Skip to main content
Log in

The mineralization age of the Makeng Fe deposit, South China: implications from U–Pb and Sm–Nd geochronology

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Makeng Fe deposit is located in the southwestern Fujian district, South China. The Sm–Nd isochron ages of seven samples of pure garnet and five of pure magnetite separates from the Makeng ores yielded an isochron age of 157 ± 15 Ma. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U–Pb dating of the nearby exposed the Dayang–Juzhou (DJ) porphyritic biotite granite and fine-grained syenogranite yielded 206Pb/238U ages of 140.2 ± 1.1 and 140.1 ± 1.0 Ma, respectively. These results suggest that the intrusion of the DJ granite and the Makeng skarn alterations and Fe mineralization are contemporaneous. The DJ granite exhibits geochemical characteristics of A-type granites, including high values of Na2O + K2O (8.13–8.92 wt%), FeOt/MgO (3.4–21.5), and Ga/Al (2.64–3.45 × 10−4), and low Al2O3 (10.71–13.29 wt%) value. Chondrite-normalized rare earth element patterns are characterized by obviously negative Eu anomalies (δEu = 0.02–0.28) and primitive-mantle normalized spidergrams show the enrichment in high field strength element and depleting in Sr, Ti, Ba, and Eu. The geochemical characteristics of DJ granite suggest that the granite was derived from partial melting of the Paleoproterozoic metasedimentary rocks of the Cathaysia basement. And some underplating of mafic magma in the lower tholeiitic crust and/or depleted mantle might be involved and provide the heat source for the partial melting. The DJ granite also fits the spatiotemporal distribution of the Jurassic–Cretaceous coastward migration of both extensional and arc-related magmatism and fills the A-type granites gap in the early stage of the early Cretaceous (145–125 Ma). Therefore, it is suggested that the late Jurassic and early Cretaceous magmatism in southwestern Fujian district were generated in an extensional environment responding to the slab rollback and concomitant retreating arc system of the paleo-Pacific plate within the South China Block. And the Fe metallogeny in southwestern Fujian district is genetically linked with the magmatism during this period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Amato JM, Johnson CM, Baumgartner LP, Beard BL (1999) Rapid exhumation of the Zermatt–Saas ophiolite deduced from high-precision Sm–Nd and Rb–Sr geochronology. Earth Planet Sci Lett 171(3):425–438

    Article  Google Scholar 

  • Baker MB, Hirschmann MM, Ghiorso MS, Stolper EM (1995) Compositions of near-solidus peridotite melts from experiments and thermodynamic calculations. Nature 375(6529):308–311

    Article  Google Scholar 

  • Carter A, Roques D, Bristow C, Kinny P (2001) Understanding Mesozoic accretion in Southeast Asia: significance of Triassic thermotectonism (Indosinian orogeny) in Vietnam. Geology 29(3):211–214

    Article  Google Scholar 

  • Chen Y (2010) New understanding of ore-control structure feature of Fujian Makeng Iron Mine. Met Mine 404:96–99 (in Chinese with English abstract)

    Google Scholar 

  • Chen J, Jahn B (1998) Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics 284(1–2):101–133

    Google Scholar 

  • Chen C, Lee C, Shinjo R (2008) Was there Jurassic paleo-Pacific subduction in South China? Constraints from 40Ar/39Ar dating, elemental and Sr–Nd–Pb isotopic geochemistry of the Mesozoic basalts. Lithos 106(1–2):83–92

    Article  Google Scholar 

  • Clemens JD, Holloway JR, White AJR (1986) Origin of an A-type granite—experimental constraints. Am Mineral 71(3–4):317–324

    Google Scholar 

  • Cliff RA, Barnicoat AC, Inger S (1998) Early Tertiary eclogite facies metamorphism in the Monviso ophiolite. J Metamorph Geol 16(3):447–455

    Article  Google Scholar 

  • Collins WJ, Beams SD, White AJR, Chappell BW (1982) Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib Mineral Petrol 80(2):189–200

