Skip to main content
Log in

Mitochondrial function in spinal cord injury and regeneration

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Many people around the world suffer from some form of paralysis caused by spinal cord injury (SCI), which has an impact on quality and life expectancy. The spinal cord is part of the central nervous system (CNS), which in mammals is unable to regenerate, and to date, there is a lack of full functional recovery therapies for SCI. These injuries start with a rapid and mechanical insult, followed by a secondary phase leading progressively to greater damage. This secondary phase can be potentially modifiable through targeted therapies. The growing literature, derived from mammalian and regenerative model studies, supports a leading role for mitochondria in every cellular response after SCI: mitochondrial dysfunction is the common event of different triggers leading to cell death, cellular metabolism regulates the immune response, mitochondrial number and localization correlate with axon regenerative capacity, while mitochondrial abundance and substrate utilization regulate neural stem progenitor cells self-renewal and differentiation. Herein, we present a comprehensive review of the cellular responses during the secondary phase of SCI, the mitochondrial contribution to each of them, as well as evidence of mitochondrial involvement in spinal cord regeneration, suggesting that a more in-depth study of mitochondrial function and regulation is needed to identify potential targets for SCI therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Afridi R, Kim J-H, Rahman MH, Suk K (2020) Metabolic regulation of glial phenotypes: implications in neuron-glia interactions and neurological disorders. Front Cell Neurosci 14:20

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Afshari FT, Kappagantula S, Fawcett JW (2009) Extrinsic and intrinsic factors controlling axonal regeneration after spinal cord injury. Expert Rev Mol Med. https://doi.org/10.1017/S1462399409001288

    Article  PubMed  Google Scholar 

  3. Agathocleous M, Love NK, Randlett O, Harris JJ, Liu J, Murray AJ, Harris WA (2012) Metabolic differentiation in the embryonic retina. Nat Cell Biol 14:859–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aksenova M, Butterfield DA, Zhang S-X, Underwood M, Geddes JW (2002) Increased protein oxidation and decreased creatine kinase BB expression and activity after spinal cord contusion injury. J Neurotrauma 19:491–502

    Article  PubMed  Google Scholar 

  5. Al Haj Baddar NW, Chithrala A, Voss SR (2019) Amputation-induced reactive oxygen species signaling is required for axolotl tail regeneration. Dev Dyn 248:189–196

    Article  CAS  PubMed  Google Scholar 

  6. Albadri S, Naso F, Thauvin M, Gauron C, Parolin C, Duroure K, Vougny J, Fiori J, Boga C, Vriz S (2019) Redox signaling via lipid peroxidation regulates retinal progenitor cell differentiation. Dev Cell 50:73–89

    Article  CAS  PubMed  Google Scholar 

  7. Almeida A, Heales SJ, Bolaños JP, Medina JM (1998) Glutamate neurotoxicity is associated with nitric oxide-mediated mitochondrial dysfunction and glutathione depletion. Brain Res 790:209–216

    Article  CAS  PubMed  Google Scholar 

  8. Anderson MA, Burda JE, Ren Y, Ao Y, O’Shea TM, Kawaguchi R, Coppola G, Khakh BS, Deming TJ, Sofroniew MV (2016) Astrocyte scar formation aids central nervous system axon regeneration. Nature 532:195–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Anderson MA, O’Shea TM, Burda JE, Ao Y, Barlatey SL, Bernstein AM, Kim JH, James ND, Rogers A, Kato B (2018) Required growth facilitators propel axon regeneration across complete spinal cord injury. Nature 561:396–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Andreotti JP, Silva WN, Costa AC, Picoli CC, Bitencourt FC, Coimbra-Campos LM, Resende RR, Magno LA, Romano-Silva MA, Mintz A (2019) Neural stem cell niche heterogeneity. Seminars Cell Dev Biol 95:42–53

    Article  Google Scholar 

  11. Anguita-Salinas C, Sánchez M, Morales RA, Ceci ML, Rojas-Benítez D, Allende ML (2019) Cellular dynamics during spinal cord regeneration in larval zebrafish. Dev Neurosci 41:112–122

    Article  CAS  PubMed  Google Scholar 

  12. Arsenijevic D, Onuma H, Pecqueur C, Raimbault S, Manning BS, Miroux B, Couplan E, Alves-Guerra MC, Goubern M, Surwit R, Bouillaud F, Richard D, Collins S, Ricquier D (2000) Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat Genet 26:435–439

    Article  CAS  PubMed  Google Scholar 

  13. Auestad N, Korsak RA, Morrow JW, Edmond J (1991) Fatty acid oxidation and ketogenesis by astrocytes in primary culture. J Neurochem 56:1376–1386

    Article  CAS  PubMed  Google Scholar 

  14. Avery MA, Rooney TM, Pandya JD, Wishart TM, Gillingwater TH, Geddes JW, Sullivan PG, Freeman MR (2012) WldS prevents axon degeneration through increased mitochondrial flux and enhanced mitochondrial Ca2+ buffering. Curr Biol 22:596–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Azbill RD, Mu X, Bruce-Keller AJ, Mattson MP, Springer JE (1997) Impaired mitochondrial function, oxidative stress and altered antioxidant enzyme activities following traumatic spinal cord injury. Brain Res 765:283–290

    Article  CAS  PubMed  Google Scholar 

  16. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662

    Article  CAS  PubMed  Google Scholar 

  17. Bao F, Liu D (2002) Peroxynitrite generated in the rat spinal cord induces neuron death and neurological deficits. Neuroscience 115:839–849

    Article  CAS  PubMed  Google Scholar 

  18. Barnabé-Heider F, Frisén J (2008) Stem cells for spinal cord repair. Cell Stem Cell 3:16–24

    Article  PubMed  CAS  Google Scholar 

  19. Barnabé-Heider F, Göritz C, Sabelström H, Takebayashi H, Pfrieger FW, Meletis K, Frisén J (2010) Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell 7:470–482

    Article  PubMed  CAS  Google Scholar 

  20. Becker T, Becker CG (2001) Regenerating descending axons preferentially reroute to the gray matter in the presence of a general macrophage/microglial reaction caudal to a spinal transection in adult zebrafish. J Comp Neurol 433:131–147

    Article  CAS  PubMed  Google Scholar 

  21. Becker T, Lieberoth BC, Becker CG, Schachner M (2005) Differences in the regenerative response of neuronal cell populations and indications for plasticity in intraspinal neurons after spinal cord transection in adult zebrafish. Mol Cell Neurosci 30:265–278

    Article  CAS  PubMed  Google Scholar 

  22. Becker T, Wullimann MF, Becker CG, Bernhardt RR, Schachner M (1997) Axonal regrowth after spinal cord transection in adult zebrafish. J Comp Neurol 377:577–595

    Article  CAS  PubMed  Google Scholar 

  23. Becker T, Bernhardt RR, Reinhard E, Wullimann MF, Tongiorgi E, Schachner M (1998) Readiness of zebrafish brain neurons to regenerate a spinal axon correlates with differential expression of specific cell recognition molecules. J Neurosci 18:5789–5803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Beirowski B, Nógrádi A, Babetto E, Garcia-Alias G, Coleman MP (2010) Mechanisms of axonal spheroid formation in central nervous system wallerian degeneration. J Neuropathol Exp Neurol 69:455–472

    Article  PubMed  Google Scholar 

  25. Bélanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14:724–738

    Article  PubMed  CAS  Google Scholar 

  26. Benraiss A, Arsanto J, Coulon J, Thouveny Y (1999) Neurogenesis during caudal spinal cord regeneration in adult newts. Dev Genes Evol 209:363–369

    Article  CAS  PubMed  Google Scholar 

  27. Bergmann A, Steller H (2010) Apoptosis, stem cells, and tissue regeneration. Sci Signal 3:re8

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Bixel MG, Hamprecht B (1995) Generation of ketone bodies from leucine by cultured astroglial cells. J Neurochem 65:2450–2461

    Article  CAS  PubMed  Google Scholar 

  29. Bolaños JP, Almeida A (1999) Roles of nitric oxide in brain hypoxia-ischemia. Biochim et Biophy Acta (BBA)-Bioenerg 1411:415–436

    Article  Google Scholar 

  30. Bough KJ, Wetherington J, Hassel B, Pare JF, Gawryluk JW, Greene JG, Shaw R, Smith Y, Geiger JD, Dingledine RJ (2006) Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann Neurol: Off J Am Neurological Assoc Child Neurol Soc 60:223–235

    Article  CAS  Google Scholar 

  31. Bradke F, Fawcett JW, Spira ME (2012) Assembly of a new growth cone after axotomy: the precursor to axon regeneration. Nat Rev Neurosci 13:183–193

    Article  CAS  PubMed  Google Scholar 

  32. Brigelius-Flohé R, Maiorino M (2013) Glutathione peroxidases. Biochim et Biophy Acta (BBA)-Gen Subj 1830:3289–3303

    Article  CAS  Google Scholar 

  33. Burda JE, Sofroniew MV (2014) Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81:229–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bürklen TS, Schlattner U, Homayouni R, Gough K, Rak M, Szeghalmi A, Wallimann T (2006) The creatine kinase/creatine connection to Alzheimer’s disease: CK inactivation, APP-CK complexes and focal creatine deposits. J Biomed Biotechnol 2006:1–11

    Article  CAS  Google Scholar 

  35. Byles V, Covarrubias AJ, Ben-Sahra I, Lamming DW, Sabatini DM, Manning BD, Horng T (2013) The TSC-mTOR pathway regulates macrophage polarization. Nat Commun 4:1–11

    Article  CAS  Google Scholar 

  36. Cahill GF Jr, Veech RL (2003) Ketoacids? good medicine? Trans Am Clin Climatol Assoc 114:149

    PubMed  PubMed Central  Google Scholar 

  37. Calingasan N, Ho D, Wille E, Campagna M, Ruan J, Dumont M, Yang L, Shi Q, Gibson G, Beal M (2008) Influence of mitochondrial enzyme deficiency on adult neurogenesis in mouse models of neurodegenerative diseases. Neuroscience 153:986–996

    Article  CAS  PubMed  Google Scholar 

  38. Cao Y, Lv G, Wang Y-s, Fan Z-k, Bi Y-l, Zhao L, Guo Z-p (2013) Mitochondrial fusion and fission after spinal sacord injury in rats. Brain Res 1522:59–66

