Skip to main content
Log in

Quivers, Line Defects and Framed BPS Invariants

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

A large class of \({\mathcal {N}}=2\) quantum field theories admits a BPS quiver description, and the study of their BPS spectra is then reduced to a representation theory problem. In such theories the coupling to a line defect can be modeled by framed quivers. The associated spectral problem characterizes the line defect completely. Framed BPS states can be thought of as BPS particles bound to the defect. We identify the framed BPS degeneracies with certain enumerative invariants associated with the moduli spaces of stable quiver representations. We develop a formalism based on equivariant localization to compute explicitly such BPS invariants, for a particular choice of stability condition. Our framework gives a purely combinatorial solution to this problem. We detail our formalism with several explicit examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seiberg, N., Witten, E.: Electric-magnetic duality, monopole condensation, and confinement in \(N = 2\) supersymmetric Yang–Mills theory. Nucl. Phys. B 426, 19 (1994) (Erratum: [Nucl. Phys. B 430, 485 (1994)], arXiv:hep-th/9407087)

  2. Kontsevich, M., Soibelman, Y.: Stability structures, motivic Donaldson–Thomas invariants and cluster transformations. arXiv:0811.2435 [math.AG]

  3. Fiol, B., Marino, M.: BPS states and algebras from quivers. JHEP 0007, 031 (2000). arXiv:hep-th/0006189

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Fiol, B.: The BPS spectrum of N = 2 SU(N) SYM and parton branes. JHEP 0602, 065 (2006). arXiv:hep-th/0012079

    Article  ADS  MathSciNet  Google Scholar 

  5. Cecotti, S., Neitzke, A., Vafa, C.: R-twisting and 4d/2d correspondences. arXiv:1006.3435 [hep-th]

  6. Cecotti, S., Vafa, C.: Classification of complete N = 2 supersymmetric theories in 4 dimensions. Surv. Differ. Geom. 18 (2013). arXiv:1103.5832 [hep-th]

  7. Alim, M., Cecotti, S., Cordova, C., Espahbodi, S., Rastogi, A., Vafa, C.: BPS quivers and spectra of complete N = 2 quantum field theories. Commun. Math. Phys. 323, 1185 (2013). arXiv:1109.4941 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Alim, M., Cecotti, S., Cordova, C., Espahbodi, S., Rastogi, A., Vafa, C.: \({\cal{N}} = 2\) quantum field theories and their BPS quivers. Adv. Theor. Math. Phys. 18(1), 27 (2014). arXiv:1112.3984 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  9. Cecotti, S., Del Zotto, M.: On Arnold’s 14 ‘exceptional’ N = 2 superconformal gauge theories. JHEP 1110, 099 (2011). arXiv:1107.5747 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Del Zotto, M.: More Arnold’s N = 2 superconformal gauge theories. JHEP 1111, 115 (2011). arXiv:1110.3826 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Xie, D.: Network, cluster coordinates and N = 2 theory I. arXiv:1203.4573 [hep-th]

  12. Cecotti, S.: Categorical tinkertoys for N = 2 gauge theories. Int. J. Mod. Phys. A 28, 1330006 (2013). arXiv:1203.6734 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Cecotti, S., Del Zotto, M.: Half-hypers and quivers. JHEP 1209, 135 (2012). arXiv:1207.2275 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  14. Xie, D.: Network, cluster coordinates and N = 2 theory II: irregular singularity. arXiv:1207.6112 [hep-th]

  15. Xie, D.: BPS spectrum, wall crossing and quantum dilogarithm identity. Adv. Theor. Math. Phys. 20, 405 (2016). arXiv:1211.7071 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  16. Cecotti, S., Del Zotto, M., Giacomelli, S.: More on the N = 2 superconformal systems of type \(D_p(G)\). JHEP 1304, 153 (2013). arXiv:1303.3149 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Cecotti, S., Del Zotto, M.: The BPS spectrum of the 4d N = 2 SCFT’s \(H_1, H_2, D_4, E_6, E_7, E_8\). JHEP 1306, 075 (2013). arXiv:1304.0614 [hep-th]