    Article  Google Scholar 

  • Dall’Agnol R, de Oliveira DC (2007) Oxidized, magnetite-series, rapakivi-type granites of Carajas, Brazil: implications for classification and petrogenesis of A-type granites. Lithos 93(3–4):215–233

    Article  Google Scholar 

  • DeWolf CP, Zeissler CJ, Halliday AN, Mezger K, Essene EJ (1996) The role of inclusions in U–Pb and Sm–Nd garnet geochronology: stepwise dissolution experiments and trace uranium mapping by fission track analysis. Geochim Cosmochim Acta 60(1):121–134

    Article  Google Scholar 

  • Dong C, Li W, Chen X, Xu X, Zhou X (1998) Late Mesozoic magma mixing in SE-Fujian—Petrologic evidence from the Pingtan igneous complex. Prog Nat Sci 8(2):196–201

    Google Scholar 

  • Eby GN (1990) The A-type granitoids—a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26(1–2):115–134

    Article  Google Scholar 

  • Eby GN (1992) Chemical subdivision of the A-type granitoids—petrogenetic and tectonic implications. Geology 20(7):641–644

    Article  Google Scholar 

  • Foland KA, Allen JC (1991) Magma sources for Mesozoic anorogenic granites of the White Mountain magma series, New-England, USA. Contrib Mineral Petrol 109(2):195–211

    Article  Google Scholar 

  • Frost CD, Frost BR, Chamberlain KR, Edwards BR (1999) Petrogenesis of the 1.43 Ga Sherman batholith, SE Wyoming, USA: a reduced, rapakivi-type anorogenic granite. J Petrol 40(12):1771–1802

    Article  Google Scholar 

  • Frost CD, Bell JM, Frost BR, Chamberlain KR (2001) Crustal growth by magmatic underplating: isotopic evidence from the northern Sherman batholith. Geology 29(6):515–518

    Article  Google Scholar 

  • Getty SR, Selverstone J, Wernicke BP, Jacobsen SB, Aliberti E, Lux DR (1993) Sm–Nd dating of multiple garnet growth events in an arc-continent collision zone, northwestern US Cordillera. Contrib Mineral Petrol 115(1):45–57

    Article  Google Scholar 

  • Gilder SA, Gill J, Coe RS, Zhao X, Liu Z, Wang G, Yuan K, Liu W, Kuang G, Wu H (1996) Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of south China. J Geophys Res: Solid Earth (1978–2012) 101(B7):16137–16154

    Article  Google Scholar 

  • Halliday AN, Davidson JP, Hildreth W, Holden P (1991) Modeling the petrogenesis of high Rb/Sr silicic magmas. Chem Geol 92(1–3):107–114

    Article  Google Scholar 

  • Han F, Ge C (1983) Geological and geochemical features of submarine volcanic hydrothermal-sedimentary mineralization of Makeng iron deposit, Fujian Province. Bull Inst Miner Depos Chin Acad Geol Sci 7:1–118 (in Chinese with English Abstract)

    Google Scholar 

  • Hirose K (1997) Melting experiments on Iherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts. Geology 25(1):42–44

    Article  Google Scholar 

  • Hirose K, Kawamoto T (1995) Hydrous partial melting of iherzolite at 1 Gpa—the effect of H2O on the genesis of basaltic magmas. Earth Planet Sci Lett 133(3–4):463–473

    Article  Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the earth—the relationship between mantle, continental-crust, and oceanic-crust. Earth Planet Sci Lett 90(3):297–314

    Article  Google Scholar 

  • Hong D, Chen X, Li C, Yu S (1980) Typomorphic characteristics of the rock-forming minerals of the Juchow–Dayang granite and the conditions of their formation. Acta Geol Sin 1:52–69

    Google Scholar 

  • Jahn BM (1974) Mesozoic thermal events in southeast China. Nature 248:480–483

    Article  Google Scholar 

  • Jahn BM, Chen P, Yen T (1976) Rb–Sr ages of granitic rocks in southeastern China and their tectonic significance. Geol Soc Am Bull 87(5):763–776

