Skip to main content
Log in

Two New Error Estimates of a Fully Discrete Primal-Dual Mixed Finite Element Scheme for Parabolic Equations in Any Space Dimension

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

We consider a fully discrete implicit scheme in which the discretization in space is performed using the PDMFEM (Primal-Dual Mixed Finite Element Method) defined in Ciarlet (The finite element method for elliptic problems. Classics in applied mathematics, 40. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, pp 415–416, 2002) and Quarteroni and Valli (Numerical approximation of partial differential equations. Springer, Berlin, p 230, 2008) for the heat equation as a model of parabolic equations in any space dimension. The time discretization is performed using a uniform mesh. The scheme is formulated in a general setting in which the pairs of finite element spaces \((V_{h}^\mathrm{div}, W_{h})\subset H_{\mathrm{div}}(\varOmega ) \times L^2(\varOmega )\) are arbitrary but satisfy the \(inf-sup\) hypothesis and another known condition. The discrete unknowns of the considered scheme are the set of couples \(\rho _h^n:= (p_h^n, u_h^n) \in V_h^\mathrm{div}\times W_h\) which are expected to approximate \(\rho (t_n):= (\nabla u(t_n), u(t_n))\) where \(\left( t_n\right) _n\) are the mesh points of the time discretization and u is the exact solution. We justify rigorously the existence and uniqueness of the discrete solution. We then prove the new convergence results which state the optimal estimate for the error \(\left( \nabla u(t_n)-p_h^n\right) _n\) (resp. \(\left( u_t(t_n)-\partial ^1u_h^n\right) _n\), where \(\partial ^1\) denotes a discrete time derivative) in \(L^\infty (H_\mathrm{div}(\varOmega ))\) (resp. \(L^\infty (L^2(\varOmega ))\)), under assumption that the exact solution is smooth. These results are obtained thanks to some new well developed discrete a priori estimates. We applied these results to the particular case when the spaces \((V_h^\mathrm{div}, W_h)\) are defined using the well-known Raviart–Thomas spaces of of order \(l\ge 0\) and we justified that the error \(\left( \rho _h^n-\rho (t_n)\right) _n\) is of order \(k+h^{l+1}\) in the discrete norms of \( L^\infty (H_\mathrm{div}(\varOmega ))\times W^{1,\infty }(L^2(\varOmega ))\) under assumption that the solution u is satisfying \(u\in \mathscr {C}^3\left( [0,T]; \,\, H^{l+3}(\varOmega )\right) \). The convergence results obtained in this work improve the known existing ones for PDMFEM for parabolic equations which state the convergence towards \((-\nabla u(t),u(t))\) in the discrete norms of \( L^\infty (L^2(\varOmega )^d)\times L^\infty (L^2(\varOmega ))\), see Johnson and Thomee (Error estimates for some mixed finite element methods for parabolic type problems. RAIRO Anal. Numér. 15(1):41–78, 1981).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bradji, A., Fuhrmann, J.: A new error estimate for a fully finite element discretization scheme for parabolic equations using Crank–Nicolson method. Math. Bohem. 139(2), 113–124 (2014)

    Article  MathSciNet  Google Scholar 

  2. Bradji, A., Fuhrmann, J.: Some abstract error estimates of a finite volume scheme for a nonstationary heat equation on general nonconforming multidimensional spatial meshes. Appl. Math. 58(1), 1–38 (2013)

    Article  MathSciNet  Google Scholar 

  3. Braess, D.: Finite Elements. Theory, Fast Solvers and Applications in Solid Mechanics. Translated from German by Larry L. Schumaker, 3rd edn. Cambridge University Press, Cambridge (2007)

  4. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics, 40. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2002)

    Book  Google Scholar 

  5. Chatzipandtelidis, P., Lazarov, R.D., Thomée, V.: Parabolic finite volume element methods in nonconvex polygonal domains. Numer. Methods Partial Differ. Equ. 25(3), 507–525 (2009)

    Article  Google Scholar 

  6. Chatzipandtelidis, P., Lazarov, R.D., Thomée, V.: Error estimates for a finite volume element method for parabolic equations on convex polygonal domain. Numer. Methods Partial Differ. Equ. 20, 650–674 (2004)

    Article  MathSciNet  Google Scholar 

  7. Douglas, J., Roberts, J.E.: Global estimates for mixed methods for second order elliptic equations. Math. Comput. 44(169), 39–52 (1985)

