Skip to main content

Advertisement

Log in

Reactive Astrogliosis after Spinal Cord Injury—Beneficial and Detrimental Effects

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Reactive astrogliosis is a pathologic hallmark of spinal cord injury (SCI). It is characterised by profound morphological, molecular, and functional changes in astrocytes that occur within hours of SCI and evolves as time elapses after injury. Astrogliosis is a defense mechanism to minimize and repair the initial damage but eventually leads to some detrimental effects. Reactive astrocytes secrete a plethora of both growth promoting and inhibitory factors after SCI. However, the production of inhibitory components surpasses the growth stimulating factors, thus, causing inhibitory effects. In severe cases of injury, astrogliosis results in the formation of irreversible glial scarring that acts as regeneration barrier due to the expression of inhibitory components such as chondroitin sulfate proteoglycans. Scar formation was therefore recognized from a negative perspective for many years. Accumulating evidence from pharmacological and genetic studies now signifies the importance of astrogliosis and its timing for spinal cord repair. These studies have advanced our knowledge regarding signaling pathways and molecular mediators, which trigger and modulate reactive astrocytes and scar formation. In this review, we discuss the recent advances in this field. We also review therapeutic strategies that have been developed to target astrocytes reactivity and glial scaring in the environment of SCI. Astrocytes play pivotal roles in governing SCI mechanisms, and it is therefore crucial to understand how their activities can be targeted efficiently to harness their potential for repair and regeneration after SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BBB:

Blood–brain barrier

BSB:

Blood–spinal barrier

BMPs:

Bone morphogenetic proteins

ChABC:

Chondroitin sulfate proteoglycans

CSPGs:

Chondroitin sulfate proteoglycans

CNS:

Central nervous system

Eph:

Ephrin

ECM:

Extracellular matrix

GFAP:

Glial fibrillary acidic proteins

GAG:

Glycosaminoglycans

IL:

Interleukin

NPCs:

Neural precursor cells

OPCs:

Oligodendrocyte precursor cells

RPTP:

Receptor protein tyrosine phosphatases

SCI:

Spinal cord injury

Stat3:

Signal transducers and activators of transcription3

TGF:

Transforming growth factors

TNF-α:

Tumor necrosis factor-alpha

XT:

Xylosyltransferase

References

  1. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    PubMed  Google Scholar 

  2. Seifert G, Schilling K, Steinhauser C (2006) Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci 7:194–206

    PubMed  CAS  Google Scholar 

  3. Fitch MT, Silver J (1997) Glial cell extracellular matrix: boundaries for axon growth in development and regeneration. Cell Tissue Res 290:379–384

    PubMed  CAS  Google Scholar 

  4. Fitch MT, Silver J (2008) CNS injury, glial scars, and inflammation: inhibitory extracellular matrices and regeneration failure. Exp Neurol 209:294–301

    PubMed  CAS  Google Scholar 

  5. Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156

    PubMed  CAS  Google Scholar 

  6. Fitch MT, Silver J (2008) CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Exp Neurol 209:294–301

    Google Scholar 

  7. Herrmann JE, Imura T, Song B, Qi J, Ao Y et al (2008) STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J Neurosci 28:7231–7243

    PubMed  CAS  Google Scholar 

  8. Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647

    PubMed  CAS  Google Scholar 

  9. Sofroniew MV (2005) Reactive astrocytes in neural repair and protection. Neuroscientist 11:400–407

    PubMed  CAS  Google Scholar 

  10. Renault-Mihara F, Katoh H, Ikegami T, Iwanami A, Mukaino M et al (2011) Beneficial compaction of spinal cord lesion by migrating astrocytes through glycogen synthase kinase-3 inhibition. EMBO Mol Med 3:682–696

    PubMed  CAS  Google Scholar 

  11. Takamiya Y, Kohsaka S, Toya S, Otani M, Tsukada Y (1988) Immunohistochemical studies on the proliferation of reactive astrocytes and the expression of cytoskeletal proteins following brain injury in rats. Brain Res 466:201–210

    PubMed  CAS  Google Scholar 

  12. Renault-Mihara F, Okada S, Shibata S, Nakamura M, Toyama Y et al (2008) Spinal cord injury: emerging beneficial role of reactive astrocytes’ migration. Int J Biochem Cell Biol 40:1649–1653

    PubMed  CAS  Google Scholar 

  13. Bush TG, Puvanachandra N, Horner CH, Polito A, Ostenfeld T et al (1999) Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 23:297–308

    PubMed  CAS  Google Scholar 

  14. Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB et al (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24:2143–2155

    PubMed  CAS  Google Scholar 

  15. Fawcett JW (1997) Astrocytic and neuronal factors affecting axon regeneration in the damaged central nervous system. Cell Tissue Res 290:371–377

    PubMed  CAS  Google Scholar 

  16. Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49:377–391

    PubMed  CAS  Google Scholar 

  17. Busch SA, Silver J (2007) The role of extracellular matrix in CNS regeneration. Curr Opin Neurobiol 17:120–127

    PubMed  CAS  Google Scholar 

  18. Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS et al (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416:636–640

    PubMed  CAS  Google Scholar 

  19. Fisher D, Xing B, Dill J, Li H, Hoang HH et al (2011) Leukocyte common antigen-related phosphatase is a functional receptor for chondroitin sulfate proteoglycan axon growth inhibitors. J Neurosci 31:14051–14066