    Article  ADS  Google Scholar 

  18. Cordova, C., Shao, S.H.: An index formula for supersymmetric quantum mechanics. arXiv:1406.7853 [hep-th]

  19. Cordova, C.: Regge trajectories in \( {\cal{N}} \) = 2 supersymmetric Yang–Mills theory. JHEP 1609, 020 (2016). arXiv:1502.02211 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  20. Cecotti, S., Del Zotto, M.: Galois covers of N = 2 BPS spectra and quantum monodromy. Adv. Theor. Math. Phys. 20, 1227 (2016). arXiv:1503.07485 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  21. Caorsi, M., Cecotti, S.: Homological S-duality in 4d N = 2 QFTs. arXiv:1612.08065 [hep-th]

  22. Douglas, M.R., Moore, G.W.: D-branes, quivers, and ALE instantons. arXiv:hep-th/9603167

  23. Douglas, M.R., Fiol, B., Romelsberger, C.: Stability and BPS branes. JHEP 0509, 006 (2005). arXiv:hep-th/0002037

  24. Douglas, M.R., Fiol, B., Romelsberger, C.: The Spectrum of BPS branes on a noncompact Calabi-Yau. JHEP 0509, 057 (2005). arXiv:hep-th/0003263

  25. Denef, F.: Quantum quivers and Hall/hole halos. JHEP 0210, 023 (2002). arXiv:hep-th/0206072

    Article  ADS  MathSciNet  Google Scholar 

  26. Gaiotto, D., Moore, G.W., Neitzke, A.: Wall-crossing, Hitchin Systems, and the WKB approximation. arXiv:0907.3987 [hep-th]

  27. Gaiotto, D., Moore, G.W., Neitzke, A.: Spectral networks. Ann. Henri Poincaré 14, 1643 (2013). arXiv:1204.4824 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Gaiotto, D., Moore, G.W., Neitzke, A.: Spectral networks and snakes. Ann. Henri Poincaré 15, 61 (2014). arXiv:1209.0866 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  29. Galakhov, D., Longhi, P., Mainiero, T., Moore, G.W., Neitzke, A.: Wild wall crossing and BPS giants. JHEP 1311, 046 (2013). [arXiv:1305.5454 [hep-th]]

    Article  ADS  Google Scholar 

  30. Maruyoshi, K., Park, C.Y., Yan, W.: BPS spectrum of Argyres–Douglas theory via spectral network. JHEP 1312, 092 (2013). arXiv:1309.3050 [hep-th]

    Article  ADS  Google Scholar 

  31. Galakhov, D., Longhi, P., Moore, G.W.: Spectral networks with spin. Commun. Math. Phys 340(1), 171 (2015). arXiv:1408.0207 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Longhi, P., Park, C.Y.: ADE spectral networks. JHEP 1608, 087 (2016). arXiv:1601.02633 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  33. Hollands, L., Neitzke, A.: BPS states in the Minahan–Nemeschansky E6 theory. arXiv:1607.01743 [hep-th]

  34. Longhi, P.: Wall-crossing invariants from spectral networks. arXiv:1611.00150 [hep-th]

  35. Longhi, P., Park, C.Y.: ADE spectral networks and decoupling limits of surface defects. JHEP 1702, 011 (2017). arXiv:1611.09409 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  36. Manschot, J., Pioline, B., Sen, A.: Wall crossing from Boltzmann black hole halos. JHEP 1107, 059 (2011). arXiv:1011.1258 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Manschot, J., Pioline, B., Sen, A.: A fixed point formula for the index of multi-centered N = 2 black holes. JHEP 1105, 057 (2011). arXiv:1103.1887 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Sen, A.: Equivalence of three wall-crossing formulae. Commun. Number Theor. Phys. 6, 601 (2012). arXiv:1112.2515 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  39. Manschot, J., Pioline, B., Sen, A.: From black holes to quivers. JHEP 1211, 023 (2012). arXiv:1207.2230 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  40. Manschot, J., Pioline, B., Sen, A.: On the Coulomb and Higgs branch formulae for multi-centered black holes and quiver invariants. JHEP 1305, 166 (2013). arXiv:1302.5498 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Manschot, J., Pioline, B., Sen, A.: Generalized quiver mutations and single-centered indices. JHEP 1401, 050 (2014). arXiv:1309.7053 [hep-th]

