Skip to main content
Log in

Approach to Equilibrium in Translation-Invariant Quantum Systems: Some Structural Results

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We formulate the problem of approach to equilibrium in algebraic quantum statistical mechanics and study some of its structural aspects, focusing on the relation between the zeroth law of thermodynamics (approach to equilibrium) and the second law (increase in entropy). Our main result is that approach to equilibrium is necessarily accompanied by a strict increase in the specific (mean) energy and entropy. In the course of our analysis, we introduce the concept of quantum weak Gibbs state which is of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For additional information and references about this problem see for example [57, 92]

  2. This terminology is unfortunate; see [14]

  3. The unit will be denoted by \(\mathbbm {1}\).

  4. Our sign and ordering conventions are such that, for density matrices \(\rho _1,\rho _2\), \(S(\rho _1|\rho _2)=\mathop {\textrm{tr}}\nolimits (\rho _1(\log \rho _1-\log \rho _2))\). We refer the reader to [69] for an in-depth discussion of relative entropy.

  5. \(\mathscr {B}(\mathscr {H})\) denotes the \(C^*\)-algebra of all linear operators on the Hilbert space \(\mathscr {H}\).

  6. The interaction N generates the gauge group, \(\vartheta ^\theta =\alpha _N^\theta \).

  7. These sets are disjoint.

  8. \(\Theta \) is an anti-linear \(*\)-automorphism of \(\mathfrak {A}\) satisfying \(\Theta \circ \alpha _\Phi ^t=\alpha _\Phi ^{-t}\circ \Theta \) for all \(t\in \mathbb {R}\) and \(\omega (\Theta (A))=\omega (A^*)\) for all \(A\in \mathfrak {A}\).

  9. The principal of which is that \((\mathfrak {A},\alpha _\Lambda ,\omega _\Lambda )\) has the property of return to equilibrium for all large enough \(\Lambda \).

  10. The converse does not hold.

  11. The error concerns the identity (32) in [66], which implies that the KMS vector representative constructed by Ejima and Ogata in [21] is in the natural cone. Unfortunately, a simple argument shows that this is so only in the commutative case.

  12. See [63, 64].

  13. Any state \(\omega \in \mathscr {S}_\textrm{I}(\mathscr {A})\) restricts to the gauge-invariant state \(\bar{\omega }=\int _0^{2\pi }\omega \circ \vartheta ^\theta \frac{\textrm{d}\theta }{2\pi }\in \mathscr {S}_\textrm{I}(\mathfrak {A})\).

References

  1. Araki, H., Ion, P. D. F.: On the equivalence of KMS and Gibbs conditions for states of quantum lattice systems. Communications in Mathematical Physics 35, 1–12 (1974), https://doi.org/10.1007/BF01646450

  2. Aschbacher, W., Jakšić, V., Pautrat, Y., Pillet, C.-A.: Topics in non-equilibrium quantum statistical mechanics. In: Open Quantum Systems. III, Lecture Notes in Math., vol. 1882. Springer, Berlin, pp. 1–66 (2006). https://doi.org/10.1007/3-540-33967-1_1

  3. Aschbacher, W., Jakšić, V., Pautrat, Y., Pillet, C.-A.: Transport properties of quasi-free fermions. J. Math. Phys. 48, 032101 (2007). https://doi.org/10.1063/1.2709849

    Article  MathSciNet  CAS  ADS  Google Scholar 

  4. Araki, H., Moriya, H.: Equilibrium statistical mechanics of fermion lattice systems. Rev. Math. Phys. 15, 93–198 (2003). https://doi.org/10.1142/S0129055X03001606

    Article  MathSciNet  Google Scholar 

  5. Araki, H.: Gibbs states of a one dimensional quantum lattice. Commun. Math. Phys. 14, 120–157 (1969). https://doi.org/10.1007/bf01645134

    Article  MathSciNet  ADS  Google Scholar 

  6. Araki, H.: Positive cone, Radon-Nikodým theorems, relative Hamiltonian and the Gibbs condition in statistical mechanics. An application of the Tomita-Takesaki theory. In: C*-algebras and their applications to statistical mechanics and quantum field theory (Proc. Internat. School of Physics “Enrico Fermi”, Course LX, Varenna, 1973), pp. 64–100 (1976)

