Skip to main content

Advertisement

Log in

Revisiting APP secretases: an overview on the holistic effects of retinoic acid receptor stimulation in APP processing

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Alzheimer's disease (AD) is the leading cause of dementia worldwide and is characterized by the accumulation of the β-amyloid peptide (Aβ) in the brain, along with profound alterations in phosphorylation-related events and regulatory pathways. The production of the neurotoxic Aβ peptide via amyloid precursor protein (APP) proteolysis is a crucial step in AD development. APP is highly expressed in the brain and is complexly metabolized by a series of sequential secretases, commonly denoted the α-, β-, and γ-cleavages. The toxicity of resulting fragments is a direct consequence of the first cleaving event. β-secretase (BACE1) induces amyloidogenic cleavages, while α-secretases (ADAM10 and ADAM17) result in less pathological peptides. Hence this first cleavage event is a prime therapeutic target for preventing or reverting initial biochemical events involved in AD. The subsequent cleavage by γ-secretase has a reduced impact on Aβ formation but affects the peptides’ aggregating capacity. An array of therapeutic strategies are being explored, among them targeting Retinoic Acid (RA) signalling, which has long been associated with neuronal health. Additionally, several studies have described altered RA levels in AD patients, reinforcing RA Receptor (RAR) signalling as a promising therapeutic strategy. In this review we provide a holistic approach focussing on the effects of isoform-specific RAR modulation with respect to APP secretases and discuss its advantages and drawbacks in subcellular AD related events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Marambaud P, Vintgdeux V (2012) Identification and biology of α-secretases. J Neurochem 120:34–45. https://doi.org/10.1111/j.1471-4159.2011.07477.x

    Article  CAS  PubMed  Google Scholar 

  2. Vincent B, Govitrapong P (2011) Activation of the apha-secretase processing of ABetaPP as a therapeutic approach in alzheimer’s disease. J Alzheimer Dis 24:75–94. https://doi.org/10.3233/JAD-2011-110218

    Article  CAS  Google Scholar 

  3. Epis R, Marcello E, Fabrizio Gardoni MDL (2012) Alpha, beta-and gamma-secretases in Alzheimer’s disease. Front Biosci S4(42):1126–1150

    CAS  Google Scholar 

  4. Komano H, Seeger M, Gandyl S et al (1999) Involvement of cell surface glycosyl-phosphatidylinositol-linked aspartyl proteases in α-secretase-type cleavage and ectodomain solubilization of human Alzheimer β-amyloid precursor protein in yeast. J Biol Chem 273:31648–31651. https://doi.org/10.1074/jbc.273.48.31648

    Article  Google Scholar 

  5. Sun J, Roy S (2013) The physical approximation of APP and BACE-1 - a key event in Alzheimer’s disease pathogenesis. Dev Neurobiol. https://doi.org/10.1002/dneu

    Article  PubMed  PubMed Central  Google Scholar 

  6. Haapasalo A, Kovacs DM (2011) The many substrates of presenilin/γ-secretase. J Alzheimer’s Dis 25:3–28. https://doi.org/10.3233/JAD-2011-101065

    Article  CAS  Google Scholar 

  7. Müller UC, Deller T, Korte M (2017) Not just amyloid: physiological functions of the amyloid precursor protein family. Nat Rev Neurosci 18:281–298. https://doi.org/10.1038/nrn.2017.29

    Article  CAS  PubMed  Google Scholar 

  8. Müller UC, Zheng H (2012) Physiological functions of APP family proteins. Cold Spring Harb Perspect Med 2:1–17. https://doi.org/10.1101/cshperspect.a006288

    Article  CAS  Google Scholar 

  9. Nalivaeva NN, Turner AJ (2013) The amyloid precursor protein: a biochemical enigma in brain development, function and disease. FEBS Lett 587:2046–2054. https://doi.org/10.1016/j.febslet.2013.05.010

    Article  CAS  PubMed  Google Scholar 

  10. Da Cruz e Silva EF, Da Cruz e Silva OAB (2003) Protein phosphorylation and APP metabolism. Neurochem Res 28:1553–1561. https://doi.org/10.1023/A:1025630627319

    Article  CAS  PubMed  Google Scholar 

  11. Zheng H, Koo EH (2006) The amyloid precursor protein: beyond amyloid. Mol Neurodegener 1:1–12. https://doi.org/10.1186/1750-1326-1-5