    PubMed  CAS  Google Scholar 

  20. Shen Y, Tenney AP, Busch SA, Horn KP, Cuascut FX et al (2009) PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science 326:592–596

    PubMed  CAS  Google Scholar 

  21. Escartin C, Bonvento G (2008) Targeted activation of astrocytes: a potential neuroprotective strategy. Mol Neurobiol 38:231–241

    PubMed  CAS  Google Scholar 

  22. Kang W, Hebert JM (2011) Signaling pathways in reactive astrocytes, a genetic perspective. Mol Neurobiol 43:147–154

    PubMed  CAS  Google Scholar 

  23. Bushong EA, Martone ME, Ellisman MH (2004) Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development. Int J Dev Neurosci 22:73–86

    PubMed  Google Scholar 

  24. Halassa MM, Fellin T, Takano H, Dong JH, Haydon PG (2007) Synaptic islands defined by the territory of a single astrocyte. J Neurosci 27:6473–6477

    PubMed  CAS  Google Scholar 

  25. Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22:183–192

    PubMed  CAS  Google Scholar 

  26. Santello M, Volterra A (2009) Synaptic modulation by astrocytes via Ca2+-dependent glutamate release. Neuroscience 158:253–259

    PubMed  CAS  Google Scholar 

  27. Jourdain P, Bergersen LH, Bhaukaurally K, Bezzi P, Santello M et al (2007) Glutamate exocytosis from astrocytes controls synaptic strength. Nat Neurosci 10:331–339

    PubMed  CAS  Google Scholar 

  28. Dong Y, Benveniste EN (2001) Immune function of astrocytes. Glia 36:180–190

    PubMed  CAS  Google Scholar 

  29. Nicoll JA, Weller RO (2003) A new role for astrocytes: beta-amyloid homeostasis and degradation. Trends Mol Med 9:281–282

    PubMed  CAS  Google Scholar 

  30. Jacobson M (1991) Developmental neurobiology. Plenum, New York

    Google Scholar 

  31. Sattler R, Rothstein JD (2006) Regulation and dysregulation of glutamate transporters. Handb Exp Pharmacol (175):277–303

  32. Risau W, Wolburg H (1990) Development of the blood–brain barrier. Trends Neurosci 13:174–178

    PubMed  CAS  Google Scholar 

  33. Wolburg H, Noell S, Mack A, Wolburg-Buchholz K, Fallier-Becker P (2009) Brain endothelial cells and the glio-vascular complex. Cell Tissue Res 335:75–96

    PubMed  Google Scholar 

  34. Abbott NJ (2002) Astrocyte-endothelial interactions and blood–brain barrier permeability. J Anat 200:629–638

    PubMed  CAS  Google Scholar 

  35. Wolburg HR, Risau W (1995) In: Kettenmann H, Ransom BR (eds) Formation of the blood–brain-barrier. Oxford University Press, New York

    Google Scholar 

  36. Halassa MM, Fellin T, Haydon PG (2007) The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med 13:54–63

    PubMed  CAS  Google Scholar 

  37. Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32:421–431

    PubMed  CAS  Google Scholar 

  38. Iadecola C, Nedergaard M (2007) Glial regulation of the cerebral microvasculature. Nat Neurosci 10:1369–1376

    PubMed  CAS  Google Scholar 

  39. Simard M, Nedergaard M (2004) The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 129:877–896

    PubMed  CAS  Google Scholar 

  40. Zador Z, Stiver S, Wang V, Manley GT (2009) Role of aquaporin-4 in cerebral edema and stroke. Handb Exp Pharmacol (190):159–170

  41. Escartin C, Pierre K, Colin A, Brouillet E, Delzescaux T et al (2007) Activation of astrocytes by CNTF induces metabolic plasticity and increases resistance to metabolic insults. J Neurosci 27:7094–7104

    PubMed  CAS  Google Scholar 

  42. Pellerin L, Bouzier-Sore AK, Aubert A, Serres S, Merle M et al (2007) Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 55:1251–1262

    PubMed  Google Scholar 

  43. Takata N, Mishima T, Hisatsune C, Nagai T, Ebisui E et al (2011) Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity in vivo. J Neurosci 31:18155–18165

    PubMed  CAS  Google Scholar 

  44. Qian X, Shen Q, Goderie SK, He W, Capela A et al (2000) Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron 28:69–80

    PubMed  CAS  Google Scholar 

  45. Bozoyan L, Khlghatyan J, Saghatelyan A (2012) Astrocytes control the development of the migration-promoting vasculature scaffold in the postnatal brain via VEGF signaling. J Neurosci 32:1687–1704

    PubMed  CAS  Google Scholar 

  46. Powell EM, Geller HM (1999) Dissection of astrocyte-mediated cues in neuronal guidance and process extension. Glia 26:73–83

    PubMed  CAS  Google Scholar 

  47. Ullian EM, Sapperstein SK, Christopherson KS, Barres BA (2001) Control of synapse number by glia. Science 291:657–661

    PubMed  CAS  Google Scholar 

  48. Haydon PG (2001) GLIA: listening and talking to the synapse. Nat Rev Neurosci 2:185–193

    PubMed  CAS  Google Scholar 

  49. Perea G, Araque A (2006) Synaptic information processing by astrocytes. J Physiol Paris 99:92–97

    PubMed  CAS  Google Scholar 

  50. Ghashghaei HT, Lai C, Anton ES (2007) Neuronal migration in the adult brain: are we there yet? Nat Rev Neurosci 8:141–151