  7. Benedetto, D., Castella, F., Esposito, R., Pulvirenti, M.: A short review on the derivation of the nonlinear quantum Boltzmann equations. Commun. Math. Sci. (2007). https://doi.org/10.4310/CMS.2007.v5.n5.a5

    Article  MathSciNet  Google Scholar 

  8. Birke, L., Fröhlich, J.: KMS, etc. Rev. Math. Phys. 14, 829–871, Dedicated to Professor Huzihiro Araki on the occasion of his 70th birthday (2002). https://doi.org/10.1142/S0129055X02001442

  9. Bach, V., Fröhlich, J., Sigal, I.M.: Return to equilibrium. J. Math. Phys. 41, 3985–4060 (2000). https://doi.org/10.1063/1.533334

    Article  MathSciNet  CAS  ADS  Google Scholar 

  10. Berghout, S., Fernández, R., Verbitskiy, E.: On the relation between Gibbs and \(g\)-measures. Ergod. Theory Dyn. Syst. 39, 3224–3249 (2019). https://doi.org/10.1017/etds.2018.13

    Article  MathSciNet  Google Scholar 

  11. Botvich, D.D., Malyshev, V.A.: Unitary equivalence of temperature dynamics for ideal and locally perturbed Fermi-gas. Commun. Math. Phys. 91, 301–312 (1983). https://doi.org/10.1007/bf01208778

    Article  MathSciNet  ADS  Google Scholar 

  12. Bratteli, O., Robinson, D.W.: Operator algebras and quantum-statistical mechanics. II. Texts and Monographs in Physics, Springer, New York, Equilibrium states. Models in quantum-statistical mechanics (1981)

  13. Bratteli, O., Robinson, D.W.: Operator algebras and quantum statistical mechanics. I. Second ed., Texts and Monographs in Physics, Springer, New York, \(C^\ast \)- and \(W^\ast \)-algebras, symmetry groups, decomposition of states (1987). https://doi.org/10.1007/978-3-662-02520-8

  14. Brown, H. R., Uffink, J.: The origins of time-asymmetry in thermodynamics: the minus first law. Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Modern Phys. 32, 525–538 (2001). https://doi.org/10.1016/S1355-2198(01)00021-1

  15. Davies, E.B.: Markovian master equations. Commun. Math. Phys. 39, 91–110 (1974). https://doi.org/10.1007/bf01608389

    Article  MathSciNet  ADS  Google Scholar 

  16. Dereziński, J., Früboes, R.: Fermi golden rule and open quantum systems. In: Open Quantum Systems. III, Lecture Notes in Math., vol. 1882. Springer, Berlin, pp. 1–66 (2006). https://doi.org/10.1007/3-540-33967-1_2

  17. Dereziński, J., Jakšić, V.: Return to equilibrium for Pauli–Fierz systems. Ann. Henri Poincaré 4, 739–793 (2003). https://doi.org/10.1007/s00023-003-0146-4

    Article  MathSciNet  ADS  Google Scholar 

  18. Dereziński, J., Jakšić, V., Pillet, C.-A.: Perturbation theory of \(W^*\)-dynamics, Liouvilleans and KMS-states. Rev. Math. Phys. 15, 447–489 (2003). https://doi.org/10.1142/S0129055X03001679

    Article  MathSciNet  Google Scholar 

  19. De Roeck, W.: Large deviation generating function for currents in the Pauli–Fierz model. Rev. Math. Phys. 21, 549–585 (2009). https://doi.org/10.1142/S0129055X09003694

    Article  MathSciNet  Google Scholar 

  20. De Roeck, W., Kupiainen, A.: ‘Return to equilibrium’ for weakly coupled quantum systems: a simple polymer expansion. Commun. Math. Phys. 305, 797–826 (2011). https://doi.org/10.1007/s00220-011-1247-4

    Article  MathSciNet  ADS  Google Scholar 

  21. Ejima, S., Ogata, Y.: Perturbation theory of KMS states. Ann. Henri Poincaré 20, 2971–2986 (2019). https://doi.org/10.1007/s00023-019-00824-0