    Article  ADS  Google Scholar 

  42. Manschot, J., Pioline, B., Sen, A.: The Coulomb branch formula for quiver moduli spaces. arXiv:1404.7154 [hep-th]

  43. Hori, K., Kim, H., Yi, P.: Witten index and wall crossing. JHEP 1501, 124 (2015). arXiv:1407.2567 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  44. Kim, H., Lee, S.J., Yi, P.: Mutation, Witten index, and quiver invariant. JHEP 1507, 093 (2015). arXiv:1504.00068 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  45. Cirafici, M., Del Zotto, M.: Discrete integrable systems, supersymmetric quantum mechanics and framed BPS states—I. arXiv:1703.04786 [hep-th]

  46. Cirafici, M.: Line defects and (framed) BPS quivers. JHEP 1311, 141 (2013). arXiv:1307.7134 [hep-th]

    Article  ADS  MATH  Google Scholar 

  47. Gaiotto, D., Moore, G.W., Neitzke, A.: Framed BPS states. Adv. Theor. Math. Phys. 17(2), 241 (2013). arXiv:1006.0146 [hep-th]

  48. Córdova, C., Neitzke, A.: Line defects, tropicalization, and multi-centered quiver quantum mechanics. JHEP 1409, 099 (2014). arXiv:1308.6829 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  49. Drukker, N., Morrison, D.R., Okuda, T.: Loop operators and S-duality from curves on Riemann surfaces. JHEP 0909, 031 (2009). arXiv:0907.2593 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  50. Alday, L.F., Gaiotto, D., Gukov, S., Tachikawa, Y., Verlinde, H.: Loop and surface operators in N = 2 gauge theory and Liouville modular geometry. JHEP 1001, 113 (2010). arXiv:0909.0945 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Ito, Y., Okuda, T., Taki, M.: Line operators on \(S^1 \times R^3\) and quantization of the Hitchin moduli space. JHEP 1204, 010 (2012) (Erratum: [JHEP 1603, 085 (2016)]. arXiv:1111.4221 [hep-th])

  52. Lee, S., Yi, P.: Framed BPS states, moduli dynamics, and wall-crossing. JHEP 1104, 098 (2011). arXiv:1102.1729 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Moore, G.W., Royston, A.B., Van den Bleeken, D.: Semiclassical framed BPS states. JHEP 1607, 071 (2016). arXiv:1512.08924 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  54. Moore, G.W., Royston, A.B., Van den Bleeken, D.: \(L^2\)-kernels of Dirac-type operators on monopole moduli spaces. arXiv:1512.08923 [hep-th]

  55. Moore, G.W., Royston, A.B., Van den Bleeken, D.: Brane bending and monopole moduli. JHEP 1410, 157 (2014). arXiv:1404.7158 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Moore, G.W., Royston, A.B., Van den Bleeken, D.: Parameter counting for singular monopoles on \({\mathbb{R}}^3\). JHEP 1410, 142 (2014). arXiv:1404.5616 [hep-th]

    Article  ADS  MATH  Google Scholar 

  57. Brennan, T.D., Moore, G.W.: A note on the semiclassical formulation of BPS states in four-dimensional \(N=\) 2 theories. PTEP 2016(12), 12C110 (2016). arXiv:1610.00697 [hep-th]

  58. Hollands, L., Neitzke, A.: Spectral networks and Fenchel–Nielsen coordinates. Lett. Math. Phys. 106(6), 811 (2016). arXiv:1312.2979 [math.GT]

  59. Gabella, M.: Quantum holonomies from spectral networks and framed BPS states. Commun. Math. Phys. 351(2), 563 (2017). arXiv:1603.05258 [hep-th]

  60. Xie, D.: Higher laminations, webs and N = 2 line operators. arXiv:1304.2390 [hep-th]

  61. Gaiotto, D.: Opers and TBA. arXiv:1403.6137 [hep-th]

  62. Williams, H.: Toda systems, cluster characters, and spectral networks. Commun. Math. Phys. 348(1), 145 (2016). arXiv:1411.3692 [math.RT]