    PubMed  CAS  Google Scholar 

  51. Mittal B, David S (1994) The role of an astrocyte surface molecule in neuronal migration in the developing rat cerebellum. Mol Cell Neurosci 5:78–86

    PubMed  CAS  Google Scholar 

  52. Perea G, Araque A (2010) GLIA modulates synaptic transmission. Brain Res Rev 63:93–102

    PubMed  CAS  Google Scholar 

  53. Shigetomi E, Bowser DN, Sofroniew MV, Khakh BS (2008) Two forms of astrocyte calcium excitability have distinct effects on NMDA receptor-mediated slow inward currents in pyramidal neurons. J Neurosci 28:6659–6663

    PubMed  CAS  Google Scholar 

  54. Koehler RC, Roman RJ, Harder DR (2009) Astrocytes and the regulation of cerebral blood flow. Trends Neurosci 32:160–169

    PubMed  CAS  Google Scholar 

  55. Gordon GR, Mulligan SJ, MacVicar BA (2007) Astrocyte control of the cerebrovasculature. Glia 55:1214–1221

    PubMed  Google Scholar 

  56. Schummers J, Yu H, Sur M (2008) Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science 320:1638–1643

    PubMed  CAS  Google Scholar 

  57. Araya R, Kudo M, Kawano M, Ishii K, Hashikawa T et al (2008) BMP signaling through BMPRIA in astrocytes is essential for proper cerebral angiogenesis and formation of the blood-brain-barrier. Mol Cell Neurosci 38:417–430

    PubMed  CAS  Google Scholar 

  58. Rubin LL, Staddon JM (1999) The cell biology of the blood–brain barrier. Annu Rev Neurosci 22:11–28

    PubMed  CAS  Google Scholar 

  59. Obara M, Szeliga M, Albrecht J (2008) Regulation of pH in the mammalian central nervous system under normal and pathological conditions: facts and hypotheses. Neurochem Int 52:905–919

    PubMed  CAS  Google Scholar 

  60. Tom VJ, Doller CM, Malouf AT, Silver J (2004) Astrocyte-associated fibronectin is critical for axonal regeneration in adult white matter. J Neurosci 24:9282–9290

    PubMed  CAS  Google Scholar 

  61. Bartus K, James ND, Bosch KD, Bradbury EJ (2012) Chondroitin sulphate proteoglycans: Key modulators of spinal cord and brain plasticity. Exp Neurol 235:5–17

    Google Scholar 

  62. Galtrey CM, Fawcett JW (2007) The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Res Rev 54:1–18

    PubMed  CAS  Google Scholar 

  63. Gris P, Tighe A, Levin D, Sharma R, Brown A (2007) Transcriptional regulation of scar gene expression in primary astrocytes. Glia 55:1145–1155

    PubMed  Google Scholar 

  64. McKeon RJ, Hoke A, Silver J (1995) Injury-induced proteoglycans inhibit the potential for laminin-mediated axon growth on astrocytic scars. Exp Neurol 136:32–43

    PubMed  CAS  Google Scholar 

  65. Silver J (1994) Inhibitory molecules in development and regeneration. J Neurol 242:S22–S24

    PubMed  CAS  Google Scholar 

  66. Pekny M, Wilhelmsson U, Bogestal YR, Pekna M (2007) The role of astrocytes and complement system in neural plasticity. Int Rev Neurobiol 82:95–111

    PubMed  CAS  Google Scholar 

  67. Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50:427–434

    PubMed  Google Scholar 

  68. Ridet JL, Malhotra SK, Privat A, Gage FH (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–577

    PubMed  CAS  Google Scholar 

  69. Eddleston M, Mucke L (1993) Molecular profile of reactive astrocytes—implications for their role in neurologic disease. Neuroscience 54:15–36

    PubMed  CAS  Google Scholar 

  70. Ajtai BM, Kálmán M (2001) Reactive glia support and guide axon growth in the rat thalamus during the first postnatal week. A sharply timed transition from permissive to non-permissive stage. Int J Dev Neurosci 19:589–597

    PubMed  CAS  Google Scholar 

  71. Norenberg MD, Smith J, Marcillo A (2004) The pathology of human spinal cord injury: defining the problems. J Neurotrauma 21:429–440

    PubMed  Google Scholar 

  72. Buss A, Pech K, Kakulas BA, Martin D, Schoenen J et al (2007) Matrix metalloproteinases and their inhibitors in human traumatic spinal cord injury. BMC Neurol 7:17

    PubMed  Google Scholar 

  73. Hagg T, Oudega M (2006) Degenerative and spontaneous regenerative processes after spinal cord injury. J Neurotrauma 23:264–280

    PubMed  Google Scholar 

  74. Bundesen LQ, Scheel TA, Bregman BS, Kromer LF (2003) Ephrin-B2 and EphB2 regulation of astrocyte-meningeal fibroblast interactions in response to spinal cord lesions in adult rats. J Neurosci 23:7789–7800

    PubMed  CAS  Google Scholar 

  75. Filbin MT (2006) Recapitulate development to promote axonal regeneration: good or bad approach? Philos Trans R Soc Lond B Biol Sci 361:1565–1574

    PubMed  CAS  Google Scholar 

  76. Cafferty WB, McGee AW, Strittmatter SM (2008) Axonal growth therapeutics: regeneration or sprouting or plasticity? Trends Neurosci 31:215–220

