Skip to main content
Log in

Ergodic Optimization and Zero Temperature Limits in Negative Curvature

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

In this paper, we study aspects of the ergodic theory of the geodesic flow on a non-compact negatively curved manifold. In topological dynamics, it is a well-known fact that every continuous potential on a compact metric space has a maximizing measure. Unfortunately, for non-compact spaces this fact is no longer true. For the geodesic flow we provide a criterion that ensures the existence of a maximizing measure for uniformly continuous potentials. We prove that the only obstruction to the existence of a maximizing measure is the full escape of mass phenomenon. To the best of our knowledge, this is the first general result on the existence of maximizing measures for non-compact topological spaces which does not require the potential to be coercive. We study zero temperature limits of equilibrium measures for a suitable family of potentials. We prove some convergence and divergence results for the limiting behavior of such measures. Among some consequences, we obtain that the geodesic flow has the intermediate entropy property and that equilibrium states are dense in the space of invariant probability measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baraviera, A., Leplaideur, R., Lopes, A.: Ergodic optimization, zero temperature limits and the max-plus algebra. IMPA Mathematical Publications, 29th Brazilian Mathematics Colloquium (IMPA), Rio de Janeiro (2013)

  2. Belarif, K.: Genericity of weak-mixing measures on geometrically finite manifolds. arXiv:1610.03641

  3. Bissacot, R., Dos Santos, Freire R.: On the existence of maximizing measures for irreducible countable Markov shifts: a dynamical proof. Ergod. Theory Dyn. Syst. 34, 1103–1115 (2014)

    Article  MathSciNet  Google Scholar 

  4. Bochi, J.: Ergodic optimization of Birkhoff averages and Lyapunov exponents. In: Proceedings of the International Congress of Mathematicians , Rio de Janeiro, vol. 2, pp. 1821–1842 (2018)

  5. Bowditch, B.H.: Geometrical finiteness with variable negative curvature. Duke Math. J. 77(1), 229–274 (1995)

    Article  MathSciNet  Google Scholar 

  6. Bowen, R.: Entropy for group endomorphisms and homogeneous spaces. Trans. Am. Math. Soc. 153, 401–414 (1971)

    Article  MathSciNet  Google Scholar 

  7. Bowen, R.: Symbolic dynamics for hyperbolic flows. Am. J. Math. 95, 429–460 (1973)

    Article  MathSciNet  Google Scholar 

  8. Brémont, J.: Gibbs measures at temperature zero. Nonlinearity 16(2), 419–426 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  9. Chazottes, J.-R., Hochman, M.: On the zero-temperature limit of Gibbs states. Commun. Math. Phys. 297(1), 265–281 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  10. Contreras, G.: Ground states are generically a periodic orbit. Invent. Math. 205(2), 383–412 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  11. Coronel, D., Rivera-Letelier, J.: Sensitive dependence of Gibbs measures at low temperatures. J. Stat. Phys. 160(6), 1658–1683 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  12. Coudène, Y., Schapira, B.: Generic measures for hyperbolic flows on non compact spaces. Isr. J. Math. 179, 157–172 (2010)

    Article  MathSciNet  Google Scholar 

  13. Dal’bo, F., Peigné, M.: Some negatively curved manifolds with cusps, mixing and counting. J. Reine Angew. Math. 497, 109–124 (1998)

  14. Dal’bo, F., Otal, J.-P., Peigné, M.: Séries de Poincaré des groupes géométriquement finis. Isr. J. Math. 118 (200)

  15. Eberlein, P.: Geometry of Nonpositively Curved Manifolds. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1996. vii+449 pp

  16. Freire, R., Vargas, V.: Equilibrium states and zero temperature limit on topologically transitive countable Markov shifts. Trans. Am. Math. Soc. 370, 8451–8465 (2018)

    Article  MathSciNet  Google Scholar 

  17. Huang, W., Lian, Z., Ma, X., Xu, L., Zhang, Y.: Ergodic optimization theory for a class of typical maps. arXiv:1904.01915

