Skip to main content
Log in

Trudinger’s Inequality on Musielak–Orlicz–Morrey Spaces Over Non-doubling Metric Measure Spaces

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

We give a generalized Trudinger’s inequality for Riesz potentials \(I_{\alpha (\cdot ),\tau }f\) of functions in Musielak–Orlicz–Morrey spaces \(L^{\Phi ,\kappa ,\theta }(X)\) over bounded non-doubling metric measure spaces X. As a corollary we obtain Trudinger’s inequality for double phase functionals with variable exponents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Acerbi, E., Mingione, G.: Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. 164, 213–259 (2002)

    MathSciNet  MATH  Google Scholar 

  2. Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory. Springer, New York (1996)

    MATH  Google Scholar 

  3. Ahmida, Y., Chlebicka, I., Gwiazda, P., Youssfi, A.: Gossez’s approximation theorems in Musielak-Orlicz-Sobolev spaces. J. Funct. Anal. 275(9), 2538–2571 (2018)

    MathSciNet  MATH  Google Scholar 

  4. Baroni, P., Colombo, M., Mingione, G.: Regularity for general functionals with double phase. Calc. Var. 57, 62 (2018)

    MathSciNet  MATH  Google Scholar 

  5. Baroni, P., Colombo, M., Mingione, G.: Non-autonomous functionals, borderline cases and related function classes. St Petersburg Math. J. 27, 347–379 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Baroni, P., Colombo, M., Mingione, G.: Harnack inequalities for double phase functionals. Nonlinear Anal. 121, 206–222 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Björn, A., Björn, J.: Nonlinear potential theory on metric spaces. EMS Tracts in Mathematics, 17. European Mathematical Society (EMS), Zurich (2011)

  8. Byun, S.S., Liang, S., Zheng, S.: Nonlinear gradient estimates for double phase elliptic problems with irregular double obstacles. Proc. Amer. Math. Soc. 147, 3839–3854 (2019)

    MathSciNet  MATH  Google Scholar 

  9. Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66(4), 1383–1406 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Colasuonno, F., Squassina, M.: Eigenvalues for double phase variational integrals. Ann. Mat. Pura Appl. (4) 195(6), 1917–1959 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Colombo, M., Mingione, G.: Regularity for Double Phase Variational Problems. Arch. Ration. Mech. Anal. 215(2), 443–496 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Colombo, M., Mingione, G.: Bounded minimizers of double phase variatinal integrals. Arch. Rat. Mech. Anal. 218, 219–273 (2015)

    MATH  Google Scholar 

  13. Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue spaces. Foundations and harmonic analysis. Applied and Numerical Harmonic Analysis. Birkhauser/Springer, Heidelberg (2013)

    MATH  Google Scholar 

  14. Cruz-Uribe, D., Shukla, P.: The boundedness of fractional maximal operators on variable Lebesgue spaces over spaces of homogeneous type. Studia Math. 242(2), 109–139 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Diening, L., Harjulehto, P., Hästö, P., R\(\stackrel{\circ }{\rm u}\)žička, M.: Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, 2017, Springer-Verlag, Heidelberg (2011)

  16. Futamura, T., Mizuta, Y.: Continuity properties of Riesz potentials for functions in \(L^{p(\cdot )}\) of variable exponent. Math. Inequal. Appl. 8(4), 619–631 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Futamura, T., Mizuta, Y., Shimomura, T.: Sobolev embedding for variable exponent Riesz potentials on metric spaces. Ann. Acad. Sci. Fenn. Math. 31, 495–522 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Futamura, T., Mizuta, Y., Shimomura, T.: Integrability of maximal functions and Riesz potentials in Orlicz spaces of variable exponent. J. Math. Anal. Appl. 366, 391–417 (2010)

    MathSciNet  MATH  Google Scholar 

  19. De Filippis, C., Oh, J.: Regularity for multi-phase variational problems. J. Differential Equations 267(3), 1631–1670 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Hajłasz, P., Koskela, P.: Sobolev met Poincaré, Mem. Amer. Math. Soc. 145(688), (2000)

  21. Harjulehto, P., Hurri-Syrjänen, R.: An embedding into an Orlicz space for \(L^1_1\)-functions from irregular domains, Complex Analysis and Dynamical Systems VI. Part 1, 177–189, Contemp. Math, 653, Amer. Math. Soc., Providence, RI (2015)