    PubMed  CAS  Google Scholar 

  77. Lu P, Tuszynski MH (2008) Growth factors and combinatorial therapies for CNS regeneration. Exp Neurol 209:313–320

    PubMed  CAS  Google Scholar 

  78. Glabinski AR, Balasingam V, Tani M, Kunkel SL, Strieter RM et al (1996) Chemokine monocyte chemoattractant protein-1 is expressed by astrocytes after mechanical injury to the brain. J Immunol 156:4363–4368

    PubMed  CAS  Google Scholar 

  79. Reilly JF, Kumari VG (1996) Alterations in fibroblast growth factor receptor expression following brain injury. Exp Neurol 140:139–150

    PubMed  CAS  Google Scholar 

  80. Merrill JE, Benveniste EN (1996) Cytokines in inflammatory brain lesions: helpful and harmful. Trends Neurosci 19:331–338

    PubMed  CAS  Google Scholar 

  81. Kahn MA, Huang CJ, Caruso A, Barresi V, Nazarian R et al (1997) Ciliary neurotrophic factor activates JAK/Stat signal transduction cascade and induces transcriptional expression of glial fibrillary acidic protein in glial cells. J Neurochem 68:1413–1423

    PubMed  CAS  Google Scholar 

  82. Rabchevsky AG, Weinitz JM, Coulpier M, Fages C, Tinel M et al (1998) A role for transforming growth factor alpha as an inducer of astrogliosis. J Neurosci 18:10541–10552

    PubMed  CAS  Google Scholar 

  83. Kordek R, Nerurkar VR, Liberski PP, Isaacson S, Yanagihara R et al (1996) Heightened expression of tumor necrosis factor alpha, interleukin 1 alpha, and glial fibrillary acidic protein in experimental Creutzfeldt-Jakob disease in mice. Proc Natl Acad Sci U S A 93:9754–9758

    PubMed  CAS  Google Scholar 

  84. Lin HW, Basu A, Druckman C, Cicchese M, Krady JK et al (2006) Astrogliosis is delayed in type 1 interleukin-1 receptor-null mice following a penetrating brain injury. J Neuroinflammation 3:15

    PubMed  Google Scholar 

  85. Vitellaro-Zuccarello L, Mazzetti S, Madaschi L, Bosisio P, Fontana E et al (2008) Chronic erythropoietin-mediated effects on the expression of astrocyte markers in a rat model of contusive spinal cord injury. Neuroscience 151:452–466

    PubMed  CAS  Google Scholar 

  86. de Bilbao F, Arsenijevic D, Moll T, Garcia-Gabay I, Vallet P et al (2009) In vivo over-expression of interleukin-10 increases resistance to focal brain ischemia in mice. J Neurochem 110:12–22

    PubMed  Google Scholar 

  87. Buffo A, Rolando C, Ceruti S (2010) Astrocytes in the damaged brain: molecular and cellular insights into their reactive response and healing potential. Biochem Pharmacol 79:77–89

    PubMed  CAS  Google Scholar 

  88. Tada M, Diserens AC, Desbaillets I, de Tribolet N (1994) Analysis of cytokine receptor messenger RNA expression in human glioblastoma cells and normal astrocytes by reverse-transcription polymerase chain reaction. J Neurosurg 80:1063–1073

    PubMed  CAS  Google Scholar 

  89. Aranguez I, Torres C, Rubio N (1995) The receptor for tumor necrosis factor on murine astrocytes: characterization, intracellular degradation, and regulation by cytokines and Theiler’s murine encephalomyelitis virus. Glia 13:185–194

    PubMed  CAS  Google Scholar 

  90. Balasingam V, Yong VW (1996) Attenuation of astroglial reactivity by interleukin-10. J Neurosci 16:2945–2955

    PubMed  CAS  Google Scholar 

  91. Aubert I, Ridet JL, Gage FH (1995) Regeneration in the adult mammalian CNS: guided by development. Curr Opin Neurobiol 5:625–635

    PubMed  CAS  Google Scholar 

  92. Fitch MT, Doller C, Combs CK, Landreth GE, Silver J (1999) Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J Neurosci 19:8182–8198

    PubMed  CAS  Google Scholar 

  93. Munoz L, Ralay Ranaivo H, Roy SM, Hu W, Craft JM et al (2007) A novel p38 alpha MAPK inhibitor suppresses brain proinflammatory cytokine up-regulation and attenuates synaptic dysfunction and behavioral deficits in an Alzheimer’s disease mouse model. J Neuroinflammation 4:21

    PubMed  Google Scholar 

  94. Fernandez AM, Fernandez S, Carrero P, Garcia-Garcia M, Torres-Aleman I (2007) Calcineurin in reactive astrocytes plays a key role in the interplay between proinflammatory and anti-inflammatory signals. J Neurosci 27:8745–8756

    PubMed  CAS  Google Scholar 

  95. Chen Y, Miles DK, Hoang T, Shi J, Hurlock E et al (2008) The basic helix–loop–helix transcription factor olig2 is critical for reactive astrocyte proliferation after cortical injury. J Neurosci 28:10983–10989

    PubMed  CAS  Google Scholar 

  96. Brambilla R, Bracchi-Ricard V, Hu WH, Frydel B, Bramwell A et al (2005) Inhibition of astroglial nuclear factor kappaB reduces inflammation and improves functional recovery after spinal cord injury. J Exp Med 202:145–156

    PubMed  CAS  Google Scholar 

  97. Shafit-Zagardo B, Kume-Iwaki A, Goldman JE (1988) Astrocytes regulate GFAP mRNA levels by cyclic AMP and protein kinase C-dependent mechanisms. Glia 1:346–354