    Article  CAS  Google Scholar 

  12. Beckmann A-M, Glebov K, Walter J et al (2016) The intact Kunitz domain protects the amyloid precursor protein from being processed by matriptase-2. Biol Chem 397:777–790. https://doi.org/10.1515/hsz-2015-0263

    Article  CAS  PubMed  Google Scholar 

  13. Ben KN, Tyteca D, Marinangeli C et al (2012) Structural features of the KPI domain control APP dimerization, trafficking, and processing. FASEB J 26:855–867. https://doi.org/10.1096/fj.11-190207

    Article  CAS  Google Scholar 

  14. Menéndez-González M, Pérez-Pinera P, Martínez-Rivera M et al (2006) APP processing and the APP-KPI domain involvement in the amyloid cascade. Neurodegener Dis 2:277–283. https://doi.org/10.1159/000092315

    Article  CAS  Google Scholar 

  15. Matsui T, Ingelsson M, Fukumoto H et al (2007) Expression of APP pathway mRNAs and proteins in Alzheimer’s disease. Brain Res 1161:116–123. https://doi.org/10.1016/j.brainres.2007.05.050

    Article  CAS  PubMed  Google Scholar 

  16. Belyaev ND, Kellett KAB, Beckett C et al (2010) The transcriptionally active amyloid precursor protein (APP) intracellular domain is preferentially produced from the 695 isoform of APP in a β-secretase-dependent pathway. J Biol Chem 285:41443–41454. https://doi.org/10.1074/jbc.M110.141390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cousins SL, Hoey SEA, Anne Stephenson F, Perkinton MS (2009) Amyloid precursor protein 695 associates with assembled NR2A- and NR2B-containing NMDA receptors to result in the enhancement of their cell surface delivery. J Neurochem 111:1501–1513. https://doi.org/10.1111/j.1471-4159.2009.06424.x

    Article  CAS  PubMed  Google Scholar 

  18. O’Brien RJ, Wong PC (2011) Amyloid precursor protein processing and alzheimer’s disease. Annu Rev Neurosci 34:185–204. https://doi.org/10.1146/annurev-neuro-061010-113613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee KJ, Moussa CEH, Lee Y et al (2010) Beta amyloid-independent role of amyloid precursor protein in generation and maintenance of dendritic spines. Neuroscience 169:344–356. https://doi.org/10.1016/j.neuroscience.2010.04.078

    Article  CAS  PubMed  Google Scholar 

  20. Midthune B, Tyan SH, Walsh JJ et al (2012) Deletion of the amyloid precursor-like protein 2 (APLP2) does not affect hippocampal neuron morphology or function. Mol Cell Neurosci 49:448–455. https://doi.org/10.1016/j.mcn.2012.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Groot AJ, Vooijs MA (2012) The role of adams in notch signaling. Adv Exp Med Biol 727:15–36. https://doi.org/10.1007/978-1-4614-0899-4_2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fardilha M, Vieira SI, Barros A et al (2007) Differential distribution of Alzheimer’s amyloid precursor protein family variants in human sperm. Ann N Y Acad Sci 1096:196–206. https://doi.org/10.1196/annals.1397.086

    Article  CAS  PubMed  Google Scholar 

  23. Silva JV, Yoon S, Domingues S et al (2015) Amyloid precursor protein interaction network in human testis: Sentinel proteins for male reproduction. BMC Bioinformatics 16:1–12. https://doi.org/10.1186/s12859-014-0432-9

    Article  CAS  Google Scholar 

  24. Oliveira J, Costa M, De Almeida MSC et al (2017) Protein phosphorylation is a key mechanism in alzheimer’s disease. J Alzheimer’s Dis 58:953–978. https://doi.org/10.3233/JAD-170176

    Article  CAS  Google Scholar 

  25. Xu P, Derynck R (2010) Direct activation of TACE-mediated ectodomain shedding by p38 MAP kinase regulates EGF receptor-dependent cell proliferation. Mol Cell 37:551–566. https://doi.org/10.1016/j.molcel.2010.01.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. da Cruz e Silva OAB, Rebelo S, Vieira SI, et al (2009) Enhanced generation of Alzheimer’s amyloid-β following chronic exposure to phorbol ester correlates with differential effects on alpha and epsilon isozymes of protein kinase C. J Neurochem 108:319–330. https://doi.org/10.1111/j.1471-4159.2008.05770.x

    Article  CAS  Google Scholar 

  27. Vieira SI, Rebelo S, Domingues SC et al (2009) S655 phosphorylation enhances APP secretory traffic. Mol Cell Biochem 328:145–154. https://doi.org/10.1007/s11010-009-0084-7