  63. Allegretti, D.G.L., Kim, H.K.: A duality map for quantum cluster varieties from surfaces. Adv. Math. 306, 1164 (2017). arXiv:1509.01567 [math.QA]

  64. Keller, B.: On cluster theory and quantum dilogarithm identities. In: Skorwonski, A., Yamagata, K. (eds.) Representations of Algebras and Related Topics, EMS Series of Congress Reports, European Mathematical Society, pp. 85–111 (2011). arXiv:1102.4148

  65. Nagao, K.: Donaldson–Thomas theory and cluster algebras. Duke Math. J. 162(7), 1313–1367 (2013). arXiv:1002.4884 [math.AG]

  66. Szendrői, B.: Noncommutative Donaldson–Thomas theory and the conifold. Geom. Topol. 12, 1171–1202 (2008). arXiv:0705.3419 [math.AG]

  67. Mozgovoy, S., Reineke, M.: On the noncommutative Donaldson–Thomas invariants arising from brane tilings. Adv. Math. 223, 1521–1544 (2010). arXiv:0809.0117 [math.AG]

  68. Ooguri, H., Yamazaki, M.: Crystal melting and toric Calabi–Yau manifolds. Commun. Math. Phys. 292, 179 (2009). arXiv:0811.2801 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Cirafici, M., Sinkovics, A., Szabo, R.J.: Cohomological gauge theory, quiver matrix models and Donaldson–Thomas theory. Nucl. Phys. B 809, 452 (2009). arXiv:0803.4188 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. Cirafici, M., Sinkovics, A., Szabo, R.J.: Instantons, quivers and noncommutative Donaldson–Thomas theory. Nucl. Phys. B 853, 508 (2011). arXiv:1012.2725 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. Chuang, W.Y., Diaconescu, D.E., Manschot, J., Moore, G.W., Soibelman, Y.: Geometric engineering of (framed) BPS states. Adv. Theor. Math. Phys. 18(5), 1063 (2014). arXiv:1301.3065 [hep-th]

  72. Seiberg, N., Witten, E.: Gauge dynamics and compactification to three-dimensions. In: *Saclay 1996, The Mathematical Beauty of Physics*, pp. 333–366. arXiv:hep-th/9607163

  73. Neitzke, A.: Hitchin systems in \({\cal{N}} =\) 2 field theory. arXiv:1412.7120 [hep-th]

  74. Gaiotto, D., Moore, G.W., Neitzke, A.: Four-dimensional wall-crossing via three-dimensional field theory. Commun. Math. Phys. 299, 163 (2010). arXiv:0807.4723 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. Aharony, O., Seiberg, N., Tachikawa, Y.: Reading between the lines of four-dimensional gauge theories. JHEP 1308, 115 (2013). arXiv:1305.0318 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. Del Zotto, M., Sen, A.: About the absence of exotics and the Coulomb branch formula. arXiv:1409.5442 [hep-th]

  77. Behrend, K.: Donaldson–Thomas invariants via microlocal geometry. Ann. Math. 170, 1307–1338 (2009). arXiv:math.AG/0507523

    Article  MathSciNet  MATH  Google Scholar 

  78. Moore, G.W., Nekrasov, N., Shatashvili, S.: Integrating over Higgs branches. Commun. Math. Phys. 209, 97 (2000). arXiv:hep-th/9712241

  79. Moore, G.W., Nekrasov, N., Shatashvili, S.: D particle bound states and generalized instantons. Commun. Math. Phys. 209, 77 (2000). arXiv:hep-th/9803265

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. Witten, E.: Topological quantum field theory. Commun. Math. Phys. 117, 353 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. Nekrasov, N.A.: Seiberg–Witten prepotential from instanton counting. Adv. Theor. Math. Phys. 7(5), 831 (2003). arXiv:hep-th/0206161

    Article  MathSciNet  MATH  Google Scholar 

  82. Pestun, V.: Localization of gauge theory on a four-sphere and supersymmetric Wilson loops. Commun. Math. Phys. 313, 71 (2012). arXiv:0712.2824 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. Szabo, R.J.: Equivariant cohomology and localization of path integrals. Lect. Notes Phys. Monogr. 63, 1 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  84. Cordes, S., Moore, G.W., Ramgoolam, S.: Lectures on 2-d Yang–Mills theory, equivariant cohomology and topological field theories. Nucl. Phys. Proc. Suppl. 41, 184 (1995). arXiv:hep-th/9411210