    Article  Google Scholar 

  • Jiang S, Zhao K, Jiang Y, Dai B (2008) Characteristics and genesis of Mesozoic A-type granites and associated mineral deposits in the southern Hunan and northern Guangxi provinces along the Shi-Hang Belts, South China. Geol J China Univ 14(4):496–509 (in Chinese with English abstract)

    Google Scholar 

  • Jung S, Mezger K (2001) Geochronology in migmatites—a Sm–Nd, U–Pb and Rb–Sr study from the Proterozoic Damara belt (Namibia): implications for polyphase development of migmatites in high-grade terranes. J Metamorph Geol 19(1):77–97

    Article  Google Scholar 

  • Kerr A, Fryer BJ (1993) Nd isotope evidence for crust mantle interaction in the generation of A-type granitoid suites in Labrador, Canada. Chem Geol 104(1–4):39–60

    Article  Google Scholar 

  • King PL, White AJR, Chappell BW, Allen CM (1997) Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia. J Petrol 38(3):371–391

    Article  Google Scholar 

  • Lai S, Chen R, Zhang D, Di Y, Gong Y, Yuan Y, Chen L (2014) Petrogeochemical features and zircon LA-ICP-MS U–Pb ages of granite in the Pantian iron ore deposit, Fujian province and their relationship with mineralization. Acta Petrol Sin 30(6):1780–1792 (in Chinese with English abstract)

    Google Scholar 

  • Lapierre H, Jahn BM, Charvet J, Yu Y (1997) Mesozoic felsic arc magmatism and continental olivine tholeiites in Zhejiang province and their relationship with the tectonic activity in southeastern China. Tectonophysics 274(4):321–338

    Article  Google Scholar 

  • Lepvrier C, Maluski H, Van Vuong N, Rogues D, Axente V, Rangin C (1997) Indosinian NW-trending shear zones within the Truong Son belt (Vietnam) Ar40/Ar39 Triassic ages and Cretaceous to Cenozoic overprints. Tectonophysics 283(1–4):105–127

    Article  Google Scholar 

  • Li X (2000) Cretaceous magmatism and lithospheric extension in Southeast China. J Asian Earth Sci 18(3):293–305

    Article  Google Scholar 

  • Li Z, Li X (2007) Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model. Geology 35(2):179–182

    Article  Google Scholar 

  • Li X, Chen Z, Liu D, Li W (2003a) Jurassic gabbro-granite-syenite suites from Southern Jiangxi province, SE China: age, origin, and tectonic significance. Int Geol Rev 45(10):898–921

    Article  Google Scholar 

  • Li Z, Li X, Kinny P, Wang J, Zhang S, Zhou H (2003b) Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambrian Res 122(1):85–109

    Article  Google Scholar 

  • Li X, Li Z, Li W, Liu Y, Yuan C, Wei G, Qi C (2007) U-Pb zircon, geochemical and Sr–Nd–Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: a major igneous event in response to foundering of a subducted flat-slab? Lithos 96(1–2):186–204

    Article  Google Scholar 

  • Li Z, Qiu J, Yang X (2014) A review of the geochronology and geochemistry of Late Yanshanian (Cretaceous) plutons along the Fujian coastal area of southeastern China: implications for magma evolution related to slab break-off and rollback in the Cretaceous. Earth-Sci Rev 128:232–248

    Article  Google Scholar 

  • Lin D (2011) Research on late Paleozoic-Triassic tectonic evolution and metallogenetic regularities of iron-polymetalic deposits in the Southwestern Fujian Province. Ph.D dissertation, China University of Geosciences (Beijing)

  • Liu Y, Hu Z, Gao S, Guenther D, Xu J, Gao C, Chen H (2008) In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol 257(1–2):34–43

    Article  Google Scholar 

  • Liu Y, Gao S, Hu Z, Gao C, Zong K, Wang D (2010) Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J Petrol 51:537–571