    Article  MathSciNet  ADS  Google Scholar 

  22. Erdős, L., Salmhofer, M., Yau, H.-T.: On the quantum Boltzmann equation. J. Stat. Phys. 116, 367–380 (2004). https://doi.org/10.1023/B:JOSS.0000037224.56191.ed

    Article  MathSciNet  ADS  Google Scholar 

  23. Fröhlich, J., Merkli, M.: Another return of return to equilibrium. Commun. Math. Phys. 251, 235–262 (2004). https://doi.org/10.1007/s00220-004-1176-6

  24. Fröhlich, J., Merkli, M., Schwarz, S, Ueltschi, D.: Statistical mechanics of thermodynamic processes. In: A Garden of Quanta. World Scientific Publishing, River Edge, pp. 345–363 (2003). https://doi.org/10.1142/9789812795106_0020

  25. Fröhlich, J., Merkli, M., Ueltschi, D.: Dissipative transport: thermal contacts and tunnelling junctions. Ann. Henri Poincaré 4, 897–945 (2003). https://doi.org/10.1007/s00023-003-0150-8

    Article  MathSciNet  ADS  Google Scholar 

  26. Fernández, R., Pfister, C.-E.: Global specifications and nonquasilocality of projections of Gibbs measures. Ann. Probab. 25, 1284–1315 (1997). https://doi.org/10.1214/aop/1024404514

    Article  MathSciNet  Google Scholar 

  27. Fröhlich, J., Ueltschi, D.: Some properties of correlations of quantum lattice systems in thermal equilibrium. J. Math. Phys. 56, 053302 (2015). https://doi.org/10.1063/1.4921305

    Article  MathSciNet  ADS  Google Scholar 

  28. Griffiths, R.B., Ruelle, D.: Strict convexity (continuity) of the pressure in lattice systems. Commun. Math. Phys. 23, 169–175 (1971). https://doi.org/10.1007/bf01877738

  29. Ho, T.G., Araki, H.: Asymptotic time evolution of a partitioned infinite two-sided isotropic \(XY\)-chain. Tr. Mat. Inst. Steklova 228, 203–216 (2000)

    MathSciNet  Google Scholar 

  30. Haag, R.: Local quantum physics. 2nd ed., Texts and Monographs in Physics, Springer, Berlin., Fields, particles, algebras (1996). https://doi.org/10.1007/978-3-642-61458-3

  31. Haag, R., Hugenholtz, N.M., Winnink, M.: On the equilibrium states in quantum statistical mechanics. Commun. Math. Phys. 5, 215–236 (1967). https://doi.org/10.1007/bf01646342

    Article  MathSciNet  ADS  Google Scholar 

  32. Haag, R., Kadison, R.V., Kastler, D.: Asymptotic orbits in a free fermi gas. Commun. Math. Phys. 33, 1–22 (1973). https://doi.org/10.1007/BF01645603

    Article  MathSciNet  ADS  Google Scholar 

  33. He, L.-B., Lu, X., Pulvirenti, M.: On semi-classical limit of spatially homogeneous quantum Boltzmann equation: weak convergence. Commun. Math. Phys. 386, 143–223 (2021). https://doi.org/10.1007/s00220-021-04029-7

    Article  MathSciNet  ADS  Google Scholar 

  34. Hiai, F., Mosonyi, M., Ogawa, T.: Large deviations and Chernoff bound for certain correlated states on a spin chain. J. Math. Phys. 48, 123301 (2007). https://doi.org/10.1063/1.2812417

    Article  MathSciNet  ADS  Google Scholar 

  35. Hiai, F., Petz, D.: Entropy densities for Gibbs states of quantum spin systems. Rev. Math. Phys. 05, 693–712 (1993). https://doi.org/10.1142/S0129055X93000218

    Article  MathSciNet  Google Scholar 

  36. Hugenholtz, N.M.: Derivation of the Boltzmann equation for a Fermi gas. J. Stat. Phys. 32, 231–254 (1983). https://doi.org/10.1007/BF01012709

    Article  MathSciNet  ADS  Google Scholar 

  37. Hugenholtz, N., M.: How the C\(\ast \)-algebraic formulation of statistical mechanics helps understanding the approach to equilibrium. Cont. Math. 62, 167–174 (1985)