    Article  MathSciNet  Google Scholar 

  8. Droniou, J., Eymard, R., Gallouët, T., Guichard, C., Herbin, R.: The Gradient Discretisation Method. Mathématiques et Applications, 82. Springer, Cham (2018)

    Book  Google Scholar 

  9. Durán, R.: Superconvergence for rectangular mixed finite elements. Numer. Math. 58(3), 287–298 (1990)

    Article  MathSciNet  Google Scholar 

  10. Durán, R.: Mixed finite elements. In: Boffi, D., Gastaldi, L., Notes, Lecture, in Mathematics, vol. 1939, (eds.) Mixed finite Elements, Compatibility Conditions, Applications: Lectures given at the CIME Summer School held in Cetraro, Italy, June 26–July 1, 2006, pp. 1–44. Springer, Berlin (2008)

  11. Eriksson, K., Johnson, C., Larsson, S.: Adaptive finite element methods for parabolic problems. VI: analytic semigroups. SIAM J. Numer. Anal. 35(4), 1315–1325 (1998)

    Article  MathSciNet  Google Scholar 

  12. Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems. VI: analytic semigroups. SIAM J. Numer. Anal. 32(6), 1750–1763 (1995)

    Article  MathSciNet  Google Scholar 

  13. Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems. IV: nonlinear Problems. SIAM J. Numer. Anal. 32(6), 1729–1749 (1995)

    Article  MathSciNet  Google Scholar 

  14. Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems. II: optimal error estimates in \(L_{\infty } L_2\) and \(L_{\infty } L_{\infty } \). SIAM J. Numer. Anal. 32(3), 706–740 (1995)

    Article  MathSciNet  Google Scholar 

  15. Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems. I: a linear model problem. SIAM J. Numer. Anal. 28(1), 43–77 (1991)

  16. Eymard, R., Gallouët, T., Herbin, R.: Finite Volume Methods. Handbook of Numerical Analysis. P. G. Ciarlet and J. L. Lions (eds.), North-Holland, Amsterdam, VII, 723–1020 (2000)

  17. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence (1998)

    Google Scholar 

  18. Guo, L., Chen, H.-Z.: An expanded characteristic-mixed finite element method for a convection-dominated transport problem. J. Comput. Math. 23/5, 479–490

  19. Johnson, C., Thomee, V.: Error estimates for some mixed finite element methods for parabolic type problems. RAIRO Anal. Numér. 15(1), 41–78 (1981)

    Article  MathSciNet  Google Scholar 

  20. Kwak, D.Y., Pyo, H.C.: Mixed finite element methods for general quadrilateral grids. Appl. Math. Comput. 217(4), 6556–6565 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Leykekhman, D., Vexler, B.: Discrete maximal parabolic regularity for Galerkin finite element methods for nonautonomous parabolic problems. SIAM J. Numer. Anal. 56(4), 2178–2202 (2018)

    Article  MathSciNet  Google Scholar 

  22. Pani, A.K.: An \(H^1\)-Galerkin mixed finite element method for parabolic partial differential equations. SIAM J. Numer. Anal. 35(2), 712–727 (1998)

    Article  MathSciNet  Google Scholar 

  23. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Berlin (2008)

    MATH  Google Scholar 

  24. Sharma, N., Khebchareon, M., Pani, A.K.: A priori error estimates of expanded mixed FEM for Kirchhoff type parabolic equation. Numer. Algorithms 83(1), 125–147 (2020)

    Article  MathSciNet  Google Scholar 

  25. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  26. Yang, H., Shi, D.: Superconvergence analysis of the lowest order rectangular Raviart–Thomas element for semilinear parabolic equation. Appl. Math. Lett. 105, 106280 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for her/his useful advices that helped to improve the paper. The second author would like to thank Professors A. Baeza, J. Droniou, and S. Monniaux for some useful discussions on several sides of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdallah Bradji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by MCS team (LAGA Laboratory) of the ”Université Sorbonne-Paris Nord”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benkhaldoun, F., Bradji, A. Two New Error Estimates of a Fully Discrete Primal-Dual Mixed Finite Element Scheme for Parabolic Equations in Any Space Dimension. Results Math 76, 182 (2021). https://doi.org/10.1007/s00025-021-01489-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-021-01489-0

Keywords

Mathematics Subject Classification

Navigation