    PubMed  CAS  Google Scholar 

  98. Schachtrup C, Ryu JK, Helmrick MJ, Vagena E, Galanakis DK et al (2010) Fibrinogen triggers astrocyte scar formation by promoting the availability of active TGF-beta after vascular damage. J Neurosci 30:5843–5854

    PubMed  CAS  Google Scholar 

  99. Gadea A, Schinelli S, Gallo V (2008) Endothelin-1 regulates astrocyte proliferation and reactive gliosis via a JNK/c-Jun signaling pathway. J Neurosci 28:2394–2408

    PubMed  CAS  Google Scholar 

  100. Okada S, Nakamura M, Katoh H, Miyao T, Shimazaki T et al (2006) Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat Med 12:829–834

    PubMed  CAS  Google Scholar 

  101. John GR, Lee SC, Brosnan CF (2003) Cytokines: powerful regulators of glial cell activation. Neuroscientist 9:10–22

    PubMed  CAS  Google Scholar 

  102. Li ZW, Tang RH, Zhang JP, Tang ZP, Qu WS, et al. (2012) Inhibiting epidermal growth factor receptor attenuates reactive astrogliosis and improves functional outcome after spinal cord injury in rats. Neurochem Int 58(7):812–819

    Google Scholar 

  103. Sahni V, Mukhopadhyay A, Tysseling V, Hebert A, Birch D et al (2010) BMPR1a and BMPR1b signaling exert opposing effects on gliosis after spinal cord injury. J Neurosci 30:1839–1855

    PubMed  CAS  Google Scholar 

  104. Bareyre FM, Schwab ME (2003) Inflammation, degeneration and regeneration in the injured spinal cord: insights from DNA microarrays. Trends Neurosci 26:555–563

    PubMed  CAS  Google Scholar 

  105. Goldshmit Y, Galea MP, Wise G, Bartlett PF, Turnley AM (2004) Axonal regeneration and lack of astrocytic gliosis in EphA4-deficient mice. J Neurosci 24:10064–10073

    PubMed  CAS  Google Scholar 

  106. Davies JE, Tang X, Denning JW, Archibald SJ, Davies SJ (2004) Decorin suppresses neurocan, brevican, phosphacan and NG2 expression and promotes axon growth across adult rat spinal cord injuries. Eur J Neurosci 19:1226–1242

    PubMed  Google Scholar 

  107. Logan A, Baird A, Berry M (1999) Decorin attenuates gliotic scar formation in the rat cerebral hemisphere. Exp Neurol 159:504–510

    PubMed  CAS  Google Scholar 

  108. Logan A, Green J, Hunter A, Jackson R, Berry M (1999) Inhibition of glial scarring in the injured rat brain by a recombinant human monoclonal antibody to transforming growth factor-beta2. Eur J Neurosci 11:2367–2374

    PubMed  CAS  Google Scholar 

  109. Bethea JR, Castro M, Keane RW, Lee TT, Dietrich WD et al (1998) Traumatic spinal cord injury induces nuclear factor-kappaB activation. J Neurosci 18:3251–3260

    PubMed  CAS  Google Scholar 

  110. Saadoun S, Papadopoulos MC, Watanabe H, Yan D, Manley GT et al (2005) Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. J Cell Sci 118:5691–5698

    PubMed  CAS  Google Scholar 

  111. Nesic O, Lee J, Ye Z, Unabia GC, Rafati D et al (2006) Acute and chronic changes in aquaporin 4 expression after spinal cord injury. Neuroscience 143:779–792

    PubMed  CAS  Google Scholar 

  112. Peters CM, Rogers SD, Pomonis JD, Egnaczyk GF, Keyser CP et al (2003) Endothelin receptor expression in the normal and injured spinal cord: potential involvement in injury-induced ischemia and gliosis. Exp Neurol 180:1–13

    PubMed  CAS  Google Scholar 

  113. Egnaczyk GF, Pomonis JD, Schmidt JA, Rogers SD, Peters C et al (2003) Proteomic analysis of the reactive phenotype of astrocytes following endothelin-1 exposure. Proteomics 3:689–698

    PubMed  CAS  Google Scholar 

  114. Lazarini F, Strosberg AD, Couraud PO, Cazaubon SM (1996) Coupling of ETB endothelin receptor to mitogen-activated protein kinase stimulation and DNA synthesis in primary cultures of rat astrocytes. J Neurochem 66:459–465

    PubMed  CAS  Google Scholar 

  115. Rogers SD, Demaster E, Catton M, Ghilardi JR, Levin LA et al (1997) Expression of endothelin-B receptors by glia in vivo is increased after CNS injury in rats, rabbits, and humans. Exp Neurol 145:180–195

    PubMed  CAS  Google Scholar 

  116. Rogers SD, Peters CM, Pomonis JD, Hagiwara H, Ghilardi JR et al (2003) Endothelin B receptors are expressed by astrocytes and regulate astrocyte hypertrophy in the normal and injured CNS. Glia 41:180–190

    PubMed  Google Scholar 

  117. Koyama Y, Takemura M, Fujiki K, Ishikawa N, Shigenaga Y et al (1999) BQ788, an endothelin ET(B) receptor antagonist, attenuates stab wound injury-induced reactive astrocytes in rat brain. Glia 26:268–271