  38. Israel, R. B.: Convexity in the Theory of Lattice Gases. Princeton Series in Physics, Princeton University Press, Princeton, With an introduction by Arthur S. Wightman (1979)

  39. Jakšić, V., Ogata, Y., Pillet, C.-A.: The Green-Kubo formula and the Onsager reciprocity relations in quantum statistical mechanics. Commun. Math. Phys. 265, 721–738 (2006). https://doi.org/10.1007/s00220-006-0004-6

    Article  MathSciNet  ADS  Google Scholar 

  40. Jakšić, V., Ogata, Y., Pillet, C.-A.: The Green-Kubo formula for the spin-fermion system. Commun. Math. Phys. 268, 369–401 (2006). https://doi.org/10.1007/s00220-006-0095-0

    Article  MathSciNet  ADS  Google Scholar 

  41. Jakšić, V., Ogata, Y., Pillet, C.-A.: Linear response theory for thermally driven quantum open systems. J. Stat. Phys. 123, 547–569 (2006). https://doi.org/10.1007/s10955-006-9075-1

    Article  MathSciNet  ADS  Google Scholar 

  42. Jakšić, V., Ogata, Y., Pillet, C.-A.: The Green-Kubo formula for locally interacting fermionic open systems. Ann. Henri Poincaré 8, 1013–1036 (2007). https://doi.org/10.1007/s00023-007-0327-7

    Article  MathSciNet  ADS  Google Scholar 

  43. Jakšić, V., Ogata, Y., Pautrat, Y., Pillet, C.-A.: Entropic fluctuations in quantum statistical mechanics—An introduction. In: Fröhlich, J., Salmhofer, M., de Roeck, W., Mastropietro, V.,Cugliandolo, L. (eds.). Quantum Theory from Small to Large Scales, Lecture Notes of the Les Houches Summer School, vol. 95, Oxford University Press, Oxford, 2010, pp. 213–410. https://doi.org/10.1093/acprof:oso/9780199652495.003.0004

  44. Jakšić, V., Ogata, Y., Pillet, C.-A., Seiringer, R.: Quantum hypothesis testing and non-equilibrium statistical mechanics. Rev. Math. Phys. 24, 1230002 (2012). https://doi.org/10.1142/S0129055X12300026

    Article  MathSciNet  Google Scholar 

  45. Jakšić, V. and Pillet, C.-A.: On a model for quantum friction. III. Ergodic properties of the spin-boson system. Commun. Math. Phys. 178, 627–651 (1996). https://doi.org/10.1007/bf02108818

  46. Jakšić, V., Pillet, C.-A.: Spectral theory of thermal relaxation. J. Math. Phys. 38, 1757–1780 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  47. Jakšić, V., Pillet, C.-A.: A note on eigenvalues of Liouvilleans. J. Stat. Phys. 105, 937–941 (2001). https://doi.org/10.1023/A:1013561529682

    Article  MathSciNet  Google Scholar 

  48. Jakšić, V., Pillet, C.-A.: On entropy production in quantum statistical mechanics. Commun. Math. Phys. 217, 285–293 (2001). https://doi.org/10.1007/s002200000339

    Article  MathSciNet  ADS  Google Scholar 

  49. Jakšić, V. and Pillet, C.-A.: Mathematical theory of non-equilibrium quantum statistical mechanics. J. Stat. Phys. 108, 787–829 (2002). Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdays. https://doi.org/10.1023/A:1019818909696

  50. Jakšić, V., Pillet, C.-A.: Non-equilibrium steady states of finite quantum systems coupled to thermal reservoirs. Commun. Math. Phys. 226, 131–162 (2002). https://doi.org/10.1007/s002200200602

    Article  MathSciNet  ADS  Google Scholar 

  51. Jakšić, V., Pillet, C.-A.: A note on the entropy production formula. Contemp. Math. 327, 175–180 (2003)

    Article  MathSciNet  Google Scholar 

  52. Jakšić, V., Pillet, C.-A.: On the strict positivity of entropy production. In: Adventures in Mathematical Physics, Contemp. Math., vol. 447, American Mathematical Society, Providence (2007) pp. 153–163. https://doi.org/10.1090/conm/447/08689