  85. Pestun, V.: Localization for \({\cal{N}}=\) 2 supersymmetric gauge theories in four dimensions. arXiv:1412.7134 [hep-th]

  86. Pestun, V.: Review of localization in geometry. arXiv:1608.02954 [hep-th]

  87. Nakajima, H.: Lectures on Hilbert Schemes of Points, vol. 18. University Lecture Series. American Mathematical Society, Providence, RI (1999)

    MATH  Google Scholar 

  88. Graber, T., Pandharipande, R.: Localization of virtual classes. Invent. Math. 135(2), 487–518 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  89. Wisbauer, R.: Foundation of Module and Ring Theory. CRC Press, Boca Raton (1991). ISBN 9782881248054

    MATH  Google Scholar 

  90. Nagao, K., Nakajima, H.: Counting invariant of perverse coherent sheaves and its wallcrossing. Int. Math. Res. Not. IMRN 17, 3885–3938 (2011)

    MATH  Google Scholar 

  91. Maulik, D., Nekrasov, N., Okounkov, A., Pandharipande, R.: Gromov–Witten theory and Donaldson–Thomas theory. I. Compos. Math. 142, 1263–1285 (2006) arXiv:math.AG/0312059

  92. Szabo, R.J.: Instantons, topological strings and enumerative geometry. Adv. Math. Phys. (2010). arXiv:0912.1509 [hep-th]

  93. Behrend, K., Fantechi, B.: Symmetric obstruction theories and Hilbert schemes of points on threefolds. Algebra Number Theory 2, 313–345 (2008). arXiv:math.AG/0512556

    Article  MathSciNet  MATH  Google Scholar 

  94. Joyce, D., Song, Y.: A theory of generalized Donaldson–Thomas invariants. Mem. Am. Math. Soc. 217, 2011 (1020)

    MathSciNet  Google Scholar 

  95. Cirafici, M., Sinkovics, A., Szabo, R.J.: Instanton counting and wall-crossing for orbifold quivers. Ann. Henri Poincaré 14, 1001 (2013). arXiv:1108.3922 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  96. Cirafici, M., Szabo, R.J.: Curve counting, instantons and McKay correspondences. J. Geom. Phys. 72, 54 (2013). arXiv:1209.1486 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  97. Cirafici, M.: Defects in cohomological gauge theory and Donaldson–Thomas Invariants. Adv. Theor. Math. Phys. 20, 945 (2016). arXiv:1302.7297 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  98. Chuang, W.y, Jafferis, D.L.: Wall crossing of BPS states on the conifold from Seiberg duality and pyramid partitions. Commun. Math. Phys. 292, 285 (2009). arXiv:0810.5072 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  99. Cirafici, M., Kashani-Poor, A.K., Szabo, R.J.: Crystal melting on toric surfaces. J. Geom. Phys. 61, 2199 (2011). arXiv:0912.0737 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  100. Cirafici, M.: BPS spectra, barcodes and walls. arXiv:1511.01421 [hep-th]

  101. Fock, V., Goncharov, A.: Cluster ensembles, quantization and the dilogarithm. Ann. Sci. Éc. Norm. Supér. 4(42), 865–930 (2009). arXiv:math/0311245v7 [math.AG]

    Article  MathSciNet  MATH  Google Scholar 

  102. Kontsevich, M., Soibelman, Y.: Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants. Commun. Number Theory Phys. 5, 231 (2011). arXiv:1006.2706 [math.AG]

    Article  MathSciNet  MATH  Google Scholar 

  103. Behrend, K., Bryan, J., Szendrői, B.: Motivic degree zero Donaldson–Thomas invariants. arXiv:0909.5088 [math.AG]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Cirafici.

Additional information

Communicated by Boris Pioline.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cirafici, M. Quivers, Line Defects and Framed BPS Invariants. Ann. Henri Poincaré 19, 1–70 (2018). https://doi.org/10.1007/s00023-017-0611-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-017-0611-0

Navigation