    Article  CAS  PubMed  Google Scholar 

  28. Vieira SI, Rebelo S, Esselmann H et al (2010) Retrieval of the Alzheimer’s amyloid precursor protein from the endosome to the TGN is S655 phosphorylation state-dependent and retromer-mediated. Mol Neurodegener 5:1–21. https://doi.org/10.1186/1750-1326-5-40

    Article  CAS  Google Scholar 

  29. Chang K-A, Kim H-S, Ha T-Y et al (2006) Phosphorylation of amyloid precursor protein (APP) at Thr668 regulates the nuclear translocation of the APP intracellular domain and induces neurodegeneration. Mol Cell Biol 26:4327–4338. https://doi.org/10.1128/mcb.02393-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee MS, Kao SC, Lemere CA et al (2003) APP processing is regulated by cytoplasmic phosphorylation. J Cell Biol 163:83–95. https://doi.org/10.1083/jcb.200301115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Feyt C, Pierrot N, Tasiaux B et al (2007) Phosphorylation of APP695 at Thr668 decreases γ-cleavage and extracellular Aβ. Biochem Biophys Res Commun 357:1004–1010. https://doi.org/10.1016/j.bbrc.2007.04.036

    Article  CAS  PubMed  Google Scholar 

  32. Kametani F (2008) Epsilon-secretase: reduction of amyloid precursor protein epsilon-site cleavage in Alzheimer’s disease. Curr Alzheimer Res 5:165–171. https://doi.org/10.2174/156720508783954776

    Article  CAS  PubMed  Google Scholar 

  33. Zhao G, Mao G, Tan J et al (2004) Identification of a new presenilin-dependent zeta-cleavage site within the transmembrane domain of amyloid precursor protein. J Biol Chem 279:50647–50650. https://doi.org/10.1074/jbc.C400473200

    Article  CAS  PubMed  Google Scholar 

  34. Zhao G, Cui MZ, Mao G et al (2005) γ-Cleavage is dependent on Z-cleavage during the proteolytic processing of amyloid precursor protein within its transmembrane domain. J Biol Chem 280:37689–37697. https://doi.org/10.1074/jbc.M507993200

    Article  CAS  PubMed  Google Scholar 

  35. Chow VW, Mattson MP, Wong PC, Gleichmann M (2010) An overview of APP processing enzymes and products. Neuromolecular Med 12:1–12. https://doi.org/10.1007/s12017-009-8104-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. De Strooper B, Annaert W (2000) Proteolytic processing and cell biological functions of the amyloid precursor protein. J Cell Sci 113(1):1857–1870

    Article  PubMed  Google Scholar 

  37. Sisodia SS (1992) Beta-Amiloid precursor protein cleavage a membrane-bound protease. Proc Natl Acad Sci USA 89:6075–6079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Anderson JP, Esch FS, Keim PS et al (1991) Exact cleavage site of Alzheimer amyloid precursor in neuronal PC-12 cells. Neurosci Lett 128:126–128. https://doi.org/10.1016/0304-3940(91)90775-O

    Article  CAS  PubMed  Google Scholar 

  39. Nunan J, Small DH (2000) Regulation of APP cleavage by α-, β- and γ-secretases. FEBS Lett 483:6–10. https://doi.org/10.1016/S0014-5793(00)02076-7

    Article  CAS  PubMed  Google Scholar 

  40. García-González L, Pilat D, Baranger K, Rivera S (2019) Emerging alternative proteinases in APP metabolism and Alzheimer’s Disease pathogenesis: a focus on MT1-MMP and MT5-MMP. Front Aging Neurosci 11:1–19. https://doi.org/10.3389/fnagi.2019.00244

    Article  CAS  Google Scholar 

  41. Postina R, Schroeder A, Dewachter I et al (2004) A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J Clin Invest 114:598–598. https://doi.org/10.1172/jci20864e1

    Article  CAS  PubMed Central  Google Scholar 

  42. Nitsch RM, Kim C, Growdon JH (1998) Vasopressin and bradykinin regulate secretory processing of the amyloid protein precursor of Alzheimer’s disease. Neurochem Res 23:807–814. https://doi.org/10.1023/A:1022423813362

    Article  CAS  PubMed  Google Scholar 

  43. Da Cruz e Silva OAB, Rebelo S, Vieira SI, Gandy S, Da Cruz e Silva EFPG (2009) Enhanced generation of Alzheimer’s amyloid-β following chronic exposure to phorbol ester correlates with differential effects on alpha and epsilon isozymes of protein kinase C. J Neurochem 2009:319–330