    PubMed  CAS  Google Scholar 

  118. Teixeira A, Chaverot N, Strosberg AD, Cazaubon S (2000) Differential regulation of cyclin D1 and D3 expression in the control of astrocyte proliferation induced by endothelin-1. J Neurochem 74:1034–1040

    PubMed  CAS  Google Scholar 

  119. Robel S, Mori T, Zoubaa S, Schlegel J, Sirko S et al (2009) Conditional deletion of beta1-integrin in astroglia causes partial reactive gliosis. Glia 57:1630–1647

    PubMed  Google Scholar 

  120. Robel S, Bardehle S, Lepier A, Brakebusch C, Gotz M (2011) Genetic deletion of cdc42 reveals a crucial role for astrocyte recruitment to the injury site in vitro and in vivo. J Neurosci 31:12471–12482

    PubMed  CAS  Google Scholar 

  121. Osmani N, Vitale N, Borg JP, Etienne-Manneville S (2006) Scrib controls Cdc42 localization and activity to promote cell polarization during astrocyte migration. Curr Biol 16:2395–2405

    PubMed  CAS  Google Scholar 

  122. Etienne-Manneville S, Hall A (2001) Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell 106:489–498

    PubMed  CAS  Google Scholar 

  123. Correa-Cerro LS, Mandell JW (2007) Molecular mechanisms of astrogliosis: new approaches with mouse genetics. J Neuropathol Exp Neurol 66:169–176

    PubMed  CAS  Google Scholar 

  124. Mandell JW, VandenBerg SR (1999) ERK/MAP kinase is chronically activated in human reactive astrocytes. Neuroreport 10:3567–3572

    PubMed  CAS  Google Scholar 

  125. Carbonell WS, Mandell JW (2003) Transient neuronal but persistent astroglial activation of ERK/MAP kinase after focal brain injury in mice. J Neurotrauma 20:327–336

    PubMed  Google Scholar 

  126. Rolls A, Shechter R, Schwartz M (2009) The bright side of the glial scar in CNS repair. Nat Rev Neurosci 10:235–241

    PubMed  CAS  Google Scholar 

  127. Mulligan SJ, MacVicar BA (2004) Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431:195–199

    PubMed  CAS  Google Scholar 

  128. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L et al (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686

    PubMed  CAS  Google Scholar 

  129. Vermeiren C, Najimi M, Vanhoutte N, Tilleux S, de Hemptinne I et al (2005) Acute up-regulation of glutamate uptake mediated by mGluR5a in reactive astrocytes. J Neurochem 94:405–416

    PubMed  CAS  Google Scholar 

  130. Lindenau J, Noack H, Asayama K, Wolf G (1998) Enhanced cellular glutathione peroxidase immunoreactivity in activated astrocytes and in microglia during excitotoxin induced neurodegeneration. Glia 24:252–256

    PubMed  CAS  Google Scholar 

  131. Menet V, Prieto M, Privat A, Gimenez y Ribotta M (2003) Axonal plasticity and functional recovery after spinal cord injury in mice deficient in both glial fibrillary acidic protein and vimentin genes. Proc Natl Acad Sci U S A 100:8999–9004

    PubMed  CAS  Google Scholar 

  132. do Carmo Cunha J, de Freitas Azevedo Levy B, de Luca BA, de Andrade MS, Gomide VC et al (2007) Responses of reactive astrocytes containing S100beta protein and fibroblast growth factor-2 in the border and in the adjacent preserved tissue after a contusion injury of the spinal cord in rats: implications for wound repair and neuroregeneration. Wound Repair Regen 15:134–146

    PubMed  Google Scholar 

  133. Stichel CC, Muller HW (1998) The CNS lesion scar: new vistas on an old regeneration barrier. Cell Tissue Res 294:1–9

    PubMed  CAS  Google Scholar 

  134. Profyris C, Cheema SS, Zang D, Azari MF, Boyle K et al (2004) Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiol Dis 15:415–436

    PubMed  Google Scholar 

  135. Reier PJ, Houle JD (1988) The glial scar: its bearing on axonal elongation and transplantation approaches to CNS repair. Adv Neurol 47:87–138

    PubMed  CAS  Google Scholar 

  136. Jones LL, Sajed D, Tuszynski MH (2003) Axonal regeneration through regions of chondroitin sulfate proteoglycan deposition after spinal cord injury: a balance of permissiveness and inhibition. J Neurosci 23:9276–9288

    PubMed  CAS  Google Scholar 

  137. Garattini S, Mennini T, Samanin R (1987) From fenfluramine racemate to d-fenfluramine. Specificity and potency of the effects on the serotoninergic system and food intake. Ann N Y Acad Sci 499:156–166

    PubMed  CAS  Google Scholar 

  138. McKeon RJ, Schreiber RC, Rudge JS, Silver J (1991) Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J Neurosci 11:3398–3411

    PubMed  CAS  Google Scholar 

  139. Mizuno H, Warita H, Aoki M, Itoyama Y (2008) Accumulation of chondroitin sulfate proteoglycans in the microenvironment of spinal motor neurons in amyotrophic lateral sclerosis transgenic rats. J Neurosci Res 86:2512–2523

    PubMed  CAS  Google Scholar 

  140. Fitch MT, Silver J (1997) Activated macrophages and the blood-brain barrier: inflammation after CNS injury leads to increases in putative inhibitory molecules. Exp Neurol 148:587–603

    PubMed  CAS  Google Scholar 

  141. Jones LL, Margolis RU, Tuszynski MH (2003) The chondroitin sulfate proteoglycans neurocan, brevican, phosphacan, and versican are differentially regulated following spinal cord injury. Exp Neurol 182:399–411

