Skip to main content
Log in

Maximal and Riesz Potential Operators on Musielak–Orlicz Spaces Over Metric Measure Spaces

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

Our aim in this paper is to deal with the boundedness of the Hardy–Littlewood maximal operator \(M_{\lambda }\) on Musielak–Orlicz spaces \(L^{\Phi }(X)\) over bounded metric measure spaces. As an application of the boundedness of \(M_{\lambda }\), we establish a generalization of Sobolev’s inequality for Riesz potentials \(I_{\alpha (\cdot ),\tau }f\) with \(f \in L^{\Phi }(X)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory. Springer, Berlin (1996)

    Book  Google Scholar 

  2. Acerbi, E., Mingione, G.: Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. 164, 213–259 (2002)

    Article  MathSciNet  Google Scholar 

  3. Baroni, P., Colombo, M., Mingione, G.: Non-autonomous functionals, borderline cases and related function classes. St. Petersbg. Math. J. 27, 347–379 (2016)

    Article  Google Scholar 

  4. Baroni, P., Colombo, M., Mingione, G.: Harnack inequalities for double phase functionals. Nonlinear Anal. 121, 206–222 (2015)

    Article  MathSciNet  Google Scholar 

  5. Björn, A., Björn, J.: Nonlinear Potential Theory on Metric Spaces, EMS Tracts in Mathematics, vol. 17. European Mathematical Society (EMS), Zurich (2011)

    Book  Google Scholar 

  6. Capone, C., Cruz-Uribe, D., Fiorenza, A.: The fractional maximal operator and fractional integrals on variable \(L^p\) spaces. Rev. Mat. Iberoam. 23(3), 743–770 (2007)

    Article  MathSciNet  Google Scholar 

  7. Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66(4), 1383–1406 (2006)

    Article  MathSciNet  Google Scholar 

  8. Colasuonno, F., Squassina, M.: Eigenvalues for double phase variational integrals. Ann. Mat. Pura Appl. (4) 195(6), 1917–1959 (2016)

    Article  MathSciNet  Google Scholar 

  9. Colombo, M., Mingione, G.: Regularity for double phase variational problems. Arch. Ration. Mech. Anal. 215(2), 443–496 (2015)

    Article  MathSciNet  Google Scholar 

  10. Colombo, M., Mingione, G.: Bounded minimizers of double phase variatinal integrals. Arch. Ration. Mech. Anal. 218, 219–273 (2015)

    Article  MathSciNet  Google Scholar 

  11. Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue Spaces. Foundations and Harmonic Analysis, Applied and Numerical Harmonic Analysis. Birkhauser/Springer, Heidelberg (2013)

    MATH  Google Scholar 

  12. Diening, L.: Riesz potentials and Sobolev embeddings on generalized Lebesgue and Sobolev spaces \(L^{p(\cdot )}\) and \(W^{k, p(\cdot )}\). Math. Nachr. 263(1), 31–43 (2004)

    Article  Google Scholar 

  13. Diening, L., Harjulehto, P., Hästö, P., R\(\stackrel{\circ }{\rm u}\)žička, M.: Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017. Springer, Heidelberg (2011)

  14. Futamura, T., Mizuta, Y., Shimomura, T.: Sobolev embeddings for Riesz potential space of variable exponent. Math. Nachr. 279(13–14), 1463–1473 (2006)

    Article  MathSciNet  Google Scholar 

  15. Futamura, T., Mizuta, Y., Shimomura, T.: Integrability of maximal functions and Riesz potentials in Orlicz spaces of variable exponent. J. Math. Anal. Appl. 366, 391–417 (2010)

    Article  MathSciNet  Google Scholar 

  16. Hajłasz, P., Koskela, P.: Sobolev Met Poincaré. Memoirs of the American Mathematical Society, vol. 145, no. 688 (2000)

  17. Harjuleho, P., Hästö, P., Karppinen, A.: Local higher integrability of the gradient of a quasiminimizer under generalized Orlicz growth conditions. Nonlinear Anal. https://doi.org/10.1016/j.na.2017.09.010

  18. Harjulehto, P., Hästö, P., Latvala, V., Toivanen, O.: Critical variable exponent functionals in image restoration. Appl. Math. Lett. 26, 56–60 (2013)

    Article  MathSciNet  Google Scholar 

  19. Harjulehto, P., Hästö, P., Latvala, V.: Sobolev embeddings in metric measure spaces with variable dimension. Math. Z. 254(3), 591–609 (2006)

    Article  MathSciNet  Google Scholar 

  20. Hästö, P.: The maximal operator on generalized Orlicz spaces. J. Funct. Anal. 269(12), 4038–4048 (2015). Corrigendum to “ The maximal operator on generalized Orlicz spaces”. J. Funct. Anal. 271(1), 240–243 (2016)

  21. Hedberg, L.I.: On certain convolution inequalities. Proc. Am. Math. Soc. 36, 505–510 (1972)

    Article  MathSciNet  Google Scholar 

  22. Heinonen, J.: Lectures on Analysis on Metric Spaces. Springer, New York (2001)

    Book  Google Scholar 

  23. Kanemori, S., Ohno, T., Shimomura, T.: Trudinger’s inequality and continuity for Riesz potential of functions in Orlicz spaces of two variable exponents over non-doubling measure spaces. Kyoto J. Math. 57, 79–96 (2017)