    Article  Google Scholar 

  44. Odete AB, Fardilha M, Henriques AG et al (2004) Signal transduction therapeutics: relevance for alzheimer’s disease signal transduction therapeutics relevance for alzheimer’s disease. J Alzheimer Dis 2004:1–2. https://doi.org/10.1385/JMN

    Article  Google Scholar 

  45. Kuhn PH, Wang H, Dislich B et al (2010) ADAM10 is the physiologically relevant, constitutive α-secretase of the amyloid precursor protein in primary neurons. EMBO J 29:3020–3032. https://doi.org/10.1038/emboj.2010.167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Edwards DR, Handsley MM, Pennington CJ (2009) The ADAM metalloproteinases. Mol Aspects Med 29:258–289. https://doi.org/10.1016/j.mam.2008.08.001

    Article  CAS  Google Scholar 

  47. Blobel CP (2005) ADAMs: Key components in EGFR signalling and development. Nat Rev Mol Cell Biol 6:32–43. https://doi.org/10.1038/nrm1548

    Article  CAS  PubMed  Google Scholar 

  48. Tucher J, Linke D, Koudelka T et al (2014) LC-MS based cleavage site profiling of the proteases ADAM10 and ADAM17 using proteome-derived peptide libraries. J Proteome Res 13:2205–2214. https://doi.org/10.1021/pr401135u

    Article  CAS  PubMed  Google Scholar 

  49. Zunke F, Rose-John S (2017) The shedding protease ADAM17: physiology and pathophysiology. Biochim Biophys Acta Mol Cell Res 1864:2059–2070. https://doi.org/10.1016/j.bbamcr.2017.07.001

    Article  CAS  PubMed  Google Scholar 

  50. Seals DF, Courtneidge SA (2003) The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev 17:7–30. https://doi.org/10.1101/gad.1039703

    Article  CAS  PubMed  Google Scholar 

  51. Allinson TMJ, Parkin ET, Turner AJ, Hooper NM (2003) ADAMs family members as amyloid precursor protein α-secretases. J Neurosci Res 74:342–352. https://doi.org/10.1002/jnr.10737

    Article  CAS  PubMed  Google Scholar 

  52. Weskamp G, Cai H, Brodie TA et al (2002) Mice lacking the metalloprotease-disintegrin MDC9 (ADAM9) have no evident major abnormalities during development or adult life. Mol Cell Biol 22:1537–1544. https://doi.org/10.1128/mcb.22.5.1537-1544.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hartmann D, De Strooper B, Serneels L et al (2002) The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for α-secretase activity in fibroblasts. Hum Mol Genet 11:2615–2624. https://doi.org/10.1093/hmg/11.21.2615

    Article  CAS  PubMed  Google Scholar 

  54. Walter S, Jumpertz T, Hüttenrauch M et al (2019) The metalloprotease ADAMTS4 generates N-truncated Aβ4–x species and marks oligodendrocytes as a source of amyloidogenic peptides in Alzheimer’s disease. Acta Neuropathol 137:239–257. https://doi.org/10.1007/s00401-018-1929-5

    Article  CAS  PubMed  Google Scholar 

  55. Jiménez-Jiménez FJ, Molina JA, de Bustos F et al (1999) Serum levels of beta-carotene, alpha-carotene and vitamin A in patients with Alzheimer’s disease. Eur J Neurol 6:495–497. https://doi.org/10.1046/j.1468-1331.1999.640495.x

    Article  PubMed  Google Scholar 

  56. Zaman Z, Roche S, Fielden P et al (1992) Plasma concentrations of vitamins A and E and carotenoids in Alzheimer’s disease. Age Ageing 21:91–94. https://doi.org/10.1093/ageing/21.2.91

    Article  CAS  PubMed  Google Scholar 

  57. Prinzen C, Müller U, Endres K et al (2005) Genomic structure and functional characterization of the human ADAM10 promoter. FASEB J Off Publ Fed Am Soc Exp Biol 19:1522–1524. https://doi.org/10.1096/fj.04-3619fje

    Article  Google Scholar 

  58. Holback S, Adlerz L, Iverfeldt K (2005) Increased processing of APLP2 and APP with concomitant formation of APP intracellular domains in BDNF and retinoic acid-differentiated human neuroblastoma cells. J Neurochem 95:1059–1068. https://doi.org/10.1111/j.1471-4159.2005.03440.x

