Skip to main content
Log in

A Constrained Scheme for High Precision Downward Continuation of Potential Field Data

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

To further improve the accuracy of the downward continuation of potential field data, we present a novel constrained scheme in this paper combining the ideas of the truncated Taylor series expansion, the principal component analysis, the iterative continuation and the prior constraint. In the scheme, the initial downward continued field on the target plane is obtained from the original measured field using the truncated Taylor series expansion method. If the original field was with particularly low signal-to-noise ratio, the principal component analysis is utilized to suppress the noise influence. Then, the downward continued field is upward continued to the plane of the prior information. If the prior information was on the target plane, it should be upward continued over a short distance to get the updated prior information. Next, the difference between the calculated field and the updated prior information is calculated. The cosine attenuation function is adopted to get the scope of constraint and the corresponding modification item. Afterward, a correction is performed on the downward continued field on the target plane by adding the modification item. The correction process is iteratively repeated until the difference meets the convergence condition. The accuracy of the proposed constrained scheme is tested on synthetic data with and without noise. Numerous model tests demonstrate that downward continuation using the constrained strategy can yield more precise results compared to other downward continuation methods without constraints and is relatively insensitive to noise even for downward continuation over a large distance. Finally, the proposed scheme is applied to real magnetic data collected within the Dapai polymetallic deposit from the Fujian province in South China. This practical application also indicates the superiority of the presented scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abedi, M., Gholami, A., & Norouzi, G. H. (2013). A stable downward continuation of airborne magnetic data: A case study for mineral prospectivity mapping in Central Iran. Computers & Geosciences, 52, 269–280.

    Article  Google Scholar 

  • Agarwal, B. N. P., & Singh, J. (1976). A generalized method for various data processing techniques in gravity interpretation. Pure and Applied Geophysics, 114, 975–982.

    Article  Google Scholar 

  • Aydin, A. (2007). Interpretation of gravity anomalies with the normalized full gradient (NFG) method and an example. Pure and Applied Geophysics, 164, 2329–2344.

    Article  Google Scholar 

  • Blakely, R. J. (1995). Potential theory in gravity and magnetic applications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Clarke, G. K. C. (1969). Optimum second-derivative and downward continuation filters. Geophysics, 34, 424–437.

    Article  Google Scholar 

  • Cooper, G. (2004). The stable downward continuation of potential field data. Exploration Geophysics, 35, 260–265.

    Article  Google Scholar 

  • Dampney, C. N. G. (1969). The equivalent source technique. Geophysics, 34, 39–53.

    Article  Google Scholar 

  • Dean, W. C. (1958). Frequency analysis for gravity and magnetic interpretation. Geophysics, 23, 97.

    Article  Google Scholar 

  • Dmitriev, V. I., & Dmitrieva, I. V. (2012). Iterative method for analytical continuation of the gravity field. Computational Mathematics and Modeling, 23, 51–55.

    Article  Google Scholar 

  • Dondurur, D. (2005). Depth estimates for Slingram electromagnetic anomalies from dipping sheet-like bodies by the normalized full gradient method. Pure and Applied Geophysics, 162, 2179–2195.

    Article  Google Scholar 

  • Fedi, M., & Florio, G. (2001). Detection of potential fields source boundaries by enhanced horizontal derivative method. Geophysical Prospecting, 49, 40–58.

    Article  Google Scholar 

  • Fedi, M., & Florio, G. (2002). A stable downward continuation by using the ISVD method. Geophysical Journal International, 151, 146–156.

    Article  Google Scholar 

  • Fedi, M., & Florio, G. (2011). Normalized downward continuation of potential fields within the quasi-harmonic region. Geophysical Prospecting, 59, 1087–1100.

    Article  Google Scholar 

  • Guspi, F. (1987). Frequency-domain reduction of potential field measurements to a horizontal plane. Geo-exploration, 24, 87–98.

    Google Scholar 

  • Hansen, R. O., & Miyazaki, Y. (1984). Continuation of potential fields between arbitrary surfaces. Geophysics, 49, 787–795.

    Article  Google Scholar 

  • Hinze, W. J., & Ralph, R. B. (2013). Gravity and magnetic exploration: Principles, practices and applications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Konstantinides, K., Natarajan, B., & Yovanof, G. S. (1997). Noise estimation and filtering using block-based singular value decomposition. IEEE Transactions on Image Processing, 6, 479–483.

    Article  Google Scholar 

  • Li, Y., & Devriese, S. (2009). Enhancement of magnetic data by stable downward continuation for UXO applications. In 79th Annual International Meeting, SEG, pp. 1464–1468.

  • Liu, D. J., Hong, T. Q., Jia, Z. H., Li, J. S., Lu, S. M., Sun, X. F., et al. (2009). Wave number domain iteration method for downward continuation of potential fields and its convergence. Chinese Journal of Geophysics, 52, 1599–1605.

    Google Scholar 

  • Meju, M. A. (1994). Biased estimation: A simple framework for inversion and uncertainty analysis with prior information. Geophysical Journal International, 119(2), 521–528.

    Article  Google Scholar 

  • Nabighian, M. N., Ander, M. E., Grauch, V. J. S., Hansen, R. O., LaFehr, T. R., Li, Y., et al. (2005a). Historical development of the gravity method in exploration. Geophysics, 70, 63–89.

    Article  Google Scholar 

  • Nabighian, M. N., Grauch, V. J. S., Hansen, R. O., LaFehr, T. R., Li, Y., Pearson, W. C., et al. (2005b). Historical development of the magnetic method in exploration. Geophysics, 70, 33–61.