  53. Jakšić, V., Pillet, C.-A., Tauber, C.: A note on adiabatic time evolution and quasi-static processes in translation-invariant quantum systems. In this issue of Ann. H. Poincaré. https://doi.org/10.48550/arXiv.2204.02177

  54. Jakšić, V., Pillet, C.-A., Westrich, M.: Entropic fluctuations of quantum dynamical semigroups. J. Stat. Phys. 154, 153–187 (2014). https://doi.org/10.1007/s10955-013-0826-5

    Article  MathSciNet  ADS  Google Scholar 

  55. Jordan, T., Rams, M.: Multifractal analysis of weak Gibbs measures for non-uniformly expanding \(C^1\) maps. Ergod. Theory Dyn. Syst. 31, 143–164 (2011). https://doi.org/10.1017/S0143385709000960

    Article  Google Scholar 

  56. Külske, C., Le Ny, A., Redig, F.: Relative entropy and variational properties of generalized Gibbsian measures. Ann. Probab. 32, 1691–1726 (2004). https://doi.org/10.1214/009117904000000342

    Article  MathSciNet  Google Scholar 

  57. Lebowitz, J. L.: Macroscopic laws, microscopic dynamics, time’s arrow and Boltzmann’s entropy. Phys. A 194, 1–27 (1993), Statistical physics (Berlin, 1992). https://doi.org/10.1016/0378-4371(93)90336-3

  58. Lanford, O.E., Robinson, D.W.: Statistical mechanics of quantum spin systems. III. Commun. Math. Phys. 9, 327–338 (1968). https://doi.org/10.1007/bf01654286

    Article  MathSciNet  ADS  Google Scholar 

  59. Lanford, O.E., Robinson, D.W.: Approach to equilibrium of free quantum systems. Commun. Math. Phys. 24, 193–210 (1972). https://doi.org/10.1007/bf01877712

    Article  MathSciNet  ADS  Google Scholar 

  60. Lenci, M., Rey-Bellet, L.: Large deviations in quantum lattice systems: one-phase region. J. Stat. Phys. 119, 715–746 (2005). https://doi.org/10.1007/s10955-005-3015-3

    Article  MathSciNet  ADS  Google Scholar 

  61. Lukkarinen, J., Spohn, H.: Weakly nonlinear Schrödinger equation with random initial data. Invent. Math. 183, 79–188 (2011). https://doi.org/10.1007/s00222-010-0276-5

    Article  MathSciNet  ADS  Google Scholar 

  62. Matsui, T.: On the algebra of fluctuation in quantum spin chains. Ann. Henri Poincaré 4, 63–83 (2003). https://doi.org/10.1007/s00023-003-0122-z

    Article  MathSciNet  ADS  Google Scholar 

  63. Merkli, M., Mück, M., Sigal, I.M.: Instability of equilibrium states for coupled heat reservoirs at different temperatures. J. Funct. Anal. 243, 87–120 (2007). https://doi.org/10.1016/j.jfa.2006.10.017

    Article  MathSciNet  Google Scholar 

  64. Merkli, M., Mück, M., Sigal, I.M.: Theory of non-equilibrium stationary states as a theory of resonances. Ann. Henri Poincaré 8, 1539–1593 (2007). https://doi.org/10.1007/s00023-007-0346-4

    Article  MathSciNet  ADS  Google Scholar 

  65. Matsui, T., Ogata, Y.: Variational principle for non-equilibrium steady states of the XX model. Rev. Math. Phys. 15, 905–923 (2003). https://doi.org/10.1142/S0129055X03001850

    Article  MathSciNet  Google Scholar 

  66. Moriya, H.: Gibbs variational formula for thermal equilibrium states in terms of quantum relative entropy density. J. Stat. Phys. 181, 761–771 (2020). https://doi.org/10.1007/s10955-020-02600-5

    Article  MathSciNet  ADS  Google Scholar 

  67. Maes, C., Redig, F., Van Moffaert, A., Leuven, K.U.: Almost Gibbsian versus weakly Gibbsian measures. Stoch. Proc. Appl. 79, 1–15 (1999). https://doi.org/10.1016/S0304-4149(98)00083-0