    Article  CAS  PubMed  Google Scholar 

  39. Cao Y, Fang Y, Cai J, Li X, Xu F, Yuan N, Zhang S, Wang J (2016) ROS functions as an upstream trigger for autophagy to drive hematopoietic stem cell differentiation. Hematology 21:613–618

    Article  CAS  PubMed  Google Scholar 

  40. Carlson SL, Parrish ME, Springer JE, Doty K, Dossett L (1998) Acute inflammatory response in spinal cord following impact injury. Exp Neurol 151:77–88

    Article  CAS  PubMed  Google Scholar 

  41. Carrico KM, Vaishnav R, Hall ED (2009) Temporal and spatial dynamics of peroxynitrite-induced oxidative damage after spinal cord contusion injury. J Neurotrauma 26:1369–1378

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cartoni R, Pekkurnaz G, Wang C, Schwarz TL, He Z (2017) A high mitochondrial transport rate characterizes CNS neurons with high axonal regeneration capacity. PLoS One 12:e0184672

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Cartoni R, Norsworthy MW, Bei F, Wang C, Li S, Zhang Y, Gabel CV, Schwarz TL, He Z (2016) The mammalian-specific protein Armcx1 regulates mitochondrial transport during axon regeneration. Neuron 92:1294–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cavallucci V, Bisicchia E, Cencioni M, Ferri A, Latini L, Nobili A, Biamonte F, Nazio F, Fanelli F, Moreno S (2014) Acute focal brain damage alters mitochondrial dynamics and autophagy in axotomized neurons. Cell Death Dis 5:e1545–e1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chada SR, Hollenbeck PJ (2004) Nerve growth factor signaling regulates motility and docking of axonal mitochondria. Curr Biol 14:1272–1276

    Article  CAS  PubMed  Google Scholar 

  46. Chan DC (2012) Fusion and fission: interlinked processes critical for mitochondrial health. Annu Rev Genet 46:265–287

    Article  CAS  PubMed  Google Scholar 

  47. Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia a mechanism of O2 sensing. J Biol Chem 275:25130–25138

    Article  CAS  PubMed  Google Scholar 

  48. Chen L, Hambright WS, Na R, Ran Q (2015) Ablation of the ferroptosis inhibitor glutathione peroxidase 4 in neurons results in rapid motor neuron degeneration and paralysis. J Biol Chem 290:28097–28106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chera S, Ghila L, Dobretz K, Wenger Y, Bauer C, Buzgariu W, Martinou JC, Galliot B (2009) Apoptotic cells provide an unexpected source of Wnt3 signaling to drive hydra head regeneration. Dev Cell 17:279–289

    Article  CAS  PubMed  Google Scholar 

  50. Chernoff EA, Stocum DL, Nye HL, Cameron JA (2003) Urodele spinal cord regeneration and related processes. Dev Dyn: Off Publ Am Assoc of Anat 226:295–307

    Article  Google Scholar 

  51. Chernoff EA, Sato K, Salfity HV, Sarria DA, Belecky-Adams T (2018) Musashi and plasticity of xenopus and axolotl spinal cord ependymal cells. Front Cell Neurosci 12:45

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Choi DW (1985) Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci Lett 58:293–297

    Article  CAS  PubMed  Google Scholar 

  53. Chung-ha OD, Kim K-Y, Bushong EA, Mills EA, Boassa D, Shih T, Kinebuchi M, Phan S, Zhou Y, Bihlmeyer NA (2014) Transcellular degradation of axonal mitochondria. Proc Natl Acad Sci 111:9633–9638

    Article  CAS  Google Scholar 

  54. Clarke J, Alexander R, Holder N (1988) Regeneration of descending axons in the spinal cord of the axolotl. Neurosci Lett 89:1–6

    Article  CAS  PubMed  Google Scholar 

  55. Colton CA, Gilbert DL (1987) Production of superoxide anions by a CNS macrophage, the microglia. FEBS Lett 223:284–288

    Article  CAS  PubMed  Google Scholar 

  56. Colton CA, Wilcock DM (2010) Assessing activation states in microglia. CNS Neurological Disord-Drug Targets (Former Curr Drug Targets-CNS Neurological Disord) 9:174–191

    CAS  Google Scholar 

  57. Covarrubias AJ, Aksoylar HI, Yu J, Snyder NW, Worth AJ, Iyer SS, Wang J, Ben-Sahra I, Byles V, Polynne-Stapornkul T (2016) Akt-mTORC1 signaling regulates acly to integrate metabolic input to control of macrophage activation. elife 5:e11612

    Article  PubMed  PubMed Central  Google Scholar 

  58. Croall DE, Demartino GN (1991) Calcium-activated neutral protease (calpain) system: structure, function, and regulation. Phys Rev 71:813–847

    CAS  Google Scholar 

  59. Crowe MJ, Bresnahan JC, Shuman SL, Masters JN, Crowe MS (1997) Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat Med 3:73–76

    Article  CAS  PubMed  Google Scholar 

  60. Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P (2007) mTOR controls mitochondrial oxidative function through a YY1–PGC-1α transcriptional complex. Nature 450:736–740

    Article  CAS  PubMed  Google Scholar 

  61. Cuzzocrea S, Genovese T (2008) Role of free radicals and poly (ADP-ribose) polymerase-1 in the development of spinal cord injury: new potential therapeutic targets. Curr Med Chem 15:477–487

    Article  PubMed  Google Scholar 

  62. D’Ippolito G, Diabira S, Howard GA, Roos BA, Schiller PC (2006) Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells. Bone 39:513–522

    Article  CAS  PubMed  Google Scholar 

  63. Dalle-Donne I, Aldini G, Carini M, Colombo R, Rossi R, Milzani A (2006) Protein carbonylation, cellular dysfunction, and disease progression. J Cell Mol Med 10:389–406

    Article  CAS  PubMed  Google Scholar 

  64. Daniel B, Nagy G, Czimmerer Z, Horvath A, Hammers DW, Cuaranta-Monroy I, Poliska S, Tzerpos P, Kolostyak Z, Hays TT (2018) The nuclear receptor PPARγ controls progressive macrophage polarization as a ligand-insensitive epigenomic ratchet of transcriptional memory. Immunity 49:615–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. David S, Aguayo AJ (1981) Axonal elongation into peripheral nervous system” bridges” after central nervous system injury in adult rats. Science 214:931–933

    Article  CAS  PubMed  Google Scholar 

  66. Davies SJ, Fitch MT, Memberg SP, Hall AK, Raisman G, Silver J (1997) Regeneration of adult axons in white matter tracts of the central nervous system. Nature 390:680–683

    Article  CAS  PubMed  Google Scholar 

  67. De Simone R, Ajmone-Cat MA, Pandolfi M, Bernardo A, De Nuccio C, Minghetti L, Visentin S (2015) The mitochondrial uncoupling protein-2 is a master regulator of both M1 and M2 microglial responses. J Neurochem 135:147–156

    Article  PubMed  CAS  Google Scholar 

  68. Denham M, Dottori M (2009) Signals involved in neural differentiation of human embryonic stem cells. Neurosignals 17:234–241

    Article  CAS  PubMed  Google Scholar 

  69. Diaz Quiroz JF, Echeverri K (2013) Spinal cord regeneration: where fish, frogs and salamanders lead the way, can we follow? Biochem J 451:353–364

    Article  CAS  PubMed  Google Scholar 

  70. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Doetsch F (2003) A niche for adult neural stem cells. Curr Opin Genet Dev 13:543–550

    Article  CAS  PubMed  Google Scholar 

  72. Domínguez-Romero ME, Slater PG (2021) Unraveling axon guidance during axotomy and regeneration. Int J Mol Sci 22:8344

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  73. Dumont RJ, Okonkwo DO, Verma S, Hurlbert RJ, Boulos PT, Ellegala DB, Dumont AS (2001) Acute spinal cord injury, part I: pathophysiologic mechanisms. Clin Neuropharm 24:254–264

    Article  CAS  Google Scholar 

  74. Edwards-Faret G, González-Pinto K, Cebrián-Silla A, Peñailillo J, García-Verdugo JM, Larraín J (2021) Cellular response to spinal cord injury in regenerative and non-regenerative stages in Xenopus laevis. Neural Dev 16:1–25

    Article  CAS  Google Scholar 

  75. Edwards-Faret G, Cebrián-Silla A, Méndez-Olivos EE, González-Pinto K, García-Verdugo JM, Larraín J (2018) Cellular composition and organization of the spinal cord central canal during metamorphosis of the frog xenopus laevis. J Comp Neurol 526:1712–1732

    Article  CAS  PubMed  Google Scholar 

  76. Ek CJ, Habgood MD, Callaway JK, Dennis R, Dziegielewska KM, Johansson PA, Potter A, Wheaton B, Saunders NR (2010) Spatio-temporal progression of grey and white matter damage following contusion injury in rat spinal cord. PloS One 5:e12021

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  77. Eliasson P, Jönsson JI (2010) The hematopoietic stem cell niche: low in oxygen but a nice place to be. J Cell Phys 222:17–22

    Article  CAS  Google Scholar 

  78. Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radical Biol Med 11:81–128

    Article  CAS  Google Scholar 

  79. Evans MD, Dizdaroglu M, Cooke MS (2004) Oxidative DNA damage and disease: induction, repair and significance. Mutat Res/Rev Mutat Res 567:1–61

    Article  CAS  Google Scholar 

  80. Ezashi T, Das P, Roberts RM (2005) Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci 102:4783–4788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Investig 101:890–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fehlings MG, Nguyen DH (2010) Immunoglobulin G: a potential treatment to attenuate neuroinflammation following spinal cord injury. J Clin Immunol 30:109–112

    Article  CAS  PubMed Central  Google Scholar 

  83. Fei J-F, Schuez M, Tazaki A, Taniguchi Y, Roensch K, Tanaka EM (2014) CRISPR-mediated genomic deletion of Sox2 in the axolotl shows a requirement in spinal cord neural stem cell amplification during tail regeneration. Stem Cell Rep 3:444–459