    Article  Google Scholar 

  • Loiselle MC, Wones DR (1979) Characteristics and origin of anorogenic granites. Geol Soc Am Abstr Programs 11:468

    Google Scholar 

  • Ludwig KR (2003) Isoplot 3.00: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication No. 4

  • Maas R, Kinny PD, Williams IS, Froude DO, Compston W (1992) The Earth’s oldest known crust: a geochronological and geochemical study of 3900–4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochim Cosmochim Acta 56(3):1281–1300

    Article  Google Scholar 

  • Mao J, Wang Y, Lehmann B, Yu J, Du A, Mei Y, Li Y, Zang W, Stein HJ, Zhou T (2006) Molybdenite Re–Os and albite 40Ar/39Ar dating of Cu–Au–Mo and magnetite porphyry systems in the Yangtze River valley and metallogenic implications. Ore Geol Rev 29(3):307–324

    Article  Google Scholar 

  • Martin H, Bonin B, Capdevila R, Jahn B, Lameyre J, Wang Y (1994) The Kuiqi peralkaline granitic complex (SE China)—petrology and geochemistry. J Petrol 35(4):983–1015

    Article  Google Scholar 

  • Mawby J, Hand M, Foden J (1999) Sm-Nd evidence for high-grade Ordovician metamorphism in the Arunta Block, central Australia. J Metamorph Geol 17:653–668

    Article  Google Scholar 

  • Mezger K, Essene EJ, Halliday A (1992) Closure temperatures of the Sm–Nd system in metamorphic garnets. Earth Planet Sci Lett 113(3):397–409

    Article  Google Scholar 

  • Nägler TF, Pettke T, Marshall D (1995) Initial isotopic heterogeneity and secondary disturbance of the Sm–Nd system in fluorites and fluid inclusions: a study on mesothermal veins from the central and western Swiss Alps. Chem Geol 125(3):241–248

    Article  Google Scholar 

  • Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks of the Kastamonu area, northern Turkey. Contrib Mineral Petrol 58:63–81

  • Peccerillo A, Barberio MR, Yirgu G, Ayalew D, Barbieri M, Wu TW (2003) Relationships between mafic and peralkaline silicic magmatism in continental rift settings: a petrological, geochemical and isotopic study of the Gedemsa volcano, central Ethiopian rift. J Petrol 44(11):2003–2032

    Article  Google Scholar 

  • Prince CI, Kosler J, Vance D, Gunther D (2000) Comparison of laser ablation ICP-MS and isotope dilution REE analyses—implications for Sm–Nd garnet geochronology. Chem Geol 168(3–4):255–274

    Article  Google Scholar 

  • Scherer EE, Cameron KL, Blichert-Toft J (2000) Lu–Hf garnet geochronology: closure temperature relative to the Sm–Nd system and the effects of trace mineral inclusions. Geochim Cosmochim Acta 64(19):3413–3432

    Article  Google Scholar 

  • Shellnutt JG, Zhou M, Zellmer GF (2009) The role of Fe–Ti oxide crystallization in the formation of A-type granitoids with implications for the Daly gap: an example from the Permian Baima igneous complex, SW China. Chem Geol 259(3–4):204–217

    Article  Google Scholar 

  • Sun S-s, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond 42:313–345

    Article  Google Scholar 

  • Sun Y, Ma C, Liu Y, She Z (2011) Geochronological and geochemical constraints on the petrogenesis of late Triassic aluminous A-type granites in southeast China. J Asian Earth Sci 42(6):1117–1131

    Article  Google Scholar 

  • Sylvester PJ (1989) Post-collisional alkaline granites. J Geol 97(3):261–280

    Article  Google Scholar 

  • Taylor SR, Mclennan SM (1985) The continental crust: Its composition and evolution. Blackwell, Oxford

    Google Scholar 

  • Thoni M (2002) Sm-Nd isotope systematics in garnet from different lithologies (Eastern Alps): age results, and an evaluation of potential problems for garnet Sm–Nd chronometry. Chem Geol 185(3–4):255–281