    Article  MathSciNet  Google Scholar 

  68. Ogata, Y.: The stability of the non-equilibrium steady states. Commun. Math. Phys. 245, 577–609 (2004). https://doi.org/10.1007/s00220-003-1011-5

    Article  MathSciNet  ADS  Google Scholar 

  69. Ohya, M., Petz, D.: Quantum Entropy and Its Use. Texts and Monographs in Physics. Springer, Berlin (1993). https://doi.org/10.1007/978-3-642-57997-4

    Book  Google Scholar 

  70. Ogata, Y., Rey-Bellet, L.: Ruelle–Lanford functions and large deviations for asymptotically decoupled quantum systems. Rev. Math. Phys. 23, 211–232 (2011). https://doi.org/10.1142/S0129055X11004291

    Article  MathSciNet  Google Scholar 

  71. Peierls, R.: Surprises in Theoretical Physics. Princeton University Press, Princeton (1979)

    Google Scholar 

  72. Petz, D.: Quantum Information Theory and Quantum Statistics. Theoretical and Mathematical Physics, Springer, Berlin (2008)

    Google Scholar 

  73. Pillet, C.-A.: Entropy Production in Classical and Quantum Systems. Markov Proc. Rel. Fields 7, 145–157 (2001), Inhomogeneous random systems (Cergy-Pontoise, 2000)

  74. Pillet, C.-A.: Quantum dynamical systems. In: Open Quantum Systems. I, Lecture Notes in Math., vol.: Springer. Berlin 2006, 107–182 (1880). https://doi.org/10.1007/3-540-33922-1_4

  75. Pfister, C.-E., Sullivan, W.G.: Asymptotic decoupling and weak Gibbs measures for finite alphabet shift spaces. Nonlinearity 33, 4799–4817 (2020). https://doi.org/10.1088/1361-6544/ab8fb7

    Article  MathSciNet  ADS  Google Scholar 

  76. Pusz, W., Woronowicz, S.L.: Passive states and KMS states for general quantum systems. Commun. Math. Phys. 58, 273–290 (1978). https://doi.org/10.1007/bf01614224

    Article  MathSciNet  ADS  Google Scholar 

  77. Radin, C.: Approach to equilibrium in a simple model. J. Math. Phys. 11, 2945–2955 (1970). https://doi.org/10.1063/1.1665079

    Article  MathSciNet  ADS  Google Scholar 

  78. Robinson, D.W.: Return to equilibrium. Commun. Math. Phys. 31, 171–189 (1973). https://doi.org/10.1007/bf01646264

    Article  MathSciNet  ADS  Google Scholar 

  79. Robinson, D. W.: \(C^*\)-algebras and quantum statistical mechanics. In: C*-algebras and their applications to statistical mechanics and quantum field theory (Proc. Internat. School of Physics “Enrico Fermi”, Course LX, Varenna, 1973), 1976, pp. 235–252

  80. Roos, H.: Strict convexity of the pressure: a note on a paper of R. B. Griffiths and D. Ruelle. Commun. Math. Phys. 36, 263–276 (1974). https://doi.org/10.1007/bf01646199

    Article  MathSciNet  ADS  Google Scholar 

  81. Ruelle, D.: States of classical statistical mechanics. J. Math. Phys. 8, 1657–1668 (1967). https://doi.org/10.1063/1.1705406

    Article  ADS  Google Scholar 

  82. Ruelle, D.: Statistical Mechanics: Rigorous Results. W. A. Benjamin, Inc., New York (1969). https://doi.org/10.1142/4090

  83. Thermodynamic Formalism. Encyclopedia of Mathematics and its Applications. In: The Mathematical Structures of Classical Equilibrium Statistical Mechanics. With a Foreword by Giovanni Gallavotti and Gian-Carlo Rota, vol. 5. Addison-Wesley Publishing Co, Reading (1978). https://doi.org/10.1017/cbo9780511617546

  84. Ruelle, D.: Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics. J. Stat. Phys. 95, 393–468 (1999). https://doi.org/10.1023/A:1004593915069

    Article  MathSciNet  ADS  Google Scholar 

  85. Ruelle, D.: Natural nonequilibrium states in quantum statistical mechanics. J. Stat. Phys. 98, 57–75 (2000). https://doi.org/10.1023/A:1018618704438

