462. https://doi.org/10.1016/j.foreco.2019.117462.

    Article  Google Scholar 

  383. Galbraith SM, Cane JH, Moldenke AR, Rivers JW. Salvage logging reduces wild bee diversity, but not abundance, in severely burned mixed-conifer forest. For Ecol Manag. 2019;453:117622. https://doi.org/10.1016/j.foreco.2019.117622

  384. Burkle LA, Heil LJ, Belote RT. Salvage logging management affects species’ roles in connecting plant–pollinator interaction networks across post-wildfire landscapes. J Appl Ecol. 2021;58:1790–1801. https://doi.org/10.1111/1365-2664.13928

  385. Fedrowitz K, Koricheva J, Baker SC, et al. REVIEW: can retention forestry help conserve biodiversity? A meta-analysis. J Appl Ecol. 2014;51:1669–79. https://doi.org/10.1111/1365-2664.12289.

    Article  Google Scholar 

  386. Lindenmayer D, Blair D, McBurney L. Variable retention harvesting in Victoria’s Mountain Ash (Eucalyptus regnans) forests (southeastern Australia). Ecol Process. 2019;8:2. https://doi.org/10.1186/s13717-018-0156-2

  387. Lee S-I, Spence JR, Langor DW. Conservation of Saproxylic Insect Diversity Under Variable Retention Harvesting. In: Ulyshen MD, editor. Saproxylic Insects: Diversity, Ecology and Conservation. Cham: Springer International Publishing; 2018. p. 639–67.

    Chapter  Google Scholar 

  388. Müller J, Bütler R. A review of habitat thresholds for dead wood: a baseline for management recommendations in European forests. Eur J Forest Res. 2010;129:981–92. https://doi.org/10.1007/s10342-010-0400-5.

    Article  Google Scholar 

  389. Augustynczik ALD, Dobor L, Hlásny T. Controlling landscape-scale bark beetle dynamics: can we hit the right spot? Landsc Urban Plan. 2021;209:104035. https://doi.org/10.1016/j.landurbplan.2020.104035.

    Article  Google Scholar 

  390. Eklund A, Wing MG, Sessions J. Evaluating economic and wildlife habitat considerations for snag retention policies in burned landscapes. Western J Appl For. 2009;24:67–75. https://doi.org/10.1093/wjaf/24.2.67

  391. Kortmann M. Biodiversity and recreation – Optimizing tourism and forest management in forests affected by bark beetles. Universität Würzburg; 2022.

  392. Allen CD, Macalady AK, Chenchouni H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag. 2010; 259:660–684. https://doi.org/10.1016/j.foreco.2009.09.001

  393. Breshears DD, Cobb NS, Rich PM, et al. Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci. 2005;102:15144–8. https://doi.org/10.1073/pnas.0505734102.

    Article  CAS  Google Scholar 

  394. Meehl GA, Tebaldi C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science. 2004;305:994–7. https://doi.org/10.1126/science.1098704.

    Article  CAS  Google Scholar 

  395. IPCC. Climate change 2007: synthesis report. IPCC Geneva, Switzerland; 2007.

  396. Kramer K, Vreugdenhil SJ, van der Werf DC. Effects of flooding on the recruitment, damage and mortality of riparian tree species: a field and simulation study on the Rhine floodplain. For Ecol Manag. 2008;255:3893–903. https://doi.org/10.1016/j.foreco.2008.03.044.

    Article  Google Scholar 

  397. Lambeets K, Vandegehuchte ML, Maelfait J-P, Bonte D. Understanding the impact of flooding on trait-displacements and shifts in assemblage structure of predatory arthropods on river banks. J Anim Ecol. 2008;77:1162–74. https://doi.org/10.1111/j.1365-2656.2008.01443.x.

    Article  Google Scholar 

  398. Sprugel DG. Disturbance, equilibrium, and environmental variability: what is ‘Natural’ vegetation in a changing environment? Biol Cons. 1991;58:1–18. https://doi.org/10.1016/0006-3207(91)90041-7.

    Article  Google Scholar 

  399. Ellis EC. Anthropogenic transformation of the terrestrial biosphere. Philos Trans R Soc A Math Phys Eng Sci. 2011;369:1010–35. https://doi.org/10.1098/rsta.2010.0331.

    Article  Google Scholar 

  400. Brook BW, Ellis EC, Perring MP, et al. Does the terrestrial biosphere have planetary tipping points? Trends Ecol Evol. 2013;28:396–401. https://doi.org/10.1016/j.tree.2013.01.016.

    Article  Google Scholar 

  401. Parmesan C, Morecroft MD, Trisurat Y, et al. Terrestrial and freshwater ecosystems and their services. In: Pörtner H-O, Roberts DC, Tignor MMB, et al, editors. Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press; 2022.

Download references

Acknowledgements

ABL acknowledges grant B-FQM-366-UGR20 from Junta de Andalucía/FEDER amd Smart Ecomountain Lifewatch ERIC Thematic Center (LifeWatch-2019-10-UGR-01). JH is grateful to Excellence project PřF UHK 2209/2021-2022 for the financial support. We are grateful to the anonymous reviewer and Dr. Bastien Castagneyrol for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sallé.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Forest Entomology

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 59 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cours, J., Bouget, C., Barsoum, N. et al. Surviving in Changing Forests: Abiotic Disturbance Legacy Effects on Arthropod Communities of Temperate Forests. Curr. For. Rep. 9, 189–218 (2023). https://doi.org/10.1007/s40725-023-00187-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40725-023-00187-0

Keywords

Navigation