  22. Harjulehto, P., Hurri-Syrjänen, R.: Embeddings into Orlicz spaces for functions from unbounded irregular domains. Complex Anal. Oper. Theory 13, 2967–2992 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Harjulehto, P., Hurri-Syrjänen, R., Kapulainen, J.: An embedding into an Orlicz space for irregular John domains. Comput. Methods Funct. Theory 14, 257–277 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Harjulehto, P., Hurri-Syrjänen, R.: Estimates for the variable order Riesz potential with applications, to appear in Potentials & Partial Differential Equations – The Legacy of David R. Adams, in the book series Advances in Analysis and Geometry, edited by S. Lenhart and J. Xiao, De Gruyter (2023)

  25. Harjulehto, P., Hästö, P.: Orlicz spaces and generalized Orlicz spaces. Lecture Notes in Mathematics, vol. 2236. Springer, Cham (2019)

    MATH  Google Scholar 

  26. Harjulehto, P., Hästö, P., Karppinen, A.: Local higher integrability of the gradient of a quasiminimizer under generalized Orlicz growth conditions. Nonlinear Anal. 1(77), 543–552 (2018). (part B)

    MathSciNet  MATH  Google Scholar 

  27. Harjulehto, P., Hästö, P., Latvala, V.: Sobolev embeddings in metric measure spaces with variable dimension. Math. Z. 254(3), 591–609 (2006)

    MathSciNet  MATH  Google Scholar 

  28. Harjulehto, P., Hästö, P., Latvala, V., Toivanen, O.: Critical variable exponent functionals in image restoration. Appl. Math. Letters 26, 56–60 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Hästö, P.: The maximal operator on generalized Orlicz spaces, J. Funct. Anal. 269(12), 4038–4048 (2015); Corrigendum to “ The maximal operator on generalized Orlicz spaces”, J. Funct. Anal. 271(1), 240–243 (2016)

  30. Hästö, P.: A fundamental condition for harmonic analysis in anisotropic generalized Orlicz spaces. J. Geom. Anal. 33(1), 7–15 (2023)

    MathSciNet  MATH  Google Scholar 

  31. Hästö, P., Ok, J.: Calderón-Zygmund estimates in generalized Orlicz spaces. J. Differential Equations 267(5), 2792–2823

  32. Hedberg, L.I.: On certain convolution inequalities. Proc. Amer. Math. Soc. 36, 505–510 (1972)

    MathSciNet  MATH  Google Scholar 

  33. Hurri-Syrjänen, R., Ohno, T., Shimomura, T.: Trudinger’s inequality for Riesz potentials on Musielak-Orlicz spaces over metric measure spaces, to appear in Complex Var. Elliptic Equ.

  34. Kairema, A.: Two-weight norm inequalities for potential type and maximal operators in a metric space. Publ. Mat. 57, 3–56 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Kanemori, S., Ohno, T., Shimomura, T.: Trudinger’s inequality and continuity for Riesz potential of functions in Orlicz spaces of two variable exponents over non-doubling measure spaces. Kyoto J. Math. 57, 79–96 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of maximal operators and Sobolev’s inequality on Musielak-Orlicz-Morrey spaces. Bull. Sci. Math. 137, 76–96 (2013)

    MathSciNet  MATH  Google Scholar 

  37. Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Trudinger’s inequality and continuity of potentials on Musielak-Orlicz-Morrey spaces. Potential Anal. 38, 515–535 (2013)

    MathSciNet  MATH  Google Scholar 

  38. Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev’s inequality inequality for double phase functionals with variable exponents. Forum Math. 31, 517–527 (2019)

    MathSciNet  MATH  Google Scholar 

  39. Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Trudinger’s inequality for double phase functionals with variable exponents. Czechoslovak Math. J. 71(2), 511–528 (2021)

    MathSciNet  MATH  Google Scholar 

  40. Maeda, F.-Y., Ohno, T., Shimomura, T.: Boundedness of the maximal operator on Musielak-Orlicz-Morrey spaces. Tohoku Math. J. 69(4), 483–495 (2017)

    MathSciNet  MATH  Google Scholar 

  41. Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.: Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponent. Complex Vari. Elliptic Equ. 56(7–9), 671–695 (2011)

    MathSciNet  MATH  Google Scholar 

  42. Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.: Campanato-Morrey spaces for the double phase functionals. Rev. Mat. Complut. 33(3), 817–834 (2020)

    MathSciNet  MATH  Google Scholar 

  43. Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.: Campanato-Morrey spaces for the double phase functionals with variable exponents. Nonlinear Anal. 197, 111827, 19 (2020)

    MathSciNet  MATH  Google Scholar 

  44. Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev embeddings for Riesz potential spaces of variable exponents near \(1\) and Sobolev’s exponent. Bull. Sci. Math. 134, 12–36 (2010)