    Article  MathSciNet  Google Scholar 

  86. Ruelle, D.: Entropy production in quantum spin systems. Commun. Math. Phys. 224, 3–16,: Dedicated to Joel L. Lebowitz (2001). https://doi.org/10.1007/s002200100534

  87. Simon, B.: The statistical mechanics of lattice gases. Princeton Series in Physics, vol. Vol. I. Princeton University Press, Princeton (1993). https://doi.org/10.1515/9781400863433

    Book  Google Scholar 

  88. Spohn, H., Lebowitz, J.L.: Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs. Adv. Chem. Phys. 38, 109–142 (1978). https://doi.org/10.1002/9780470142578.ch2

    Article  CAS  Google Scholar 

  89. Sukhov, Y.M.: Convergence to equilibrium for a free Fermi gas. Theor. Math. Phys. 55, 282–290 (1983). https://doi.org/10.1007/bf01015811

    Article  MathSciNet  Google Scholar 

  90. Thirring, W.: Quantum mathematical physics. Second ed., Springer, Berlin, 2002, Atoms, molecules and large systems, Translated from the 1979 and 1980 German originals by Evans M. Harrell II. https://doi.org/10.1007/978-3-662-05008-8

  91. Tasaki, S. and Matsui, T.: Fluctuation theorem, nonequilibrium steady states and MacLennan-Zubarev ensembles of a class of large quantum systems. In: Fundamental aspects of quantum physics (Tokyo, 2001), QP–PQ: Quantum Probab. White Noise Anal., vol. 17, World Sci. Publ., River Edge, NJ, February 2003, p. 100–119. https://doi.org/10.1142/9789812704412_0006

  92. Uhlenbeck, G. E. and Ford, G. W.: Lectures in statistical mechanics. In: Lectures in Applied Mathematics (Proceedings of the Summer Seminar, Boulder, Colorado, vol. 1960, American Mathematical Society, Providence, R.I., 1963), With an appendix on quantum statistics of interacting particles by E. W. Montroll

  93. Varandas, P.: Non-uniform specification and large deviations for weak Gibbs measures. J. Stat. Phys. 146, 330–358 (2012). https://doi.org/10.1007/s10955-011-0392-7

    Article  MathSciNet  ADS  Google Scholar 

  94. van Enter, A.C.D., Fernández, R., Sokal, A.D.: Regularity properties and pathologies of position-space renormalization-group transformations: scope and limitations of Gibbsian theory. J. Stat. Phys. 72, 879–1167 (1993). https://doi.org/10.1007/BF01048183

    Article  MathSciNet  ADS  Google Scholar 

  95. van Enter, A.C.D., Verbitskiy, E.A.: On the variational principle for generalized Gibbs measures. Markov Proc. Rel. Fields 10, 411–434 (2004)

    MathSciNet  Google Scholar 

  96. Yuri, M.: Weak Gibbs measures and the local product structure. Ergod. Theory Dyn. Syst. 22, 1933–1955 (2002). https://doi.org/10.1017/S0143385702000780

Download references

Acknowledgements

This work was supported by the French Agence Nationale de la Recherche, grant NONSTOPS (ANR-17-CE40-0006-01, ANR-17-CE40-0006-02, ANR-17-CE40-0006-03) and CY Initiative of Excellence, Investissements d’Avenir program (grant ANR-16-IDEX-0008). It was partly developed during VJ’s stay at the CY Advanced Studies, whose support is gratefully acknowledged. VJ also acknowledges the support of NSERC. The authors wish to thank Laurent Bruneau and Aernout van Enter for useful discussions, and Luc Rey-Bellet for pointing them to the reference [66].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clément Tauber.

Additional information

Communicated by Antti Kupiainen.

Dedicated to the memory of Krzysztof Gawȩdzki

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jakšić, V., Pillet, CA. & Tauber, C. Approach to Equilibrium in Translation-Invariant Quantum Systems: Some Structural Results. Ann. Henri Poincaré 25, 715–749 (2024). https://doi.org/10.1007/s00023-023-01281-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-023-01281-6

Navigation