    Article  CAS  Google Scholar 

  84. Ferretti P, Zhang F, O’Neill P (2003) Changes in spinal cord regenerative ability through phylogenesis and development: lessons to be learnt. Dev Dyn: Off Publ Am Assoc Anat 226:245–256

    Article  Google Scholar 

  85. Fiorelli R, Cebrian-Silla A, Garcia-Verdugo JM, Raineteau O (2013) The adult spinal cord harbors a population of GFAP-positive progenitors with limited self-renewal potential. Glia 61:2100–2113

    Article  PubMed  Google Scholar 

  86. Frandsen A, Drejer J, Schousboe A (1989) Direct evidence that excitotoxicity in cultured neurons is mediated via N-methyl-D-aspartate (NMDA) as well as non-NMDA receptors. J Neurochem 53:297–299

    Article  CAS  PubMed  Google Scholar 

  87. Fuentealba LC, Obernier K, Alvarez-Buylla A (2012) Adult neural stem cells bridge their niche. Cell Stem Cell 10:698–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fukazawa T, Naora Y, Kunieda T, Kubo T (2009) Suppression of the immune response potentiates tadpole tail regeneration during the refractory period. Development 136:2323–2327

    Article  CAS  PubMed  Google Scholar 

  89. Gaber T, Strehl C, Buttgereit F (2017) Metabolic regulation of inflammation. Nat Rev Rheumatol 13:267–279

    Article  PubMed  Google Scholar 

  90. Gaete M, Muñoz R, Sánchez N, Tampe R, Moreno M, Contreras EG, Lee-Liu D, Larraín J (2012) Spinal cord regeneration in Xenopus tadpoles proceeds through activation of Sox2-positive cells. Neural Dev 7:13

    Article  PubMed  PubMed Central  Google Scholar 

  91. Garcia ADR, Han Y-G, Triplett JW, Farmer WT, Harwell CC, Ihrie RA (2018) The elegance of sonic hedgehog: emerging novel functions for a classic morphogen. J Neurosci 38:9338–9345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gauron C, Rampon C, Bouzaffour M, Ipendey E, Teillon J, Volovitch M, Vriz S (2013) Sustained production of ROS triggers compensatory proliferation and is required for regeneration to proceed. Sci Rep 3:2084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gensel JC, Zhang B (2015) Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res 1619:1–11

    Article  CAS  PubMed  Google Scholar 

  94. Ghosh S, Hui SP (2018) Axonal regeneration in zebrafish spinal cord. Regeneration 5:43–60

    Article  PubMed  PubMed Central  Google Scholar 

  95. Gibbs KM, Szaro BG (2006) Regeneration of descending projections in xenopus laevis tadpole spinal cord demonstrated by retrograde double labeling. Brain Res 1088:68–72

    Article  CAS  PubMed  Google Scholar 

  96. Gimeno-Bayón J, López-López A, Rodríguez M, Mahy N (2014) Glucose pathways adaptation supports acquisition of activated microglia phenotype. J Neurosci Res 92:723–731

    Article  PubMed  CAS  Google Scholar 

  97. Goldshmit Y, Sztal TE, Jusuf PR, Hall TE, Nguyen-Chi M, Currie PD (2012) Fgf-dependent glial cell bridges facilitate spinal cord regeneration in zebrafish. J Neurosci 32:7477–7492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gonzalez-Bohorquez D, Gallego López IM, Jaeger BN, Pfammatter S, Bowers M, Semenkovich CF, Jessberger S (2022) FASN-dependent de novo lipogenesis is required for brain development. Proc Natl Acad Sci USA 119(2):e2112040119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Göritz C, Dias DO, Tomilin N, Barbacid M, Shupliakov O, Frisén J (2011) A pericyte origin of spinal cord scar tissue. Science 333:238–242

    Article  PubMed  CAS  Google Scholar 

  100. Gratchev A, Guillot P, Hakiy N, Politz O, Orfanos C, Schledzewski K, Goerdt S (2001) Alternatively activated macrophages differentially express fibronectin and its splice variants and the extracellular matrix protein βIG-H3. Scand J Immunol 53:386–392

    Article  CAS  PubMed  Google Scholar 

  101. Grossman S, Rosenberg L, Wrathall J (2001) Temporal–spatial pattern of acute neuronal and glial loss after spinal cord contusion. Exp Neurol 168:273–282

    Article  CAS  PubMed  Google Scholar 

  102. Gu Y, Cheng X, Huang X, Yuan Y, Qin S, Tan Z, Wang D, Hu X, He C, Su Z (2019) Conditional ablation of reactive astrocytes to dissect their roles in spinal cord injury and repair. Brain Behav Immun 80:394–405

    Article  PubMed  Google Scholar 

  103. Hall ED, Wang JA, Bosken JM, Singh IN (2016) Lipid peroxidation in brain or spinal cord mitochondria after injury. J Bioenerg Biomembr 48:169–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59:1609–1623

    Article  CAS  PubMed  Google Scholar 

  105. Hamilton T, Ohmori Y, Tebo J, Kishore R (1999) Regulation of macrophage gene expression by pro-and anti-inflammatory cytokines. Pathobiology 67:241–244

    Article  CAS  PubMed  Google Scholar 

  106. Han Q, Xie Y, Ordaz JD, Huh AJ, Huang N, Wu W, Liu N, Chamberlain KA, Sheng Z-H, Xu X-M (2020) Restoring cellular energetics promotes axonal regeneration and functional recovery after spinal cord injury. Cell Metab 31(623–641):e628

    Google Scholar 

  107. Han SM, Baig HS, Hammarlund M (2016) Mitochondria localize to injured axons to support regeneration. Neuron 92:1308–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hansford R, Hogue B, Mildažienė V (1997) Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age/RG Hansford, BA Hogue V. Mildaziene. J Bioenerg Biomembr 29:1

    Article  Google Scholar 

  109. Haschemi A, Kosma P, Gille L, Evans CR, Burant CF, Starkl P, Knapp B, Haas R, Schmid JA, Jandl C (2012) The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab 15:813–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hausmann OB (2003) Post-traumatic inflammation following spinal cord injury. Spinal cord 41:369–378

    Article  CAS  PubMed  Google Scholar 

  111. Hayakawa K, Okazaki R, Morioka K, Nakamura K, Tanaka S, Ogata T (2014) Lipopolysaccharide preconditioning facilitates M2 activation of resident microglia after spinal cord injury. J Neurosci Res 92:1647–1658

    Article  CAS  PubMed  Google Scholar 

  112. Hayakawa K, Esposito E, Wang X, Terasaki Y, Liu Y, Xing C, Ji X, Lo EH (2016) Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535:551–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hidalgo C (2005) Cross talk between Ca2+ and redox signalling cascades in muscle and neurons through the combined activation of ryanodine receptors/Ca2+ release channels. Philos Trans Royal Soc B: Biological Sci 360:2237–2246

    Article  CAS  Google Scholar 

  114. Hill CE, Beattie MS, Bresnahan JC (2001) Degeneration and sprouting of identified descending supraspinal axons after contusive spinal cord injury in the rat. Exp Neurol 171:153–169

    Article  CAS  PubMed  Google Scholar 

  115. Hill RL, Singh IN, Wang JA, Hall ED (2017) Time courses of post-injury mitochondrial oxidative damage and respiratory dysfunction and neuronal cytoskeletal degradation in a rat model of focal traumatic brain injury. Neurochem Int 111:45–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hongpaisan J, Winters CA, Andrews SB (2004) Strong calcium entry activates mitochondrial superoxide generation, upregulating kinase signaling in hippocampal neurons. J Neurosci 24:10878–10887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Horky LL, Galimi F, Gage FH, Horner PJ (2006) Fate of endogenous stem/progenitor cells following spinal cord injury. J Comp Neurol 498:525–538

    Article  PubMed  PubMed Central  Google Scholar 

  118. Hu C, Huang Y, Li L (2017) Drp1-dependent mitochondrial fission plays critical roles in physiological and pathological progresses in mammals. Int J Mol Sci 18:144

    Article  CAS  PubMed Central  Google Scholar 

  119. Hu J, Lang Y, Cao Y, Zhang T, Lu H (2015) The neuroprotective effect of tetramethylpyrazine against contusive spinal cord injury by activating PGC-1α in rats. Neurochem Res 40:1393–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hu J, Lang Y, Zhang T, Ni S, Lu H (2016) Lentivirus-mediated PGC-1α overexpression protects against traumatic spinal cord injury in rats. Neuroscience 328:40–49

    Article  CAS  PubMed  Google Scholar 

  121. Hu WH, Hausmann ON, Yan MS, Walters WM, Wong PK, Bethea JR (2002) Identification and characterization of a novel Nogo-interacting mitochondrial protein (NIMP). J Neurochem 81:36–45

    Article  CAS  PubMed  Google Scholar 

  122. Huang SC-C, Smith AM, Everts B, Colonna M, Pearce EL, Schilling JD, Pearce EJ (2016) Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation. Immunity 45:817–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hui SP, Dutta A, Ghosh S (2010) Cellular response after crush injury in adult zebrafish spinal cord. Dev Dyn 239:2962–2979

    Article  PubMed  Google Scholar 

  124. Hui SP, Nag TC, Ghosh S (2015) Characterization of proliferating neural progenitors after spinal cord injury in adult zebrafish. PLoS One 10:e0143595

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  125. Humphries KM, Szweda LI (1998) Selective inactivation of α-ketoglutarate dehydrogenase and pyruvate dehydrogenase: reaction of lipoic acid with 4-hydroxy-2-nonenal. Biochemistry 37:15835–15841

    Article  CAS  PubMed  Google Scholar 

  126. Huynh M-LN, Fadok VA, Henson PM (2002) Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-β1 secretion and the resolution of inflammation. J Clin Investig 109:41–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Infantino V, Convertini P, Cucci L, Panaro MA, Di Noia MA, Calvello R, Palmieri F, Iacobazzi V (2011) The mitochondrial citrate carrier: a new player in inflammation. Biochem J 438:433–436

    Article  CAS  PubMed  Google Scholar 

  128. Ito K, Suda T (2014) Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol 15:243–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ito T, Allen N, Yashon D (1978) A mitochondrial lesion in experimental spinal cord trauma. J Neurosurg 48:434–442