    PubMed  CAS  Google Scholar 

  142. Stichel CC, Hermanns S, Luhmann HJ, Lausberg F, Niermann H et al (1999) Inhibition of collagen IV deposition promotes regeneration of injured CNS axons. Eur J Neurosci 11:632–646

    PubMed  CAS  Google Scholar 

  143. Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Schut D, Fehlings MG (2010) Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord. J Neurosci 30:1657–1676

    PubMed  CAS  Google Scholar 

  144. Barritt AW, Davies M, Marchand F, Hartley R, Grist J et al (2006) Chondroitinase ABC promotes sprouting of intact and injured spinal systems after spinal cord injury. J Neurosci 26:10856–10867

    PubMed  CAS  Google Scholar 

  145. Massey JM, Hubscher CH, Wagoner MR, Decker JA, Amps J et al (2006) Chondroitinase ABC digestion of the perineuronal net promotes functional collateral sprouting in the cuneate nucleus after cervical spinal cord injury. J Neurosci 26:4406–4414

    PubMed  CAS  Google Scholar 

  146. Fouad K, Schnell L, Bunge MB, Schwab ME, Liebscher T et al (2005) Combining Schwann cell bridges and olfactory-ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete transection of the spinal cord. J Neurosci 25:1169–1178

    PubMed  CAS  Google Scholar 

  147. Fry EJ, Chagnon MJ, Lopez-Vales R, Tremblay ML, David S (2010) Corticospinal tract regeneration after spinal cord injury in receptor protein tyrosine phosphatase sigma deficient mice. Glia 58:423–433

    PubMed  Google Scholar 

  148. Yiu G, He Z (2006) Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 7:617–627

    PubMed  CAS  Google Scholar 

  149. Koprivica V, Cho KS, Park JB, Yiu G, Atwal J et al (2005) EGFR activation mediates inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans. Science 310:106–110

    PubMed  CAS  Google Scholar 

  150. Erschbamer M, Pernold K, Olson L (2007) Inhibiting epidermal growth factor receptor improves structural, locomotor, sensory, and bladder recovery from experimental spinal cord injury. J Neurosci 27:6428–6435

    PubMed  CAS  Google Scholar 

  151. Monnier PP, Sierra A, Schwab JM, Henke-Fahle S, Mueller BK (2003) The Rho/ROCK pathway mediates neurite growth-inhibitory activity associated with the chondroitin sulfate proteoglycans of the CNS glial scar. Mol Cell Neurosci 22:319–330

    PubMed  CAS  Google Scholar 

  152. Jain A, McKeon RJ, Brady-Kalnay SM, Bellamkonda RV (2011) Sustained delivery of activated Rho GTPases and BDNF promotes axon growth in CSPG-rich regions following spinal cord injury. PLoS One 6:e16135

    PubMed  CAS  Google Scholar 

  153. Jain A, Brady-Kalnay SM, Bellamkonda RV (2004) Modulation of Rho GTPase activity alleviates chondroitin sulfate proteoglycan-dependent inhibition of neurite extension. J Neurosci Res 77:299–307

    PubMed  CAS  Google Scholar 

  154. Sivasankaran R, Pei J, Wang KC, Zhang YP, Shields CB et al (2004) PKC mediates inhibitory effects of myelin and chondroitin sulfate proteoglycans on axonal regeneration. Nat Neurosci 7:261–268

    PubMed  CAS  Google Scholar 

  155. Niederost B, Oertle T, Fritsche J, McKinney RA, Bandtlow CE (2002) Nogo-A and myelin-associated glycoprotein mediate neurite growth inhibition by antagonistic regulation of RhoA and Rac1. J Neurosci 22:10368–10376

    PubMed  CAS  Google Scholar 

  156. Goldshmit Y, Spanevello MD, Tajouri S, Li L, Rogers F et al (2011) EphA4 blockers promote axonal regeneration and functional recovery following spinal cord injury in mice. PLoS One 6:e24636

    PubMed  CAS  Google Scholar 

  157. Goldshmit Y, McLenachan S, Turnley A (2006) Roles of Eph receptors and ephrins in the normal and damaged adult CNS. Brain Res Rev 52:327–345

    PubMed  CAS  Google Scholar 

  158. Miranda JD, White LA, Marcillo AE, Willson CA, Jagid J et al (1999) Induction of Eph B3 after spinal cord injury. Exp Neurol 156:218–222

    PubMed  CAS  Google Scholar 

  159. Puschmann TB, Turnley AM (2010) Eph receptor tyrosine kinases regulate astrocyte cytoskeletal rearrangement and focal adhesion formation. J Neurochem 113:881–894

    PubMed  CAS  Google Scholar 

  160. Song H, Stevens CF, Gage FH (2002) Astroglia induce neurogenesis from adult neural stem cells. Nature 417:39–44

    PubMed  CAS  Google Scholar 

  161. Lim DA, Alvarez-Buylla A (1999) Interaction between astrocytes and adult subventricular zone precursors stimulates neurogenesis. Proc Natl Acad Sci U S A 96:7526–7531

    PubMed  CAS  Google Scholar 

  162. Barkho BZ, Song H, Aimone JB, Smrt RD, Kuwabara T et al (2006) Identification of astrocyte-expressed factors that modulate neural stem/progenitor cell differentiation. Stem Cell Dev 15:407–421