    Article  Google Scholar 

  • Turner S, Sandiford M, Foden J (1992a) Some geodynamic and compositional constraints on postorogenic magmatism. Geology 20(10):931–934

    Article  Google Scholar 

  • Turner SP, Foden JD, Morrison RS (1992b) Derivation of some A-type magmas by fractionation of basaltic magma—an example from the Padthaway Ridge, South Australia. Lithos 28(2):151–179

    Article  Google Scholar 

  • van Breemen O, Hawkesworth CJ (1980) Sm–Nd isotopic study of garnets and their metamorphic host rocks. Trans R Soc Edinb Earth Sci 71:97–102

    Article  Google Scholar 

  • Vance D, Meier M, Oberli F (1998a) The influence of high U–Th inclusions on the U–Th–Pb systematics of almandine-pyrope garnet: results of a combined bulk dissolution, stepwise-leaching, and SEM study. Geochim Cosmochim Acta 62(21):3527–3540

    Article  Google Scholar 

  • Vance D, Strachan R, Jones K (1998b) Extensional versus compressional settings for metamorphism: garnet chronometry and pressure-temperature-time histories in the Moine Supergroup, northwest Scotland. Geology 26(10):927–930

    Article  Google Scholar 

  • Wang Q, Zhao Z, Jian P, Xiong X, Bao Z, Dai T, Xu J, Ma J (2005) Geochronology of Cretaceous, A-type granitoids or alkaline intrusive rocks in the hinterland, South China: constraints for late-Mesozoic tectonic evolution. Acta Petrol Sin 21(3):795–808 (in Chinese with English abstract)

    Google Scholar 

  • Wang Q, Wyman DA, Li Z, Bao Z, Zhao Z, Wang Y, Jian P, Yang Y, Chen L (2010) Petrology, geochronology and geochemistry of ca. 780 Ma A-type granites in South China: petrogenesis and implications for crustal growth during the breakup of the supercontinent Rodinia. Precambrian Res 178(1–4):185–208

    Article  Google Scholar 

  • Wang F, Ling M, Ding X, Hu Y, Zhou J, Yang X, Liang H, Fan W, Sun W (2011) Mesozoic large magmatic events and mineralization in SE China: oblique subduction of the Pacific plate. Int Geol Rev 53(5–6):704–726

    Article  Google Scholar 

  • Whalen JB, Currie KL, Chappell BW (1987) A-type granites—geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol 95(4):407–419

    Article  Google Scholar 

  • Xie X, Xu X, Zoij H, Jiang S, Zhang M, Qiu J (2006) Early J2 basalts in SE China: incipience of large-scale late Mesozoic magmatism. Sci China Ser D 49(8):796–815

    Article  Google Scholar 

  • Xu X, Dong C, Li W, Zhou X (1999) Late Mesozoic intrusive complexes in the coastal area of Fujian, SE China: the significance of the gabbro-diorite-granite association. Lithos 46(2):299–315

    Article  Google Scholar 

  • Yang J, Wu F, Chung S, Wilde SA, Chu M (2006) A hybrid origin for the Qianshan A-type granite, northeast China: geochemical and Sr–Nd–Hf isotopic evidence. Lithos 89(1–2):89–106

    Article  Google Scholar 

  • Yang Z, Zhang D, Feng C, She H, Li J (2008) SHRIMP zircon U–Pb dating of quartz porphyry from Zhongjia Tin-polymetallic deposit in Longyan area, Fujian province, and its geological significance. Miner Deposit 27(3):329–335 (in Chinese with English Abstract)

    Google Scholar 

  • Yao J, Hua R, Lin J (2005) Zircon LA-ICPMS U–Pb dating and geochemical characteristics of Huangshaping granite in southeast Hunan province, China. Acta Petrol Sin 21(3):688–696 (in Chinese with English abstract)