    Article  CAS  PubMed  Google Scholar 

  130. Iwata R, Vanderhaeghen P (2021) Regulatory roles of mitochondria and metabolism in neurogenesis. Curr Opin Neurobiol 69:231–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Iwata R, Casimir P, Vanderhaeghen P (2020) Mitochondrial dynamics in postmitotic cells regulate neurogenesis. Science 369:858–862

    Article  CAS  PubMed  Google Scholar 

  132. Jarrett SG, Milder JB, Liang LP, Patel M (2008) The ketogenic diet increases mitochondrial glutathione levels. J Neurochem 106:1044–1051

    Article  CAS  PubMed  Google Scholar 

  133. Jetten N, Verbruggen S, Gijbels MJ, Post MJ, De Winther MP, Donners MM (2014) Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis 17:109–118

    Article  CAS  PubMed  Google Scholar 

  134. Jha AK, Huang SC-C, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E, Chmielewski K, Stewart KM, Ashall J, Everts B (2015) Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42:419–430

    Article  CAS  PubMed  Google Scholar 

  135. Jha MK, Lee W-H, Suk K (2016) Functional polarization of neuroglia: implications in neuroinflammation and neurological disorders. Biochem Pharm 103:1–16

    Article  CAS  PubMed  Google Scholar 

  136. Jia Z-q, Li G, Zhang Z-y, Li H-t, Wang J-q, Fan Z-k, Lv G (2016) Time representation of mitochondrial morphology and function after acute spinal cord injury. Neural Regen Res 11:137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Jin Y, McEwen ML, Nottingham SA, Maragos WF, Dragicevic NB, Sullivan PG, Springer JE (2004) The mitochondrial uncoupling agent 2, 4-dinitrophenol improves mitochondrial function, attenuates oxidative damage, and increases white matter sparing in the contused spinal cord. J Neurotrauma 21:1396–1404

    Article  PubMed  Google Scholar 

  138. Johnson RT, Joy JE, Altevogt BM, Liverman CT (2005) Spinal cord injury: progress, promise, and priorities. National Academies Press, Washington, DC

    Google Scholar 

  139. Joseph R, Li W, Han E (1993) Neuronal death, cytoplasmic calcium and internucleosomal DNA fragmentation: evidence for DNA fragments being released from cells. Mol Brain Res 17:70–76

    Article  CAS  PubMed  Google Scholar 

  140. Journiac N, Gilabert-Juan J, Cipriani S, Benit P, Liu X, Jacquier S, Faivre V, Delahaye-Duriez A, Csaba Z, Hourcade T, Melinte E, Lebon S, Violle-Poirsier C, Oury JF, Adle-Biassette H, Wang ZQ, Mani S, Rustin P, Gressens P, Nardelli J (2020) Cell metabolic alterations due to Mcph1 mutation in microcephaly. Cell Rep 31(2):107506

    Article  CAS  PubMed  Google Scholar 

  141. Kang J-S, Tian J-H, Pan P-Y, Zald P, Li C, Deng C, Sheng Z-H (2008) Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell 132:137–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kang S, Nakanishi Y, Kioi Y, Okuzaki D, Kimura T, Takamatsu H, Koyama S, Nojima S, Nishide M, Hayama Y (2018) Semaphorin 6D reverse signaling controls macrophage lipid metabolism and anti-inflammatory polarization. Nat Immunol 19:561–570

    Article  CAS  PubMed  Google Scholar 

  143. Kaplan A, Ong Tone S, Fournier AE (2015) Extrinsic and intrinsic regulation of axon regeneration at a crossroads. Front Mol Neurosci 8:27

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  144. Karimi-Abdolrezaee S, Billakanti R (2012) Reactive astrogliosis after spinal cord injury—beneficial and detrimental effects. Mol Neurobiol 46:251–264

    Article  CAS  PubMed  Google Scholar 

  145. Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Morshead CM, Fehlings MG (2006) Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J Neurosci 26:3377–3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Katajisto P, Döhla J, Chaffer CL, Pentinmikko N, Marjanovic N, Iqbal S, Zoncu R, Chen W, Weinberg RA, Sabatini DM (2015) Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness. Science 348:340–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Katoh M, Wu B, Nguyen HB, Thai TQ, Yamasaki R, Lu H, Rietsch AM, Zorlu MM, Shinozaki Y, Saitoh Y (2017) Polymorphic regulation of mitochondrial fission and fusion modifies phenotypes of microglia in neuroinflammation. Sci Rep 7:1–14

    Article  CAS  Google Scholar 

  148. Kedra J, Lin S, Pacheco A, Gallo G, Smith GM (2021) Axotomy Induces Drp1-dependent fragmentation of axonal mitochondria. Front Mol Neurosci. https://doi.org/10.3389/fnmol.2021.668670

    Article  PubMed  PubMed Central  Google Scholar 

  149. Keller JN, Mark RJ, Bruce AJ, Blanc E, Rothstein JD, Uchida K, Waeg G, Mattson MP (1997) 4-Hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes. Neuroscience 80:685–696

    Article  CAS  PubMed  Google Scholar 

  150. Kelly B, O’neill LA (2015) Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res 25:771–784

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  151. Kerschensteiner M, Schwab ME, Lichtman JW, Misgeld T (2005) In vivo imaging of axonal degeneration and regeneration in the injured spinal cord. Nat Med 11:572–577

    Article  CAS  PubMed  Google Scholar 

  152. Khacho M, Harris R, Slack RS (2019) Mitochondria as central regulators of neural stem cell fate and cognitive function. Nat Rev Neurosci 20:34–48

    Article  CAS  PubMed  Google Scholar 

  153. Khacho M, Clark A, Svoboda DS, Azzi J, MacLaurin JG, Meghaizel C, Sesaki H, Lagace DC, Germain M, Harper M-E (2016) Mitochondrial dynamics impacts stem cell identity and fate decisions by regulating a nuclear transcriptional program. Cell Stem Cell 19:232–247

    Article  CAS  PubMed  Google Scholar 

  154. Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29:13435–13444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kiryu-Seo S, Kiyama H (2019) Mitochondrial behavior during axon regeneration/degeneration in vivo. Neurosci Res 139:42–47

    Article  CAS  PubMed  Google Scholar 

  156. Kiryu-Seo S, Tamada H, Kato Y, Yasuda K, Ishihara N, Nomura M, Mihara K, Kiyama H (2016) Mitochondrial fission is an acute and adaptive response in injured motor neurons. Sci Rep 6:1–14

    Article  CAS  Google Scholar 

  157. Knobloch M, Braun SM, Zurkirchen L, von Schoultz C, Zamboni N, Araúzo-Bravo MJ, Kovacs WJ, Karalay O, Suter U, Machado RA, Roccio M, Lutolf MP, Semenkovich CF, Jessberger S (2013) Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature 493(7431):226–30

    Article  CAS  PubMed  Google Scholar 

  158. Knobloch M, Pilz GA, Ghesquière B, Kovacs WJ, Wegleiter T, Moore DL, Hruzova M, Zamboni N, Carmeliet P, Jessberger SA (2017) Fatty acid oxidation-dependent metabolic shift regulates adult neural stem cell activity. Cell Rep 20(9):2144–2155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Knobloch M (2017) The role of lipid metabolism for neural stem cell regulation. Brain Plast 3(1):61–71

    Article  PubMed  PubMed Central  Google Scholar 

  160. Knyihár-Csillik E, Rakic P, Csillik B (1989) Transneuronal degeneration in the Rolando substance of the primate spinal cord evoked by axotomy-induced transganglionic degenerative atrophy of central primary sensory terminals. Cell Tissue Res 258:515–525

    Article  PubMed  Google Scholar 

  161. Kodelja V, Müller C, Tenorio S, Schebesch C, Orfanos CE, Goerdt S (1997) Differences in angiogenic potential of classically vs alternatively activated macrophages. Immunobiology 197:478–493

    Article  CAS  PubMed  Google Scholar 

  162. Kong F-Q, Zhao S-J, Sun P, Liu H, Jie J, Xu T, Xu A-D, Yang Y-Q, Zhu Y, Chen J (2020) Macrophage MSR1 promotes the formation of foamy macrophage and neuronal apoptosis after spinal cord injury. J Neuroinflammation 17:1–15

    Article  CAS  Google Scholar 

  163. Kubota Y, Takubo K, Suda T (2008) Bone marrow long label-retaining cells reside in the sinusoidal hypoxic niche. Biochem Biophys Res Commun 366:335–339

    Article  CAS  PubMed  Google Scholar 

  164. Lacroix S, Hamilton LK, Vaugeois A, Beaudoin S, Breault-Dugas C, Pineau I, Levesque SA, Gregoire C-A, Fernandes KJ (2014) Central canal ependymal cells proliferate extensively in response to traumatic spinal cord injury but not demyelinating lesions. PloS One 9:e85916

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  165. Lange C, Turrero Garcia M, Decimo I, Bifari F, Eelen G, Quaegebeur A, Boon R, Zhao H, Boeckx B, Chang J, Wu C, Le Noble F, Lambrechts D, Dewerchin M, Kuo CJ, Huttner WB, Carmeliet P (2016) Relief of hypoxia by angiogenesis promotes neural stem cell differentiation by targeting glycolysis. EMBO J 35(9):924–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Lathrop KL, Steketee MB (2013) Mitochondrial dynamics in retinal ganglion cell axon regeneration and growth cone guidance. J Ocular Biol 1:9

    Google Scholar 

  167. Lee-Liu D, Méndez-Olivos EE, Muñoz R, Larraín J (2017) The African clawed frog xenopus laevis: a model organism to study regeneration of the central nervous system. Neurosci Lett 652:82–93

    Article  CAS  PubMed  Google Scholar 

  168. Lee-Liu D, Sun L, Dovichi NJ, Larrain J (2018) Quantitative proteomics after spinal cord injury (SCI) in a regenerative and a nonregenerative stage in the Frog xenopus laevis. Mol Cell Proteom 17:592–606

    Article  CAS  Google Scholar 

  169. Lee-Liu D, Moreno M, Almonacid LI, Tapia VS, Munoz R, von Marees J, Gaete M, Melo F, Larrain J (2014) Genome-wide expression profile of the response to spinal cord injury in xenopus laevis reveals extensive differences between regenerative and non-regenerative stages. Neural Dev 9:12