    CAS  Google Scholar 

  163. Ueki T, Tanaka M, Yamashita K, Mikawa S, Qiu Z et al (2003) A novel secretory factor, neurogenesin-1, provides neurogenic environmental cues for neural stem cells in the adult hippocampus. J Neurosci 23:11732–11740

    PubMed  CAS  Google Scholar 

  164. Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Morshead CM, Fehlings MG (2006) Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J Neurosci 26:3377–3389

    PubMed  CAS  Google Scholar 

  165. Barnabe-Heider F, Frisen J (2008) Stem cells for spinal cord repair. Cell Stem Cell 3:16–24

    PubMed  CAS  Google Scholar 

  166. Barnabe-Heider F, Goritz C, Sabelstrom H, Takebayashi H, Pfrieger FW et al (2010) Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell 7:470–482

    PubMed  CAS  Google Scholar 

  167. Meletis K, Barnabe-Heider F, Carlen M, Evergren E, Tomilin N et al (2008) Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol 6:e182

    PubMed  Google Scholar 

  168. Horky LL, Galimi F, Gage FH, Horner PJ (2006) Fate of endogenous stem/progenitor cells following spinal cord injury. J Comp Neurol 498:525–538

    PubMed  Google Scholar 

  169. Siebert JR, Osterhout DJ (2011) The inhibitory effects of chondroitin sulfate proteoglycans on oligodendrocytes. J Neurochem 119:176–188

    PubMed  CAS  Google Scholar 

  170. Siebert JR, Stelzner DJ, Osterhout DJ (2011) Chondroitinase treatment following spinal contusion injury increases migration of oligodendrocyte progenitor cells. Exp Neurol 231:19–29

    PubMed  CAS  Google Scholar 

  171. Wang Y, Cheng X, He Q, Zheng Y, Kim DH et al (2011) Astrocytes from the contused spinal cord inhibit oligodendrocyte differentiation of adult oligodendrocyte precursor cells by increasing the expression of bone morphogenetic proteins. J Neurosci 31:6053–6058

    PubMed  CAS  Google Scholar 

  172. Pekny M (2001) Astrocytic intermediate filaments: lessons from GFAP and vimentin knock-out mice. Progr Brain Res 132:23–30

    CAS  Google Scholar 

  173. Yick LW, Cheung PT, So KF, Wu W (2003) Axonal regeneration of Clarke’s neurons beyond the spinal cord injury scar after treatment with chondroitinase ABC. Exp Neurol 182:160–168

    PubMed  CAS  Google Scholar 

  174. Gama CI, Tully SE, Sotogaku N, Clark PM, Rawat M et al (2006) Sulfation patterns of glycosaminoglycans encode molecular recognition and activity. Nat Chem Biol 2:467–473

    PubMed  CAS  Google Scholar 

  175. Caggiano AO, Zimber MP, Ganguly A, Blight AR, Gruskin EA (2005) Chondroitinase ABCI improves locomotion and bladder function following contusion injury of the rat spinal cord. J Neurotrauma 22:226–239

    PubMed  Google Scholar 

  176. Garcia-Alias G, Lin R, Akrimi SF, Story D, Bradbury EJ et al (2008) Therapeutic time window for the application of chondroitinase ABC after spinal cord injury. Exp Neurol 210:331–338

    PubMed  CAS  Google Scholar 

  177. Grimpe B, Silver J (2004) A novel DNA enzyme reduces glycosaminoglycan chains in the glial scar and allows microtransplanted dorsal root ganglia axons to regenerate beyond lesions in the spinal cord. J Neurosci 24:1393–1397

    PubMed  CAS  Google Scholar 

  178. Rolls A, Shechter R, London A, Segev Y, Jacob-Hirsch J et al (2008) Two faces of chondroitin sulfate proteoglycan in spinal cord repair: a role in microglia/macrophage activation. PLoS Med 5:e171

    PubMed  Google Scholar 

  179. Kwok JC, Afshari F, Garcia-Alias G, Fawcett JW (2008) Proteoglycans in the central nervous system: plasticity, regeneration and their stimulation with chondroitinase ABC. Restor Neurol Neurosci 26:131–145

    PubMed  Google Scholar 

  180. Garcia-Alias G, Barkhuysen S, Buckle M, Fawcett JW (2009) Chondroitinase ABC treatment opens a window of opportunity for task-specific rehabilitation. Nat Neurosci 12:1145–1151

    PubMed  CAS  Google Scholar 

  181. Tyor WR, Avgeropoulos N, Ohlandt G, Hogan EL (2002) Treatment of spinal cord impact injury in the rat with transforming growth factor-beta. J Neurol Sci 200:33–41

    PubMed  CAS  Google Scholar 

  182. Ihn H (2008) Autocrine TGF-beta signaling in the pathogenesis of systemic sclerosis. J Dermatol Sci 49:103–113

    PubMed  CAS  Google Scholar 

  183. Mittaud P, Labourdette G, Zingg H, Guenot-Di Scala D (2002) Neurons modulate oxytocin receptor expression in rat cultured astrocytes: involvement of TGF-beta and membrane components. Glia 37:169–177

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soheila Karimi-Abdolrezaee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karimi-Abdolrezaee, S., Billakanti, R. Reactive Astrogliosis after Spinal Cord Injury—Beneficial and Detrimental Effects. Mol Neurobiol 46, 251–264 (2012). https://doi.org/10.1007/s12035-012-8287-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8287-4

Keywords

Navigation