Skip to main content
Log in

Unique equilibrium states for geodesic flows in nonpositive curvature

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We study geodesic flows over compact rank 1 manifolds and prove that sufficiently regular potential functions have unique equilibrium states if the singular set does not carry full pressure. In dimension 2, this proves uniqueness for scalar multiples of the geometric potential on the interval \({(-\infty,1)}\), which is optimal. In higher dimensions, we obtain the same result on a neighborhood of 0, and give examples where uniqueness holds on all of \({\mathbb{R}}\). For general potential functions \({\varphi}\), we prove that the pressure gap holds whenever \({\varphi}\) is locally constant on a neighborhood of the singular set, which allows us to give examples for which uniqueness holds on a C0-open and dense set of Hölder potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ballmann W.: Axial isometries of manifolds of nonpositive curvature. Math. Ann. 259(1), 131–144 (1982)

    Article  MathSciNet  Google Scholar 

  2. W. Ballmann, Lectures on Spaces of Nonpositive Curvature, DMV Seminar, Vol. 25. Birkhäuser Verlag, Basel (1995), With an appendix by Misha Brin (1995).

    Chapter  Google Scholar 

  3. Ballmann W., Brin M., Eberlein P.: Structure of manifolds of nonpositive curvature. I, Ann. Math. (2) 122(1), 171–203 (1985)

    Article  MathSciNet  Google Scholar 

  4. Bhatia R.: Matrix Analysis, Graduate Texts in Mathematics, Vol. 169. Springer, New York (1997)

    Google Scholar 

  5. R. Bowen, Some systems with unique equilibrium states, Math. Syst. Theory (3) 8 (1974/75), 193–202

    Article  MathSciNet  Google Scholar 

  6. Bowen R., Ruelle D.: The ergodic theory of Axiom A flows. Invent. Math. 29(3), 181–202 (1975)

    Article  MathSciNet  Google Scholar 

  7. Burns K., Gelfert K.: Lyapunov spectrum for geodesic flows of rank 1 surfaces. Discrete Contin. Dyn. Syst. 34(5), 1841–1872 (2014)

    Article  MathSciNet  Google Scholar 

  8. Climenhaga V., Fisher T., Thompson D. J.: Unique equilibrium states for Bonatti–Viana diffeomorphisms. Nonlinearity 31(6), 2532 (2018)

    Article  MathSciNet  Google Scholar 

  9. Climenhaga V., Thompson D. J.: Unique equilibrium states for flows and homeomorphisms with non-uniform structure. Adv. Math. 303, 745–799 (2016)

    Article  MathSciNet  Google Scholar 

  10. Coppel W. A.: Disconjugacy, Lecture Notes in Mathematics Vol. 220. Springer, Berlin (1971)

    Google Scholar 

  11. Eberlein P.: Geodesic flows on negatively curved manifolds II. Trans. Am. Math. Soc. 178, 57–82 (1973)

    Article  MathSciNet  Google Scholar 

  12. P. Eberlein, Geodesic Flows in Manifolds of Nonpositive Curvature, Smooth ergodic theory and its applications (Seattle, WA, 1999), Proc. Sympos. Pure Math., vol. 69, Amer. Math. Soc., Providence (2001), pp. 525–571.

  13. P. B. Eberlein, Geometry of Nonpositively Curved Manifolds, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL (1996).

  14. Franco E.: Flows with unique equilibrium states. Am. J. Math. 99(3), 486–514 (1977)

    Article  MathSciNet  Google Scholar 

  15. K. Gelfert and R. O. Ruggiero, Geodesic flows modeled by expansive flows (2017). In Proceedings of the Edinburgh Mathematical Society

  16. Gelfert K., Schapira B.: Pressures for geodesic flows of rank one manifolds. Nonlinearity 27(7), 1575–1594 (2014)

    Article  MathSciNet  Google Scholar 

  17. Gerber M., Wilkinson A.: Hölder regularity of horocycle foliations. J. Differ. Geom. 52(1), 41–72 (1999)

    Article  Google Scholar 

  18. Green L. W.: A theorem of E. Hopf. Michigan Math. J. 5, 31–34 (1958)

    Article  MathSciNet  Google Scholar 

  19. E. Heintze and H.-C. Im Hof, Geometry of horospheres, J. Differ. Geom. (4)12 (1977), 481–491 (1978)

    Article  MathSciNet  Google Scholar 

  20. Katok A., Hasselblatt B.: Introduction to the Modern Theory of Dynamical Systems Encyclopedia of Mathematics and Its Applications Vol. 54. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  21. Knieper G.: The uniqueness of the measure of maximal entropy for geodesic flows on rank 1 manifolds. Ann. of Math. (2) 148(1), 291–314 (1998)

    Article  MathSciNet  Google Scholar 

  22. Ledrappier F., Lima Y., Sarig O.: Ergodic properties of equilibrium measures for smooth three dimensional flows. Comment. Math. Helv. 91(1), 65–106 (2016)

    Article  MathSciNet  Google Scholar 

  23. Y. Lima and O. Sarig, Symbolic dynamics for three dimensional flows with positive topological entropy, J. Eur. Math. Soc. (2017), To appear. arXiv:1408.3427.

  24. Manning A.: Curvature bounds for the entropy of the geodesic flow on a surface. J. Lond. Math. Soc. (2) 24(2), 351–357 (1981)

    Article  MathSciNet  Google Scholar 

  25. Newhouse S. E.: Continuity properties of entropy. Ann. Math. (2) 129(2), 215–235 (1989)

    Article  MathSciNet  Google Scholar 

  26. B. O’Neill, Semi-Riemannian Geometry, Pure and Applied Mathematics, Vol. 103, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York (1983), With applications to relativity.

  27. W. Parry, Equilibrium States and Weighted Uniform Distribution of Closed Orbits, Dynamical systems (College Park, MD, 1986–87), Lecture Notes in Math., Vol. 1342. Springer, Berlin (1988), pp. 617–625.

    Chapter  Google Scholar 

  28. Pollicott M.: Closed geodesic distribution for manifolds of non-positive curvature. Discrete Contin. Dyn. Syst. 2(2), 153–161 (1996)

    Article  MathSciNet  Google Scholar 

  29. Walters P.: An Introduction to Ergodic Theory, Graduate Texts in Mathematics, Vol. 79. Springer, New York (1982)

    Book  Google Scholar 

  30. Walters P.: Differentiability properties of the pressure of a continuous transformation on a compact metric space. J. Lond. Math. Soc. (2) 46(3), 471–481 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referees for their helpful comments which have benefited this article. Much of this work was carried out in a SQuaRE program at the American Institute of Mathematics. We thank AIM for their support and hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Thompson.

Additional information

V.C. is supported by NSF Grants DMS-1362838 and DMS-1554794. T.F. is supported by Simons Foundation Grant # 239708. D.T. is supported by NSF Grant DMS-1461163.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burns, K., Climenhaga, V., Fisher, T. et al. Unique equilibrium states for geodesic flows in nonpositive curvature. Geom. Funct. Anal. 28, 1209–1259 (2018). https://doi.org/10.1007/s00039-018-0465-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-018-0465-8

Keywords and phrases

Mathematics Subject Classification

Navigation