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  170. Li G, Jia Z, Cao Y, Wang Y, Li H, Zhang Z, Bi J, Lv G, Fan Z (2015) Mitochondrial division inhibitor 1 ameliorates mitochondrial injury, apoptosis, and motor dysfunction after acute spinal cord injury in rats. Neurochem Res 40:1379–1392

    Article  CAS  PubMed  Google Scholar 

  171. Li H, Wang C, He T, Zhao T, Chen Y-y, Shen Y-l, Zhang X, Wang L-l (2019) Mitochondrial transfer from bone marrow mesenchymal stem cells to motor neurons in spinal cord injury rats via gap junction. Theranostics 9:2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Li W, Yew D, Chuah M, Leung P, Tsang D (1994) Axonal sprouting in the hemisected adult rat spinal cord. Neuroscience 61:133–139

    Article  CAS  PubMed  Google Scholar 

  173. Li Y, Raisman G (1995) Sprouts from cut corticospinal axons persist in the presence of astrocytic scarring in long-term lesions of the adult rat spinal cord. Exp Neurol 134:102–111

    Article  CAS  PubMed  Google Scholar 

  174. Liu D, Thangnipon W, McAdoo DJ (1991) Excitatory amino acids rise to toxic levels upon impact injury to the rat spinal cord. Brain Res 547:344–348

    Article  CAS  PubMed  Google Scholar 

  175. Liu D, Liu J, Wen J (1999) Elevation of hydrogen peroxide after spinal cord injury detected by using the fenton reaction. Free Radic Biol Med 27:478–482

    Article  CAS  PubMed  Google Scholar 

  176. Liu D, Ling X, Wen J, Liu J (2000) The role of reactive nitrogen species in secondary spinal cord injury: formation of nitric oxide, peroxynitrite, and nitrated protein. J Neurochem 75:2144–2154

    Article  CAS  PubMed  Google Scholar 

  177. Liu D, Liu J, Sun D, Alcock NW, Wen J (2003) Spinal cord injury increases iron levels: catalytic production of hydroxyl radicals. Free Radic Biol Med 34:64–71

    Article  CAS  PubMed  Google Scholar 

  178. Liu JM, Yi Z, Liu SZ, Chang JH, Dang XB, Li QY, Zhang YL (2015) The mitochondrial division inhibitor mdivi-1 attenuates spinal cord ischemia-reperfusion injury both in vitro and in vivo: Involvement of BK channels. Brain Res 1619:155–165

    Article  CAS  PubMed  Google Scholar 

  179. Liu P-S, Wang H, Li X, Chao T, Teav T, Christen S, Di Conza G, Cheng W-C, Chou C-H, Vavakova M (2017) α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat Immunol 18:985–994

    Article  CAS  PubMed  Google Scholar 

  180. Liu XZ, Xu XM, Hu R, Du C, Zhang SX, McDonald JW, Dong HX, Wu YJ, Fan GS, Jacquin MF (1997) Neuronal and glial apoptosis after traumatic spinal cord injury. J Neurosci 17:5395–5406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. LoPachin RM, Gaughan CL, Lehning EJ, Kaneko Y, Kelly TM, Blight A (1999) Experimental spinal cord injury: spatiotemporal characterization of elemental concentrations and water contents in axons and neuroglia. J Neurophysiol 82:2143–2153

    Article  CAS  PubMed  Google Scholar 

  182. Love NR, Chen Y, Ishibashi S, Kritsiligkou P, Lea R, Koh Y, Gallop JL, Dorey K, Amaya E (2013) Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration. Nat Cell Biol 15:222–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Love NR, Chen Y, Bonev B, Gilchrist MJ, Fairclough L, Lea R, Mohun TJ, Paredes R, Zeef LA, Amaya E (2011) Genome-wide analysis of gene expression during xenopus tropicalis tadpole tail regeneration. BMC Dev Biol 11:70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Lu P, Wang Y, Graham L, McHale K, Gao M, Wu D, Brock J, Blesch A, Rosenzweig ES, Havton LA (2012) Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell 150:1264–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Maalouf M, Sullivan PG, Davis L, Kim DY, Rho JM (2007) Ketones inhibit mitochondrial production of reactive oxygen species production following glutamate excitotoxicity by increasing NADH oxidation. Neuroscience 145:256–264

    Article  CAS  PubMed  Google Scholar 

  186. MacDermott AB, Mayer ML, Westbrook GL, Smith SJ, Barker JL (1986) NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321:519–522

    Article  CAS  PubMed  Google Scholar 

  187. Mark RJ, Pang Z, Geddes JW, Uchida K, Mattson MP (1997) Amyloid β-peptide impairs glucose transport in hippocampal and cortical neurons: involvement of membrane lipid peroxidation. J Neurosci 17:1046–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Mark RJ, Lovell MA, Markesbery WR, Uchida K, Mattson MP (1997) A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid β-peptide. J Neurochem 68:255–264

    Article  CAS  PubMed  Google Scholar 

  189. Markham A, Cameron I, Franklin P, Spedding M (2004) BDNF increases rat brain mitochondrial respiratory coupling at complex I, but not complex II. Eur J Neurosci 20:1189–1196

    Article  CAS  PubMed  Google Scholar 

  190. Marosi K, Kim SW, Moehl K, Scheibye-Knudsen M, Cheng A, Cutler R, Camandola S, Mattson MP (2016) 3-Hydroxybutyrate regulates energy metabolism and induces BDNF expression in cerebral cortical neurons. J Neurochem 139:769–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Martinez AM, Mirkovic J, Stanisz ZA, Patwari FS, Yang WS (2019) NSC-34 motor neuron-like cells are sensitized to ferroptosis upon differentiation. FEBS Open Bio 9:582–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Matilainen O, Quirós PM, Auwerx J (2017) Mitochondria and epigenetics–crosstalk in homeostasis and stress. Trends Cell Biol 27:453–463

    Article  CAS  PubMed  Google Scholar 

  193. Mattson MP (1998) Modif ication of ion homeostasis by lipid peroxidation: roles in neuronal degeneration and adaptive plasticity. Trends Neurosci 21:53–57

    Article  CAS  PubMed  Google Scholar 

  194. Mautes AE, Weinzierl MR, Donovan F, Noble LJ (2000) Vascular events after spinal cord injury: contribution to secondary pathogenesis. Phys Ther 80:673–687

    Article  CAS  PubMed  Google Scholar 

  195. McLain AL, Szweda PA, Szweda LI (2011) α-Ketoglutarate dehydrogenase: a mitochondrial redox sensor. Free Radical Res 45:29–36

    Article  CAS  Google Scholar 

  196. Meletis K, Barnabé-Heider F, Carlén M, Evergren E, Tomilin N, Shupliakov O, Frisén J (2008) Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol 6:e182

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  197. Méndez-Olivos EE, Muñoz R, Larraín J (2017) Spinal cord cells from pre-metamorphic stages differentiate into neurons and promote axon growth and regeneration after transplantation into the injured spinal cord of non-regenerative Xenopus laevis froglets. Front Cell Neurosci 11:398

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  198. Miller KE, Sheetz MP (2004) Axonal mitochondrial transport and potential are correlated. J Cell Sci 117:2791–2804

    Article  CAS  PubMed  Google Scholar 

  199. Mills EL, O’Neill LA (2016) Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal. Eur J Immunol 46:13–21

    Article  CAS  PubMed  Google Scholar 

  200. Mironova GD, Pavlov EV (2021) Mitochondrial cyclosporine A-Independent palmitate/Ca2+-induced permeability transition pore (PA-mPT Pore) and Its role in mitochondrial function and protection against calcium overload and glutamate toxicity. Cells 10:125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Misgeld T, Kerschensteiner M, Bareyre FM, Burgess RW, Lichtman JW (2007) Imaging axonal transport of mitochondria in vivo. Nat Methods 4:559–561

    Article  CAS  PubMed  Google Scholar 

  202. Modolell M, Corraliza IM, Link F, Soler G, Eichmann K (1995) Reciprocal regulation of the nitric oxide synthase/arginase balance in mouse bone marrow-derived macrophages by TH 1 and TH 2 cytokines. Eur J Immunol 25:1101–1104

    Article  CAS  PubMed  Google Scholar 

  203. Morales RA, Allende ML (2019) Peripheral macrophages promote tissue regeneration in zebrafish by fine-tuning the inflammatory response. Front Immunol 10:253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Moreno-Manzano V, Rodríguez-Jiménez FJ, Aceña-Bonilla JL, Fustero-Lardíes S, Erceg S, Dopazo J, Montaner D, Stojkovic M, Sánchez-Puelles JM (2010) FM19G11, a new hypoxia-inducible factor (HIF) modulator, affects stem cell differentiation status. J Biol Chem 285:1333–1342

    Article  CAS  PubMed  Google Scholar 

  205. Moreno-Manzano V, Rodríguez-Jiménez FJ, García-Roselló M, Laínez S, Erceg S, Calvo MT, Ronaghi M, Lloret M, Planells-Cases R, Sánchez-Puelles JM (2009) Activated spinal cord ependymal stem cells rescue neurological function. Stem cells 27:733–743

    Article  PubMed  CAS  Google Scholar 

  206. Moussaieff A, Rouleau M, Kitsberg D, Cohen M, Levy G, Barasch D, Nemirovski A, Shen-Orr S, Laevsky I, Amit M (2015) Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab 21:392–402

    Article  CAS  PubMed  Google Scholar 

  207. Muñoz R, Edwards-Faret G, Moreno M, Zuñiga N, Cline H, Larraín J (2015) Regeneration of xenopus laevis spinal cord requires Sox2/3 expressing cells. Dev Biol 408:229–243

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  208. Muradov JM, Ewan EE, Hagg T (2013) Dorsal column sensory axons degenerate due to impaired microvascular perfusion after spinal cord injury in rats. Exp Neurol 249:59–73

    Article  PubMed  PubMed Central  Google Scholar 

  209. Nair S, Sobotka KS, Joshi P, Gressens P, Fleiss B, Thornton C, Mallard C, Hagberg H (2019) Lipopolysaccharide-induced alteration of mitochondrial morphology induces a metabolic shift in microglia modulating the inflammatory response in vitro and in vivo. Glia 67:1047–1061

