Skip to main content
Log in

Derivation of the Tight-Binding Approximation for Time-Dependent Nonlinear Schrödinger Equations

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

In this paper, we consider the nonlinear one-dimensional time-dependent Schrödinger equation with a periodic potential and a bounded perturbation. In the limit of large periodic potential, the time behavior of the wavefunction can be approximated, with a precise estimate of the remainder term, by means of the solution to the discrete nonlinear Schrödinger equation of the tight-binding model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz, M.J., Curtis, C.W., Zhu, Y.: On tight-binding approximations in optical lattices. Stud. Appl. Math. 129, 362 (2012)

    Article  MathSciNet  Google Scholar 

  2. Aftalion, A., Helffer, B.: On mathematical models for Bose–Einstein condensates in optical lattices. Rev. Math. Phys. 21, 229 (2009)

    Article  MathSciNet  Google Scholar 

  3. Alfimov, G.L., Kevrekidis, P.G., Konotop, V.V., Salerno, M.: Wannier functions analysis of the nonlinear Schrödinger equation with a periodic potential. Phys. Rev. E 66, 046608 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bambusi, D., Sacchetti, A.: Exponential times in the one-dimensional Gross–Pitaevskii equation with multiple well potential. Commun. Math. Phys. 275, 1 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  5. Belmonte-Beitia, J., Pelinovsky, D.E.: Bifurcation of gap solitons in periodic potentials with a periodic sign-varying nonlinearity coefficient. Appl. Anal. 89, 1335 (2010)

    Article  MathSciNet  Google Scholar 

  6. Carles, R.: On the Cauchy problem in Sobolev spaces for nonlinear Schrödinger equations with potential. Portugal. Math. (N.S.) 65, 191 (2008)

    Article  Google Scholar 

  7. Carles, R.: Nonlinear Schrödinger equation with time dependent potential. Commun. Math. Sci. 9, 937 (2011)

    Article  MathSciNet  Google Scholar 

  8. Carles, R.: Sharp weights in the Cauchy problem for nonlinear Schrödinger equations with potential. Z. Angew. Math. Phys. 66, 2087 (2015)

    Article  MathSciNet  Google Scholar 

  9. Carlsson, U.: An infinite number of wells in the semi-classical limit. Asymptot. Anal. 3, 198 (1990)

    MathSciNet  MATH  Google Scholar 

  10. Ferrari, G., Poli, N., Sorrentino, F., Tino, G.M.: Long-lived Bloch oscillations with bosonic \(Sr\) atoms and application to gravity meausrement at the micrometer scale. Phys. Rev. Lett. 97, 060402 (2006)

    Article  ADS  Google Scholar 

  11. Fukuizumi, R., Sacchetti, A.: Stationary states for nonlinear Schrödinger equations with periodic potentials. J. Stat. Phys. 156, 707 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  12. Helffer, B.: Semi-Classical Analysis for the Schrödinger Operator and Applications. Lecture Notes in Mathematics, vol. 1336. Springer, Berlin (1988)

    Book  Google Scholar 

  13. Kato, T.: Perturbation Theory for Linear Operators, 2nd edn. Springer, Cham (1995)

    Book  Google Scholar 

  14. Outassourt, A.: Comportement semi-classique pour l’opérateur de Schrödinger à potentiel périodique. J. Funct. Anal. 72, 65–93 (1987)

    Article  MathSciNet  Google Scholar 

  15. Pachpatte, B., Ames, W.: Inequalities for Differential and Integral Equations. Academic Press, Cambridge (1997)

    Google Scholar 

  16. Pelinovsky, D.E.: Localization in Periodic Potentials from Schrödinger Operators to the Gross–Pitaevskii Equation. London Mathematical Society Lecture Note Series, vol. 390. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  17. Pelinovsky, D.E., Schneider, G.: Bounds on the tight-binding approximation for the Gross–Pitaevskii equation with a periodic potential. J. Differ. Equ. 248, 837 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  18. Pelinovsky, D.E., Schneider, G., MacKay, R.: Justification of the lattice equation for a nonlinear elliptic problem with a periodic potential. Commun. Math. Phys. 284, 803 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  19. Poli, N., Wang, F.Y., Tarallo, M.G., Alberti, A., Prevedelli, M., Tino, G.M.: Precision measurement of gravity with cold atoms in an optical lattice and comparison with a classical gravimeter. Phys. Rev. Lett. 106, 038501 (2011)

    Article  ADS  Google Scholar 

  20. Reed, M., Simon, B.: Analysis of Operators IV. Methods of Modern Mathematical Physics. Academic Press Inc. (1978)

  21. Sacchetti, A.: Nonlinear double-well Schrodinger equations in the semiclassical limit. J. Stat. Phys. 119, 1347 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  22. Sacchetti, A.: Bifurcation trees of Stark–Wannier ladders for accelerated BECs in an optical lattice. Phys. Rev. E 95, 062212 (2017)

    Article  ADS  Google Scholar 

  23. Sacchetti, A.: Nonlinear Stark–Wannier equation. SIAM J. Math. Anal. 50, 5783 (2018)

    Article  MathSciNet  Google Scholar 

  24. Weinstein, M.I., Keller, J.B.: Hill’s equation with a large potential. SIAM J. Appl. Math. 45, 200 (1985)

    Article  MathSciNet  Google Scholar 

  25. Weinstein, M.I., Keller, J.B.: Asymptotic behaviour of stability regions for Hill’s equation. SIAM J. Appl. Math. 47, 941 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Sacchetti.

Additional information

Communicated by Vieri Mastropietro.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is partially supported by GNFM-INdAM.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sacchetti, A. Derivation of the Tight-Binding Approximation for Time-Dependent Nonlinear Schrödinger Equations. Ann. Henri Poincaré 21, 627–648 (2020). https://doi.org/10.1007/s00023-019-00872-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-019-00872-6

Mathematics Subject Classification

Navigation