    MathSciNet  MATH  Google Scholar 

  45. Mizuta, Y., Shimomura, T.: Differentiability and Hölder continuity of Riesz potentials of Orlicz functions. Analysis (Munich) 20(3), 201–223 (2000)

    MathSciNet  MATH  Google Scholar 

  46. Mizuta, Y., Shimomura, T.: Sobolev embeddings for Riesz potentials of functions in Morrey spaces of variable exponent. J. Math. Soc. Japan 60, 583–602 (2008)

    MathSciNet  MATH  Google Scholar 

  47. Mizuta, Y., Shimomura, T.: Hardy-Sobolev inequalities in the unit ball for double phase functionals. J. Math. Anal. Appl. 501(1), 124133, 17 (2021)

    MathSciNet  MATH  Google Scholar 

  48. Mizuta, Y., Shimomura, T., Sobukawa, T.: Sobolev’s inequality for Riesz potentials of functions in non-doubling Morrey spaces. Osaka J. Math. 46, 255–271 (2009)

    MathSciNet  MATH  Google Scholar 

  49. Mizuta, Y., Shimomura, T.: Sobolev’s inequality for Riesz potentials of functions in Morrey spaces of integral form. Math. Nachr. 283, 1336–1352 (2010)

    MathSciNet  MATH  Google Scholar 

  50. Nakai, E.: Generalized fractional integrals on Orlicz-Morrey spaces, Banach and function spaces, 323–333. Yokohama Publ, Yokohama (2004)

    Google Scholar 

  51. Ohno, T., Shimomura, T.: Trudinger’s inequality for Riesz potentials of functions in Musielak-Orlicz spaces. Bull. Sci. Math. 138, 225–235 (2014)

    MathSciNet  MATH  Google Scholar 

  52. Ohno, T., Shimomura, T.: Trudinger’s inequality and continuity for Riesz potentials of functions in Musielak-Orlicz-Morrey spaces on metric measure spaces. Nonlinear Anal. 106, 1–17 (2014)

    MathSciNet  MATH  Google Scholar 

  53. Ohno, T., Shimomura, T.: Sobolev inequalities for Riesz potentials of functions in \(L^{p(\cdot )}\) over nondoubling measure spaces. Bull. Aust. Math. Soc. 93, 128–136 (2016)

    MathSciNet  MATH  Google Scholar 

  54. Ohno, T., Shimomura, T.: Maximal and Riesz potential operators on Musielak-Orlicz spaces over metric measure spaces. Integr. Equ. Oper. Theory 90, 62 (2018)

    MathSciNet  MATH  Google Scholar 

  55. Ohno, T., Shimomura, T.: Sobolev’s inequality for Riesz potentials of functions in Musielak-Orlicz-Morrey spaces over non-doubling metric measure spaces. Canada. Math. Bull. 63, 287–303 (2020)

    MathSciNet  MATH  Google Scholar 

  56. Ohno, T., Shimomura, T.: Sobolev’s inequality for Musielak-Orlicz-Morrey spaces over metric measure spaces. J. Aust. Math. Soc. 110(3), 371–385 (2021)

    MathSciNet  MATH  Google Scholar 

  57. Ok, J.: Regularity for double phase problems under additional integrability assumptions. Nonlinear Anal. 194, 111408, 13 (2020)

    MathSciNet  MATH  Google Scholar 

  58. Ragusa, M.A., Tachikawa, A.: Regularity for minimizers for functionals of double phase with variable exponents. Adv. Nonlinear Anal. 9(1), 710–728 (2020)

    MathSciNet  MATH  Google Scholar 

  59. Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Springer-Verlag, Berlin (2000)

    MATH  Google Scholar 

  60. Sawano, Y., Shimomura, T.: Sobolev embeddings for Riesz potentials of functions in non-doubling Morrey spaces of variable exponents. Collect. Math. 64, 313–350 (2013)

    MathSciNet  MATH  Google Scholar 

  61. Sawano, Y., Shimomura, T.: Sobolev embeddings for Riesz potentials of functions in Musielak-Orlicz-Morrey spaces over non-doubling measure spaces. Integral Transform. Spec. Funct. 25, 976–991 (2014)

    MathSciNet  MATH  Google Scholar 

  62. Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk SSSR Ser. Mat. 50, 675–710 (1986)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for giving kind comments and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Ohno.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hurri-Syrjänen, R., Ohno, T. & Shimomura, T. Trudinger’s Inequality on Musielak–Orlicz–Morrey Spaces Over Non-doubling Metric Measure Spaces. Mediterr. J. Math. 20, 172 (2023). https://doi.org/10.1007/s00009-023-02383-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-023-02383-5

Keywords

Mathematics Subject Classification

Navigation