  18. Huang, W., Lian, Z., Ma, X., Xu, L., Zhang, Y.: Ergodic optimization theory for Axiom A flows. arXiv:1904.10608

  19. Iommi, G.: Ergodic optimization for renewal type shifts. Monatsh. Math. 150(2), 91–95 (2007)

    Article  MathSciNet  Google Scholar 

  20. Iommi, G., Riquelme, F., Velozo, A.: Entropy in the cusp and phase transitions for geodesic flows. Isr. J. Math. 225, 609–659 (2018)

    Article  MathSciNet  Google Scholar 

  21. Jenkinson, O.: Ergodic optimization. Discrete Contin. Dyn. Syst. 15(1), 197–224 (2006)

    Article  MathSciNet  Google Scholar 

  22. Jenkinson, O.: Ergodic optimization in dynamical systems. Ergod. Theory Dyn. Syst. 39(10), 2593–2618 (2019)

    Article  MathSciNet  Google Scholar 

  23. Jenkinson, O., Mauldin, R.D., Urbański, M.: Ergodic optimization for countable alphabet subshifts of finite type. Ergod. Theory Dyn. Syst. 26, 1791–1803 (2006)

    Article  MathSciNet  Google Scholar 

  24. Kempton, T.: Zero temperature limits of Gibbs equilibrium states for countable Markov shifts. J. Stat. Phys. 143(4), 795–806 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  25. Klenke, A.: Probability Theory. A Comprehensive Course, 2nd edn. Translation from the German edition. Universitext. Springer, London (2014). xii+638 pp

  26. Manning, A.: Topological entropy for geodesic flows. Ann. Math. (2) 110(3), 567–573 (1979)

    Article  MathSciNet  Google Scholar 

  27. Morris, I.: Entropy for zero-temperature limits of Gibbs-equilibrium states for countable-alphabet subshifts of finite type. J. Stat. Phys. 126, 315–324 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  28. Morro, M., Sant’Anna, R., Varandas, P.: Ergodic optimization for hyperbolic flows and Lorenz attractors. (English summary) Ann. Henri Poincaré 21(10), 3253–3283 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  29. Otal, J.-P., Peigné, M.: Principe variationnel et groupes kleiniens. Duke Math. J. 125 (2004)

  30. Paulin, F., Pollicott, M., Schapira, B.: Equilibrium states in negative curvature. Astérisque 373 (2015), viii+281 pp

  31. Peigné, M.: On some exotic Schottky groups. Discrete Contin. Dyn. Syst. 31(2), 559–579 (2011)

  32. Pit, V., Schapira, B.: Finiteness of Gibbs measures on non-compact manifolds with pinched negative curvature. Ann. Inst. Fourier (Grenoble) 68(2), 457–510 (2018)

    Article  MathSciNet  Google Scholar 

  33. Ratner, M.: Markov partitions for Anosov flows on n-dimensional manifolds. Isr. J. Math. 15, 92–114 (1973)

    Article  MathSciNet  Google Scholar 

  34. Sarig, O.: Phase transitions for countable Markov shifts. Commun. Math. Phys. 217(3), 555–577 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  35. Schapira, B., Tapie, S.: Regularity of entropy, geodesic currents and entropy at infinity. Ann. Sci. Éc. Norm. Supér. (4) 54(1), 1–68 (2021)

    Article  MathSciNet  Google Scholar 

  36. Sullivan, D.: Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups. Acta Math. 153(3–4), 259–277 (1984)

    Article  MathSciNet  Google Scholar 

  37. Velozo, A.: Thermodynamic formalism and the entropy at infinity of the geodesic flow. arXiv:1711.06796

Download references

Acknowledgements

The authors would like to thank J. Bochi and G. Iommi for useful comments and clarifications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anibal Velozo.

Additional information

Communicated by Dmitry Dolgopyat.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

F.R. was supported by FONDECYT Iniciación N\(^o\)11190461.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riquelme, F., Velozo, A. Ergodic Optimization and Zero Temperature Limits in Negative Curvature. Ann. Henri Poincaré 23, 2949–2977 (2022). https://doi.org/10.1007/s00023-022-01161-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-022-01161-5

Navigation