    Article  MathSciNet  Google Scholar 

  24. Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of maximal operators and Sobolev’s inequality on Musielak–Orlicz–Morrey spaces. Bull. Sci. Math. 137, 76–96 (2013)

    Article  MathSciNet  Google Scholar 

  25. Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Hardy’s inequality in Musielak–Orlicz–Sobolev spaces. Hiroshima Math. J. 44, 139–155 (2014)

    Article  MathSciNet  Google Scholar 

  26. Maeda, F.-Y., Ohno, T., Shimomura, T.: Boundedness of the maximal operator on Musielak–Orlicz–Morrey spaces. Tohoku Math. J. 69(4), 483–495 (2017)

    Article  MathSciNet  Google Scholar 

  27. Maeda, F.-Y., Sawano, Y., Shimomura, T.: Some norm inequalities in Musielak–Orlicz spaces. Ann. Acad. Sci. Fenn. Math. 41, 721–744 (2016)

    Article  MathSciNet  Google Scholar 

  28. Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev inequalities for Musielak–Orlicz spaces. Manuscr. Math. 155(1–2), 209–227 (2018)

    Article  MathSciNet  Google Scholar 

  29. Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev’s inequalities and vanishing integrability for Riesz potentials of functions in the generalized Lebesgue space \(L^{p(\cdot )}(\log L)^{q(\cdot )}\). J. Math. Anal. Appl. 345, 70–85 (2008)

    Article  MathSciNet  Google Scholar 

  30. Mizuta, Y., Shimomura, T., Sobukawa, T.: Sobolev’s inequality for Riesz potentials of functions in non-doubling Morrey spaces. Osaka J. Math. 46, 255–271 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Musielak, J.: Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, vol. 1034. Springer, Berlin (1983)

    Book  Google Scholar 

  32. Nazarov, F., Treil, S., Volberg, A.: Weak type estimates and Cotlar inequalities for Calderón–Zygmund operators on nonhomogeneous spaces. Int. Math. Res. Not. 9, 463–487 (1998)

    Article  Google Scholar 

  33. Ohno, T., Shimomura, T.: Musielak–Orlicz–Sobolev spaces on metric measure spaces. Czechoslov. Math. J. 65(140), 435–474 (2015)

    Article  MathSciNet  Google Scholar 

  34. Ohno, T., Shimomura, T.: Trudinger’s inequality and continuity for Riesz potentials of functions in Musielak–Orlicz–Morrey spaces on metric measure spaces. Nonlinear Anal. 106, 1–17 (2014)

    Article  MathSciNet  Google Scholar 

  35. Ohno, T., Shimomura, T.: Sobolev inequalities for Riesz potentials of functions in \(L^{p(\cdot )}\) over nondoubling measure spaces. Bull. Aust. Math. Soc. 93, 128–136 (2016)

    Article  MathSciNet  Google Scholar 

  36. Ohno, T., Shimomura, T.: Musielak–Orlicz–Sobolev spaces with zero boundary values on metric measure spaces. Czechoslov. Math. J. 66(141), 371–394 (2016)

    Article  MathSciNet  Google Scholar 

  37. Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Springer, Berlin (2000)

    Book  Google Scholar 

  38. Sawano, Y.: Sharp estimates of the modified Hardy–Littlewood maximal operator on the nonhomogeneous space via covering lemmas. Hokkaido Math. J. 34, 435–458 (2005)

    Article  MathSciNet  Google Scholar 

  39. Sawano, Y., Shimomura, T.: Sobolev embeddings for Riesz potentials of functions in non-doubling Morrey spaces of variable exponents. Collect. Math. 64, 313–350 (2013)

    Article  MathSciNet  Google Scholar 

  40. Sawano, Y., Shimomura, T.: Sobolev embeddings for Riesz potentials of functions in Musielak–Orlicz–Morrey spaces over non-doubling measure spaces. Integral Transforms Spec. Funct. 25, 976–991 (2014)

    Article  MathSciNet  Google Scholar 

  41. Strömberg, J.-O.: Weak type \(L^1\) estimates for maximal functions on noncompact symmetric spaces. Ann. Math. (2) 114(1), 115–126 (1981)

    Article  MathSciNet  Google Scholar 

  42. Terasawa, Y.: Outer measures and weak type (1, 1) estimates of Hardy–Littlewood maximal operators. J. Inequal. Appl. 2006, 15063-1–15063-13 (2006)

Download references

Acknowledgements

We would like to express our thanks to the referees for their kind comments and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Ohno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohno, T., Shimomura, T. Maximal and Riesz Potential Operators on Musielak–Orlicz Spaces Over Metric Measure Spaces. Integr. Equ. Oper. Theory 90, 62 (2018). https://doi.org/10.1007/s00020-018-2484-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00020-018-2484-0

Mathematics Subject Classification

Keywords

Navigation