    Article  PubMed  Google Scholar 

  210. Namba T, Dóczi J, Pinson A, Xing L, Kalebic N, Wilsch-Bräuninger M, Long KR, Vaid S, Lauer J, Bogdanova A, Borgonovo B, Shevchenko A, Keller P, Drechsel D, Kurzchalia T, Wimberger P, Chinopoulos C, Huttner W (2020) Human-specific ARHGAP11B Acts in mitochondria to expand neocortical progenitors by glutaminolysis. Neuron 105(5):867–881

    Article  CAS  PubMed  Google Scholar 

  211. Namiki J, Tator CH (1999) Cell proliferation and nestin expression in the ependyma of the adult rat spinal cord after injury. J Neuropathol Exp Neurol 58:489–498

    Article  CAS  PubMed  Google Scholar 

  212. Narayanareddy BRJ, Vartiainen S, Hariri N, O’Dowd DK, Gross SP (2014) A biophysical analysis of mitochondrial movement: differences between transport in neuronal cell bodies versus processes. Traffic 15:762–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Nizet V, Johnson RS (2009) Interdependence of hypoxic and innate immune responses. Nat Rev Immunol 9:609–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Noguchi M, Kasahara A (2018) Mitochondrial dynamics coordinate cell differentiation. Biochem Biophys Res Commun 500:59–64

    Article  CAS  PubMed  Google Scholar 

  215. O’Brien LC, Keeney PM, Bennett JP Jr (2015) Differentiation of human neural stem cells into motor neurons stimulates mitochondrial biogenesis and decreases glycolytic flux. Stem Cells Dev 24:1984–1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. O’Donnell KC, Vargas ME, Sagasti A (2013) WldS and PGC-1α regulate mitochondrial transport and oxidation state after axonal injury. J Neurosci 33:14778–14790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. O’Shea TM, Burda JE, Sofroniew MV (2017) Cell biology of spinal cord injury and repair. J Clin Investig 127:3259–3270

    Article  PubMed  PubMed Central  Google Scholar 

  218. Obernier K, Alvarez-Buylla A (2019) Neural stem cells: origin, heterogeneity and regulation in the adult mammalian brain. Development. https://doi.org/10.1242/dev.156059

    Article  PubMed  PubMed Central  Google Scholar 

  219. Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, Eagle AR, Vats D, Brombacher F, Ferrante AW (2007) Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 447:1116–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Ogawa Y, Sawamoto K, Miyata T, Miyao S, Watanabe M, Nakamura M, Bregman B, Koike M, Uchiyama Y, Toyama Y (2002) Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats. J Neurosci Res 69:925–933

    Article  CAS  PubMed  Google Scholar 

  221. World Health Organization, & International Spinal Cord Society (2013) International perspectives on spinal cord injury. World Health Organization Press, Geneve, Switzerland

    Google Scholar 

  222. Orrenius S, Gogvadze V, Zhivotovsky B (2015) Calcium and mitochondria in the regulation of cell death. Biochem Biophys Res Commun 460:72–81

    Article  CAS  PubMed  Google Scholar 

  223. Oyinbo CA (2011) Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp (Wars) 71:281–299

    Google Scholar 

  224. Park E, Velumian AA, Fehlings MG (2004) The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis on the implications for white matter degeneration. J Neurotrauma 21:754–774

    Article  PubMed  Google Scholar 

  225. Park J, Choi H, Min JS, Park SJ, Kim JH, Park HJ, Kim B, Chae JI, Yim M, Lee DS (2013) Mitochondrial dynamics modulate the expression of pro-inflammatory mediators in microglial cells. J Neurochem 127:221–232

    Article  CAS  PubMed  Google Scholar 

  226. Park LC, Zhang H, Sheu KF, Calingasan NY, Kristal BS, Lindsay JG, Gibson GE (1999) Metabolic impairment induces oxidative stress, compromises inflammatory responses, and inactivates a key mitochondrial enzyme in microglia. J Neurochem 72:1948–1958

    Article  CAS  PubMed  Google Scholar 

  227. Paschon V, Morena BC, Correia FF, Beltrame GR, Dos Santos GB, Cristante AF, Kihara AH (2019) VDAC1 is essential for neurite maintenance and the inhibition of its oligomerization protects spinal cord from demyelination and facilitates locomotor function recovery after spinal cord injury. Sci Rep 9:1–14

    Article  CAS  Google Scholar 

  228. Patel SP, Sullivan PG, Lyttle TS, Rabchevsky AG (2010) Acetyl-L-carnitine ameliorates mitochondrial dysfunction following contusion spinal cord injury. J Neurochem 114:291–301

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Patel SP, Sullivan PG, Lyttle TS, Magnuson DS, Rabchevsky AG (2012) Acetyl-L-carnitine treatment following spinal cord injury improves mitochondrial function correlated with remarkable tissue sparing and functional recovery. Neuroscience 210:296–307

    Article  CAS  PubMed  Google Scholar 

  230. Patrón LA, Zinsmaier KE (2016) Mitochondria on the road to power axonal regeneration. Neuron 92:1152–1154

    Article  PubMed  CAS  Google Scholar 

  231. Pellettieri J, Fitzgerald P, Watanabe S, Mancuso J, Green DR, Alvarado AS (2010) Cell death and tissue remodeling in planarian regeneration. Dev Biol 338:76–85

    Article  CAS  PubMed  Google Scholar 

  232. Pelzer D, Phipps LS, Thuret R, Gallardo-Dodd CJ, Baker SM, Dorey K (2021) Foxm1 regulates neural progenitor fate during spinal cord regeneration. EMBO reports 22(9):e50932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Prigione A, Rohwer N, Hoffmann S, Mlody B, Drews K, Bukowiecki R, Blümlein K, Wanker EE, Ralser M, Cramer T (2014) HIF1α modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1–3 and PKM2. Stem cells 32:364–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Prozorovski T, Schulze-Topphoff U, Glumm R, Baumgart J, Schröter F, Ninnemann O, Siegert E, Bendix I, Brüstle O, Nitsch R (2008) Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat Cell Biol 10:385–394

    Article  CAS  PubMed  Google Scholar 

  235. Qiu J, Tan Y-W, Hagenston AM, Martel M-A, Kneisel N, Skehel PA, Wyllie DJ, Bading H, Hardingham GE (2013) Mitochondrial calcium uniporter Mcu controls excitotoxicity and is transcriptionally repressed by neuroprotective nuclear calcium signals. Nat Commun 4:1–12

    Article  CAS  Google Scholar 

  236. Quadri SA, Farooqui M, Ikram A, Zafar A, Khan MA, Suriya SS, Claus CF, Fiani B, Rahman M, Ramachandran A (2018) Recent update on basic mechanisms of spinal cord injury. Neurosurgical Rev 43:1–17

    Google Scholar 

  237. Rawson RL, Yam L, Weimer RM, Bend EG, Hartwieg E, Horvitz HR, Clark SG, Jorgensen EM (2014) Axons degenerate in the absence of mitochondria in C. elegans. Curr Biol 24:760–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Ribeiro FF, Xapelli S (2021) An overview of adult neurogenesis. Recent Adv NGF Related Mol 1331:77–94

    Article  Google Scholar 

  239. Richardson P, McGuinness U, Aguayo A (1980) Axons from CNS neurones regenerate into PNS grafts. Nature 284:264–265

    Article  CAS  PubMed  Google Scholar 

  240. Rodríguez-Prados J-C, Través PG, Cuenca J, Rico D, Aragonés J, Martín-Sanz P, Cascante M, Boscá L (2010) Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J Immunol 185:605–614

    Article  PubMed  CAS  Google Scholar 

  241. Rubartelli A, Lotze MT (2007) Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol 28:429–436

    Article  CAS  PubMed  Google Scholar 

  242. Ruiz A, Matute C, Alberdi E (2009) Endoplasmic reticulum Ca2+ release through ryanodine and IP3 receptors contributes to neuronal excitotoxicity. Cell Calcium 46:273–281

    Article  CAS  PubMed  Google Scholar 

  243. Ruiz A, Matute C, Alberdi E (2010) Intracellular Ca 2+ release through ryanodine receptors contributes to AMPA receptor-mediated mitochondrial dysfunction and ER stress in oligodendrocytes. Cell Death Dis 1:e54–e54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Rupprecht A, Sittner D, Smorodchenko A, Hilse KE, Goyn J, Moldzio R, Seiler AE, Bräuer AU, Pohl EE (2014) Uncoupling protein 2 and 4 expression pattern during stem cell differentiation provides new insight into their putative function. PloS One 9:e88474

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  245. Sainath R, Ketschek A, Grandi L, Gallo G (2017) CSPGs inhibit axon branching by impairing mitochondria-dependent regulation of actin dynamics and axonal translation. Dev Neurobiol 77:454–473

    Article  CAS  PubMed  Google Scholar 

  246. Scholpa NE, Schnellmann RG (2017) Mitochondrial-based therapeutics for the treatment of spinal cord injury: mitochondrial biogenesis as a potential pharmacological target. J Pharm Exp Ther 363:303–313

    Article  CAS  Google Scholar 

  247. Scholpa NE, Williams H, Wang W, Corum D, Narang A, Tomlinson S, Sullivan PG, Rabchevsky AG, Schnellmann RG (2019) Pharmacological stimulation of mitochondrial biogenesis using the food and drug administration-approved β2-adrenoreceptor agonist formoterol for the treatment of spinal cord injury. J Neurotrauma 36:962–972

    Article  PubMed  PubMed Central  Google Scholar 

  248. Seif GI, Nomura H, Tator CH (2007) Retrograde axonal degeneration (“dieback”) in the corticospinal tract after transection injury of the rat spinal cord: a confocal microscopy study. J Neurotrauma 24:1513–1528

    Article  PubMed  Google Scholar 

  249. Seira O, Kolehmainen K, Liu J, Streijger F, Haegert A, Lebihan S, Boushel R, Tetzlaff W (2021) Ketogenesis controls mitochondrial gene expression and rescues mitochondrial bioenergetics after cervical spinal cord injury in rats. Sci Rep 11:1–19