    Article  Google Scholar 

  • Naidu, P. S. (1966). Extraction of potential field signal from a background of random noise by Strakhov’s method. Journal of Geophysical Research, 71, 5987–5995.

    Article  Google Scholar 

  • Oliveira, V. C. J., Barbosa, V. C. F., & Uieda, L. (2013). Polynomial equivalent layer. Geophysics, 78, G1–G13.

    Article  Google Scholar 

  • Pašteka, R., Karcol, R., Kušnirák, D., & Mojzeš, A. (2012). REGCONT: a MATLAB based program for stable downward continuation of geophysical potential fields using Tikhonov regularization. Computers & Geosciences, 49, 278–289.

    Article  Google Scholar 

  • Pawlowski, R. S. (1995). Preferential continuation for potential-field anomaly enhancement. Geophysics, 60, 390–398.

    Article  Google Scholar 

  • Richard, D. R. (1984). Continuation by integral equation methods: A note on surface integration over the double layer. Pure and Applied Geophysics, 122, 725–730.

    Article  Google Scholar 

  • Tai, Z. H., Zhang, F. X., Zhang, F. Q., & Hao, M. C. (2016). Approximate iterative operator method for potential-field downward continuation. Journal of Applied Geophysics, 128, 31–40.

    Article  Google Scholar 

  • Tikhonov, A. N., Glasko, V. B., Litvinenko, O. K., & Melikhov, V. R. (1968). Analytic continuation of a potential in the direction of disturbing masses by the regularization method. Izvestiya Physics of the Solid Earth, 12, 30–48.

    Google Scholar 

  • Trompat, H., Boschetti, F., & Hornby, P. (2003). Improved downward continuation of potential field data. Exploration Geophysics, 34, 249–256.

    Article  Google Scholar 

  • Uieda, L., & Barbosa, V. C. F. (2012). Robust 3D gravity gradient inversion by planting anomalous densities. Geophysics, 77, G55–G66.

    Article  Google Scholar 

  • Wang, J., Meng, X. H., Guo, L. H., Chen, Z. X., & Li, F. (2014). A correlation-based approach for determining the threshold value of singular value decomposition filtering for potential field data denoising. Journal of Geophysics and engineering, 11(5), 055007.

    Article  Google Scholar 

  • Wang, J., Meng, X. H., & Li, F. (2015). Improved curvature gravity gradient tensor with principal component analysis and its application in edge detection of gravity data. Journal of Applied Geophysics, 118, 106–114.

    Article  Google Scholar 

  • Wang, J., Meng, X. H., & Li, F. (2017). Fast nonlinear generalized inversion of gravity data with application to the three dimensional crustal density structure of Sichuan Basin, Southwest China. Pure and Applied Geophysics, 174, 4101–4117.

    Article  Google Scholar 

  • Xu, S. Z., Yang, J. Y., Yang, C. F., Xiao, P. F., Chen, S. C., & Guo, Z. H. (2007). The iteration method for downward continuation of a potential field from a horizontal plane. Geophysical Prospecting, 55, 883–889.

    Article  Google Scholar 

  • Yan, J. Y., Lü, Q. T., Chen, X. B., Qi, G., Liu, Y., Guo, D., et al. (2014). 3D lithologic mapping test based on 3D inversion of gravity and magnetic data: A case study in Lu-Zong ore concentration district, Anhui Province. Acta Petrologica Sinica, 30, 1041–1053.

    Google Scholar 

  • Yao, C. L., Li, H. W., Zheng, Y. M., Meng, X. H., & Zhang, Y. W. (2012). Research on iteration method using in potential field transformations. Chinese Journal of Geophysics, 55, 2062–2078.

    Article  Google Scholar 

  • Yuan, Y., Zhang, D., Feng, H. B., Di, Y. J., Wang, C. M., & Ni, J. H. (2014). The Re-Os isotope geochronology of Dapai iron polymetallic ore deposit in Yongding county, Fujian province and its genetic significance. Acta Geologica Sinica, 88, 1025–1026.

    Article  Google Scholar 

  • Zeng, X. N., Li, X. H., Su, J., Li, D. Z., & Zou, H. X. (2013). An adaptive iterative method for downward continuation of potential-field data from a horizontal plane. Geophysics, 78, J43–J52.

    Article  Google Scholar 

  • Zhang, H. L., Ravat, D., & Hu, X. Y. (2013). An improved and stable downward continuation of potential field data: The truncated Taylor series iterative downward continuation method. Geophysics, 78, J75–J86.

    Article  Google Scholar 

  • Zhang, Z., Zuo, R., & Cheng, Q. (2014). The mineralization age of the Makeng Fe deposit, South China: implications from U-Pb and Sm-Nd geochronology. International Journal of Earth Sciences, 104, 663–682.

    Article  Google Scholar 

  • Zhou, W. N., Li, J. Y., & Yuan, Y. (2017). Downward continuation of potential field data based on Chebyshev–Pade´ approximation function. Pure and Applied Geophysics, 3, 1–12.

    Google Scholar 

Download references

Acknowledgements

The authors thank the editors and anonymous reviewers for their constructive comments for improving the paper. This work was supported by (1) the National Natural Science Foundation of China (grant No. 41474106 and 41530321); (2) the National Key R&D Program of China (grant No. 2016YFC0303000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Meng, X. & Zhou, Z. A Constrained Scheme for High Precision Downward Continuation of Potential Field Data. Pure Appl. Geophys. 175, 3511–3523 (2018). https://doi.org/10.1007/s00024-018-1861-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-1861-6

Keywords

Navigation