    Google Scholar 

  • Yuan Y, Feng H, Zhang D, Di Y, Wang C, Ni J (2013) Geochronology of Dapai iron-polymetallic deposit in Yongding city, Fujian province and its geological significance. Acta Mineralogica Sinica (Suppl):73–75 (in Chinese with English abstract)

  • Zhang C (2012) Geology and geochemistry of Makeng Fe–Mo deposit, Fujian. Ph.D dissertation, China University of Geosciences (Beijing)

  • Zhang Z, Zuo R (2013) Iron isotope systematics of magnetite: implications for the genesis of Makeng iron deposit, southern China. Acta Geol Sin (Engl Ed) 87(Suppl):840–843

    Google Scholar 

  • Zhang Z, Zuo R (2014) Sr–Nd–Pb isotope systematics of magnetite: implications for the genesis of Makeng Fe deposit, southern China. Ore Geol Rev 57:53–60

    Article  Google Scholar 

  • Zhang C, Mao J, Xie G, Zhao C, Yu M, Wang J, Liu W (2012a) Geology and molybdenite Re-Os ages of Makeng skarn-type Fe–Mo deposit in Fujian province. J Jilin Univ (Earth Sci Ed) 42:224–236 (in Chinese with English abstract)

    Google Scholar 

  • Zhang C, Su H, Yu M, Hu Z (2012b) Zircon U–Pb age and Nd–Sr–Pb isotopic characteristics of Dayang–Juzhou granite in Longyan, Fujian Province and its geological significance. Acta Petrol Sin 28(1):225–242 (in Chinese with English abstract)

    Google Scholar 

  • Zhang D, Wu G, Di Y, Wang C, Yao J, Zhang Y, Lv L, Yuan Y, Shi J (2012c) Geochronology of diagenesis and mineralization of the Luoyang iron deposit in Zhangping city, Fujian province and its geological significance. Earth Sci 37(6):1217–1231 (in Chinese with English abstract)

    Google Scholar 

  • Zhao Y, Tan H, Xu Z (1983) The calcic-skarn iron ore deposit of Makeng type in southwestern Fujian. Bull Inst Miner Depos Chin Acad Geol Sci 7(1):1–141 (in Chinese)

    Google Scholar 

  • Zhou B, Hensen BJ (1995) Inherited Sm/Nd isotope components preserved in monazite inclusions within garnets in leucogneiss from East Antarctica and implications for closure temperature studies. Chem Geol 121(1):317–326

    Article  Google Scholar 

  • Zhou X, Li W (2000) Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics 326(3–4):269–287

    Article  Google Scholar 

  • Zhou X, Sun T, Shen W, Shu L, Niu Y (2006) Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution. Episodes 29(1):26–33

    Google Scholar 

  • Zuo R, Zhang Z, Zhang D, Carranza EJM, Wang H (2014) Evaluation of uncertainty in mineral prospectivity mapping due to missing evidence: a case study with skarn-type Fe deposits in Southwestern Fujian Province, China. Ore Geol Rev (in press). doi:10.1016/j.oregeorev.2014.09.024

Download references

Acknowledgments

This research is supported by the joint financial support from a research project on “Quantitative models for prediction of strategic mineral resources in China” (201211022) by China Geological Survey, the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (Nos. CUG120501 and CUG120116), the National Natural Science Foundation of China (No. 41372007), and the Program for New Century Excellent Talents in University (NCET-13-1016). We appreciate Prof. Wenjiao Xiao (editor) and two anonymous reviewers for constructive comments and suggestions, Laifeng Wang, Hao Ren, and Jingjing Fu from Fujiang Makeng Mining Co., Ltd for helping in the field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renguang Zuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Zuo, R. & Cheng, Q. The mineralization age of the Makeng Fe deposit, South China: implications from U–Pb and Sm–Nd geochronology. Int J Earth Sci (Geol Rundsch) 104, 663–682 (2015). https://doi.org/10.1007/s00531-014-1096-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-014-1096-4

Keywords

Navigation