    Article  CAS  Google Scholar 

  250. Sharif O, Bolshakov VN, Raines S, Newham P, Perkins ND (2007) Transcriptional profiling of the LPS induced NF-κB response in macrophages. BMC Immunol 8:1

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  251. Sharp J, Frame J, Siegenthaler M, Nistor G, Keirstead HS (2010) Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury. Stem Cells 28:152–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Sheng Z-H (2014) Mitochondrial trafficking and anchoring in neurons: new insight and implications. J Cell Biol 204:1087–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Shi Q, Xu H, Yu H, Zhang N, Ye Y, Estevez AG, Deng H, Gibson GE (2011) Inactivation and reactivation of the mitochondrial α-ketoglutarate dehydrogenase complex. J Biol Chem 286:17640–17648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Shichiri M (2014) The role of lipid peroxidation in neurological disorders. J Clin Biochem Nut 54:14–10

    Google Scholar 

  255. Shihabuddin LS, Horner PJ, Ray J, Gage FH (2000) Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J Neurosci 20:8727–8735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Shin J, Berg DA, Zhu Y, Shin JY, Song J, Bonaguidi MA, Enikolopov G, Nauen DW, Christian KM, Ming G-l (2015) Single-cell RNA-seq with waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell 17:360–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Shyh-Chang N, Ng HH (2017) The metabolic programming of stem cells. Genes Dev 31(4):336–346

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  258. Simmons EC, Scholpa NE, Schnellmann RG (2020) Mitochondrial biogenesis as a therapeutic target for traumatic and neurodegenerative CNS diseases. Exp Neurol 329:113309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Simmons EC, Scholpa NE, Schnellmann RG (2021) FDA-approved 5-HT1F receptor agonist lasmiditan induces mitochondrial biogenesis and enhances locomotor and blood-spinal cord barrier recovery after spinal cord injury. Exp Neurol 341:113720

    Article  CAS  PubMed  Google Scholar 

  260. Simsek T, Kocabas F, Zheng J, DeBerardinis RJ, Mahmoud AI, Olson EN, Schneider JW, Zhang CC, Sadek HA (2010) The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 7:380–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Singer M, Nordlander RH, Egar M (1979) Axonal guidance during embryogenesis and regeneration in the spinal cord of the newt: the blueprint hypothesis of neuronal pathway patterning. J Comp Neurol 185:1–21

    Article  CAS  PubMed  Google Scholar 

  262. Singh IN, Sullivan PG, Deng Y, Mbye LH, Hall ED (2006) Time course of post-traumatic mitochondrial oxidative damage and dysfunction in a mouse model of focal traumatic brain injury: implications for neuroprotective therapy. J Cereb Blood Flow Metab 26:1407–1418

    Article  CAS  PubMed  Google Scholar 

  263. Sinha P, Islam MN, Bhattacharya S, Bhattacharya J (2016) Intercellular mitochondrial transfer: bioenergetic crosstalk between cells. Curr Opin Genet Dev 38:97–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Sivron T, Schwartz M (1994) The enigma of myelin-associated growth inhibitors in spontaneously regenerating nervous systems. Trends Neurosci 17:277–281

    Article  CAS  PubMed  Google Scholar 

  265. Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Song E, Ouyang N, Hörbelt M, Antus B, Wang M, Exton MS (2000) Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibroblasts. Cell Immunol 204:19–28

    Article  CAS  PubMed  Google Scholar 

  267. Spillane M, Ketschek A, Merianda TT, Twiss JL, Gallo G (2013) Mitochondria coordinate sites of axon branching through localized intra-axonal protein synthesis. Cell Rep 5:1564–1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Springer JE, Visavadiya NP, Sullivan PG, Hall ED (2018) Post-injury treatment with NIM811 promotes recovery of function in adult female rats after spinal cord contusion: a dose-response study. J Neurotrauma 35:492–499

    Article  PubMed  PubMed Central  Google Scholar 

  269. Steketee MB, Moysidis SN, Weinstein JE, Kreymerman A, Silva JP, Iqbal S, Goldberg JL (2012) Mitochondrial dynamics regulate growth cone motility, guidance, and neurite growth rate in perinatal retinal ganglion cells in vitro. Invest Ophthalmol Vis Sci 53:7402–7411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Stout AK, Raphael HM, Kanterewicz BI, Klann E, Reynolds IJ (1998) Glutamate-induced neuron death requires mitochondrial calcium uptake. Nat Neurosci 1:366–373

    Article  CAS  PubMed  Google Scholar 

  271. Streijger F, Plunet WT, Lee JH, Liu J, Lam CK, Park S, Hilton BJ, Fransen BL, Matheson KA, Assinck P (2013) Ketogenic diet improves forelimb motor function after spinal cord injury in rodents. PloS One 8:e78765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Streijger F, So K, Manouchehri N, Tigchelaar S, Lee JH, Okon EB, Shortt K, Kim S-E, McInnes K, Cripton P (2017) Changes in pressure, hemodynamics, and metabolism within the spinal cord during the first 7 days after injury using a porcine model. J Neurotrauma 34:3336–3350

    Article  PubMed  Google Scholar 

  273. Suelves M, Carrió E, Núñez-Álvarez Y, Peinado MA (2016) DNA methylation dynamics in cellular commitment and differentiation. Brief Funct Genomics 15:443–453

    CAS  PubMed  Google Scholar 

  274. Sullivan PG, Keller JN, Mattson MP, Scheff SW (1998) Traumatic brain injury alters synaptic homeostasis: implications for impaired mitochondrial and transport function. J Neurotrauma 15:789–798

    Article  CAS  PubMed  Google Scholar 

  275. Sullivan PG, Dube C, Dorenbos K, Steward O, Baram TZ (2003) Mitochondrial uncoupling protein-2 protects the immature brain from excitotoxic neuronal death. Ann Neurol 53:711–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Sullivan PG, Krishnamurthy S, Patel SP, Pandya JD, Rabchevsky AG (2007) Temporal characterization of mitochondrial bioenergetics after spinal cord injury. J Neurotrauma 24:991–999

    Article  PubMed  Google Scholar 

  277. Sumbayev VV (2008) LPS-induced Toll-like receptor 4 signalling triggers cross-talk of apoptosis signal-regulating kinase 1 (ASK1) and HIF-1α protein. FEBS Lett 582:319–326

    Article  CAS  PubMed  Google Scholar 

  278. Szatkowski M, Attwell D (1994) Triggering and execution of neuronal death in brain ischaemia: two phases of glutamate release by different mechanisms. Trends Neurosci 17:359–365

    Article  CAS  PubMed  Google Scholar 

  279. Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, Sonobe Y, Mizuno T, Suzumura A (2006) Tumor necrosis factor-α induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem 281:21362–21368

    Article  CAS  PubMed  Google Scholar 

  280. Tannahill G, Curtis A, Adamik J, Palsson-McDermott E, McGettrick A, Goel G, Frezza C, Bernard N, Kelly B, Foley N (2013) Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496:238–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Taoka Y, Okajima K, Uchiba M, Murakami K, Kushimoto S, Johno M, Naruo M, Okabe H, Takatsuki K (1997) Role of neutrophils in spinal cord injury in the rat. Neuroscience 79:1177–1182

    Article  CAS  PubMed  Google Scholar 

  282. Tedeschi A, Bradke F (2017) Spatial and temporal arrangement of neuronal intrinsic and extrinsic mechanisms controlling axon regeneration. Curr Opin Neurobiol 42:118–127

    Article  CAS  PubMed  Google Scholar 

  283. Teperino R, Schoonjans K, Auwerx J (2010) Histone methyl transferases and demethylases; can they link metabolism and transcription? Cell Metab 12:321–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Thomas KJ, Cookson MR (2009) The role of PTEN-induced kinase 1 in mitochondrial dysfunction and dynamics. Int J Biochem Cell Biol 41:2025–2035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Thuret S, Moon LD, Gage FH (2006) Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 7:628

    Article  CAS  PubMed  Google Scholar 

  286. Tica J, Didangelos A (2018) Comparative transcriptomics of rat and axolotl after spinal cord injury dissects differences and similarities in inflammatory and matrix remodeling gene expression patterns. Front Neurosci 12:808

    Article  PubMed  PubMed Central  Google Scholar 

  287. Torralba D, Baixauli F, Sánchez-Madrid F (2016) Mitochondria know no boundaries: mechanisms and functions of intercellular mitochondrial transfer. Front Cell Dev Biol 4:107

    Article  PubMed  PubMed Central  Google Scholar 

  288. Tretter L, Adam-Vizi V (2000) Inhibition of Krebs cycle enzymes by hydrogen peroxide: a key role of [alpha]-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress. J Neurosci 20:8972–8979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Tretter L, Adam-Vizi V (2005) Alpha-ketoglutarate dehydrogenase: a target and generator of oxidative stress. Philos Trans Royal Soc B: Biological Sci 360:2335–2345

    Article  CAS  Google Scholar 

  290. Tsarouchas TM, Wehner D, Cavone L, Munir T, Keatinge M, Lambertus M, Underhill A, Barrett T, Kassapis E, Ogryzko N (2018) Dynamic control of proinflammatory cytokines Il-1β and Tnf-α by macrophages in zebrafish spinal cord regeneration. Nat Commun 9:1–17

    Article  CAS  Google Scholar 

  291. Tseng A-S, Adams DS, Qiu D, Koustubhan P, Levin M (2007) Apoptosis is required during early stages of tail regeneration in xenopus laevis. Dev Biol 301:62–69

    Article  CAS  PubMed  Google Scholar 

  292. Uittenbogaard M, Brantner CA, Chiaramello A (2018) Epigenetic modifiers promote mitochondrial biogenesis and oxidative metabolism leading to enhanced differentiation of neuroprogenitor cells. Cell Death Dis 9:1–18

    Article  CAS  Google Scholar 

  293. Umebayashi D, Natsume A, Takeuchi H, Hara M, Nishimura Y, Fukuyama R, Sumiyoshi N, Wakabayashi T (2014) Blockade of gap junction hemichannel protects secondary spinal cord injury from activated microglia-mediated glutamate exitoneurotoxicity. J Neurotrauma 31:1967–1974

    Article  PubMed  PubMed Central  Google Scholar 

  294. Vajn K, Plunkett JA, Tapanes-Castillo A, Oudega M (2013) Axonal regeneration after spinal cord injury in zebrafish and mammals: differences, similarities, translation. Neurosci Bull 29:402–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Van Broeckhoven J, Sommer D, Dooley D, Hendrix S, Franssen AJ (2021) Macrophage phagocytosis after spinal cord injury: when friends become foes. Brain 144:2933–2945

    Article  PubMed  Google Scholar 

  296. Van Camp J, Beckers S, Zegers D, Van Hul W (2014) Wnt signaling and the control of human stem cell fate. Stem Cell Rev Rep 10:207–229

    Article  PubMed  CAS  Google Scholar 

  297. Van Dyke BR, Saltman P (1996) Hemoglobin: a mechanism for the generation of hydroxyl radicals. Free Rad Biol Med 20:985–989

    Article  PubMed  Google Scholar 

  298. Vargas ME, Barres BA (2007) Why is wallerian degeneration in the CNS so slow? Annu Rev Neurosci 30:153–179

    Article  CAS  PubMed  Google Scholar 

  299. Vats D, Mukundan L, Odegaard JI, Zhang L, Smith KL, Morel CR, Greaves DR, Murray PJ, Chawla A (2006) Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation. Cell Metab 4:13–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Večeřa J, Procházková J, Šumberová V, Pánská V, Paculová H, Lánová MK, Mašek J, Bohačiaková D, Andersson ER, Pacherník J (2020) Hypoxia/Hif1α prevents premature neuronal differentiation of neural stem cells through the activation of Hes1. Stem Cell Res 45:101770

    Article  PubMed  CAS  Google Scholar 

  301. Verburg J, Hollenbeck PJ (2008) Mitochondrial membrane potential in axons increases with local nerve growth factor or semaphorin signaling. J Neurosci 28:8306–8315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Vidal-Puig AJ, Grujic D, Zhang CY, Hagen T, Boss O, Ido Y, Szczepanik A, Wade J, Mootha V, Cortright R, Muoio DM, Lowell BB (2000) Energy metabolism in uncoupling protein 3 gene knockout mice. J Biol Chem 275:16258–16266

    Article  CAS  PubMed  Google Scholar 

  303. Vieira HL, Alves PM, Vercelli A (2011) Modulation of neuronal stem cell differentiation by hypoxia and reactive oxygen species. Prog Neurobiol 93:444–455

    Article  CAS  PubMed  Google Scholar 

  304. Vieira MS, Santos AK, Vasconcellos R, Goulart VA, Parreira RC, Kihara AH, Ulrich H, Resende RR (2018) Neural stem cell differentiation into mature neurons: mechanisms of regulation and biotechnological applications. Biotechnol Adv 36:1946–1970

    Article  CAS  PubMed  Google Scholar 

  305. Viola A, Munari F, Sánchez-Rodríguez R, Scolaro T, Castegna A (2019) The metabolic signature of macrophage responses. Front Immunol. https://doi.org/10.3389/fimmu.2019.01462

    Article  PubMed  PubMed Central  Google Scholar 

  306. Wang L, Pavlou S, Du X, Bhuckory M, Xu H, Chen M (2019) Glucose transporter 1 critically controls microglial activation through facilitating glycolysis. Mol Neurodegener 14:2

    Article  PubMed  PubMed Central  Google Scholar 

  307. Wang N, Xie K, Huo S, Zhao J, Zhang S, Miao J (2007) Suppressing phosphatidylcholine-specific phospholipase C and elevating ROS level, NADPH oxidase activity and Rb level induced neuronal differentiation in mesenchymal stem cells. J Cell Biochem 100:1548–1557

    Article  CAS  PubMed  Google Scholar 

  308. Wang T, Liu H, Lian G, Zhang S-Y, Wang X, Jiang C (2017) HIF1α-induced glycolysis metabolism is essential to the activation of inflammatory macrophages. Med Inflammation 2017:1–10

    Article  Google Scholar 

  309. Wang W-X, Prajapati P, Nelson PT, Springer JE (2020) The Mitochondria-associated ER membranes are novel subcellular locations enriched for inflammatory-responsive MicroRNAs. Mol Neurobiol 57:2996–3013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Wang W, Osenbroch P, Skinnes R, Esbensen Y, Bjørås M, Eide L (2010) Mitochondrial DNA integrity is essential for mitochondrial maturation during differentiation of neural stem cells. Stem Cells 28:2195–2204

    Article  PubMed  Google Scholar 

  311. Wang W, Esbensen Y, Kunke D, Suganthan R, Rachek L, Bjørås M, Eide L (2011) Mitochondrial DNA damage level determines neural stem cell differentiation fate. J Neurosci 31:9746–9751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Wang X, Cao K, Sun X, Chen Y, Duan Z, Sun L, Guo L, Bai P, Sun D, Fan J (2015) Macrophages in spinal cord injury: phenotypic and functional change from exposure to myelin debris. Glia 63:635–651

    Article  PubMed  Google Scholar 

  313. Wang X, Wu X, Liu Q, Kong G, Zhou J, Jiang J, Wu X, Huang Z, Su W, Zhu Q (2017) Ketogenic metabolism inhibits histone deacetylase (HDAC) and reduces oxidative stress after spinal cord injury in rats. Neuroscience 366:36–43

    Article  CAS  PubMed  Google Scholar 

  314. Wang Y, Cui J, Sun X, Zhang Y (2011) Tunneling-nanotube development in astrocytes depends on p53 activation. Cell Death Differ 18:732–742

    Article  CAS  PubMed  Google Scholar 

  315. Wanner IB, Anderson MA, Song B, Levine J, Fernandez A, Gray-Thompson Z, Ao Y, Sofroniew MV (2013) Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J Neurosci 33:12870–12886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Watson C, Paxinos G, Kayalioglu G (2009) The spinal cord: a Christopher and Dana Reeve foundation text and atlas. Academic press, Cambridge, MA

    Google Scholar 

  317. Weiss S, Dunne C, Hewson J, Wohl C, Wheatley M, Peterson AC, Reynolds BA (1996) Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci 16:7599–7609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Xiong Y, Rabchevsky AG, Hall ED (2007) Role of peroxynitrite in secondary oxidative damage after spinal cord injury. J Neurochem 100:639–649

    Article  CAS  PubMed  Google Scholar 

  319. Xu J, Kim G-M, Chen S, Yan P, Ahmed SH, Ku G, Beckman JS, Xu XM, Hsu CY (2001) iNOS and nitrotyrosine expression after spinal cord injury. J Neurotrauma 18:523–532

    Article  CAS  PubMed  Google Scholar 

  320. Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR (2016) Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci 113:E4966–E4975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Yoshida Y, Takahashi K, Okita K, Ichisaka T, Yamanaka S (2009) Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell 5:237–241

    Article  CAS  PubMed  Google Scholar 

  322. Youle RJ, Van Der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337:1062–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA (2012) Genomic analysis of reactive astrogliosis. J Neurosci 32:6391–6410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Zhang H, Menzies KJ, Auwerx J (2018) The role of mitochondria in stem cell fate and aging. Development. https://doi.org/10.1242/dev.143420

    Article  PubMed  PubMed Central  Google Scholar 

  325. Zhang J, Khvorostov I, Hong JS, Oktay Y, Vergnes L, Nuebel E, Wahjudi PN, Setoguchi K, Wang G, Do A (2011) UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J 30:4860–4873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Zhang Y, Sun C, Zhao C, Hao J, Zhang Y, Fan B, Li B, Duan H, Liu C, Kong X (2019) Ferroptosis inhibitor SRS 16–86 attenuates ferroptosis and promotes functional recovery in contusion spinal cord injury. Brain Res 1706:48–57

    Article  CAS  PubMed  Google Scholar 

  327. Zhang ZY, Fan ZK, Cao Y, Jia ZQ, Li G, Zhi XD, Yu DS, Lv G (2015) Acetyl-L-carnitineameliorates mitochondrial damage and apoptosis following spinal cord injury in rats. Neurosci Lett 604:18–23

    Article  CAS  PubMed  Google Scholar 

  328. Zheng X, Boyer L, Jin M, Mertens J, Kim Y, Ma L, Hamm M, Gage FH, Hunter T (2016) Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. Elife 5:e13374

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  329. Zhivotovsky B, Orrenius S (2011) Calcium and cell death mechanisms: a perspective from the cell death community. Cell Calcium 50:211–221

    Article  CAS  PubMed  Google Scholar 

  330. Zhou B, Yu P, Lin M-Y, Sun T, Chen Y, Sheng Z-H (2016) Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing energy deficits. J Cell Biol 214:103–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Zhou W, Choi M, Margineantu D, Margaretha L, Hesson J, Cavanaugh C, Blau CA, Horwitz MS, Hockenbery D, Ware C (2012) HIF1α induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. EMBO J 31:2103–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Zhu Y, Lyapichev K, Lee D, Motti D, Ferraro N, Zhang Y, Yahn S, Soderblom C, Zha J, Bethea J (2017) Macrophage transcriptional profile identifies lipid catabolic pathways that can be therapeutically targeted after spinal cord injury. J Neurosci 37:2362–2376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Zukor KA, Kent DT, Odelberg SJ (2011) Meningeal cells and glia establish a permissive environment for axon regeneration after spinal cord injury in newts. Neural Dev 6:1–23

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Special thanks to Fernando Faunes and Sol Torruella for critical reading of the manuscript.

Funding

This work was funded by FONDECYT 3190820 for PGS, 1180429 for JL and 1191770 for VE.

Author information

Authors and Affiliations

Authors

Contributions

PGS manuscript conceptualization and design, manuscript writing and editing, figure design and editing, and funding acquisition. MED-R manuscript writing, figure design and generation. MV manuscript writing. VE manuscript critical reading and editing. JL manuscript critical reading and editing, and funding acquisition.

Corresponding author

Correspondence to Paula G. Slater.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All the authors agree to participate.

Consent for publication

All the authors agree for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slater, P.G., Domínguez-Romero, M.E., Villarreal, M. et al. Mitochondrial function in spinal cord injury and regeneration. Cell. Mol. Life Sci. 79, 239 (2022). https://doi.org/10.1007/s00018-022-04261-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04261-x

Keywords

Navigation