    Article  CAS  PubMed  Google Scholar 

  59. Endres K, Postina R, Schroeder A et al (2005) Shedding of the amyloid precursor protein-like protein APLP2 by disintegrin-metalloproteinases: Retinoic acid-induced upregulation of substrate and proteinase ADAM10 during neuronal cell differentiation. FEBS J 272:5808–5820. https://doi.org/10.1111/j.1742-4658.2005.04976.x

    Article  CAS  PubMed  Google Scholar 

  60. Koryakina A, Aeberhard J, Kiefer S et al (2009) Regulation of secretases by all-trans-retinoic acid. FEBS J 276:2645–2655. https://doi.org/10.1111/j.1742-4658.2009.06992.x

    Article  CAS  PubMed  Google Scholar 

  61. Tippmann F, Hundt J, Schneider A et al (2009) Up-regulation of the α-secretase ADAM10 by retinoic acid receptors and acitretin. FASEB J 23:1643–1654. https://doi.org/10.1096/fj.08-121392

    Article  CAS  PubMed  Google Scholar 

  62. Niles RM (1994) Interactions between retinoic acid and protein kinase C in induction of melanoma differentiation. Adv Exp Med Biol 354:37–57. https://doi.org/10.1007/978-1-4899-0939-8_3

    Article  CAS  PubMed  Google Scholar 

  63. Bruck N, Vitoux D, Ferry C et al (2009) A coordinated phosphorylation cascade initiated by p38MAPK/MSK1 directs RARα to target promoters. EMBO J 28:34–47. https://doi.org/10.1038/emboj.2008.256

    Article  CAS  PubMed  Google Scholar 

  64. Zhang T, Chen D, Lee TH (2020) Phosphorylation signaling in APP processing in Alzheimer’s disease. Int J Mol Sci. https://doi.org/10.3390/ijms21010209

    Article  PubMed  PubMed Central  Google Scholar 

  65. Macleod R, Hillert EK, Cameron RT, Baillie GS (2015) The role and therapeutic targeting of α-, β-and γ-secretase in Alzheimer’s disease. Futur Sci OA. https://doi.org/10.4155/fso.15.9

    Article  Google Scholar 

  66. Xu X (2009) γ-Secretase catalyzes sequential cleavages of the AβPP transmembrane domain. J Alzheimer’s Dis 16:211–224. https://doi.org/10.3233/JAD-2009-0957

    Article  CAS  Google Scholar 

  67. Vassar R (2004) BACE1: The β-secreiase enzyme in Alzheimer’s disease. J Mol Neurosci 23:105–113. https://doi.org/10.1385/JMN:23:1-2:105

    Article  CAS  PubMed  Google Scholar 

  68. Roberds SL, Anderson J, Basi G et al (2001) BACE knockout mice are healthy despite lacking the primary β-secretase activity in brain: Implications for Alzheimer’s disease therapeutics. Hum Mol Genet 10:1317–1324. https://doi.org/10.1093/hmg/10.12.1317

    Article  CAS  PubMed  Google Scholar 

  69. Luo Y, Bolon B, Damore MA et al (2003) BACE1 (β-secretase) knockout mice do not acquire compensatory gene expression changes or develop neural lesions over time. Neurobiol Dis 14:81–88. https://doi.org/10.1016/S0969-9961(03)00104-9

    Article  CAS  PubMed  Google Scholar 

  70. Cai H, Wang Y, McCarthy D et al (2001) BACE1 is the major β-secretase for generation of Aβ peptides by neurons. Nat Neurosci 4:233–234. https://doi.org/10.1038/85064

    Article  CAS  PubMed  Google Scholar 

  71. Hong L, Koelsch G, Lin X et al (2000) Structure of the protease domain of memapsin 2 (β-secretase) complexed with inhibitor. Science 290(80):150–153. https://doi.org/10.1126/science.290.5489.150

    Article  CAS  PubMed  Google Scholar 

  72. Dislich B, Lichtenthaler SF (2012) The membrane-bound aspartyl protease BACE1: molecular and functional properties in Alzheimer’s disease and beyond. Front Physiol 3:1–16. https://doi.org/10.3389/fphys.2012.00008

    Article  CAS  Google Scholar 

  73. Vassar R, Bennett BD, Babu-Khan S et al (1999) β-Secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286(80):735–741. https://doi.org/10.1126/science.286.5440.735

    Article  CAS  PubMed  Google Scholar 

  74. Aleksis R, Oleskovs F, Jaudzems K et al (2017) Structural studies of amyloid-β peptides: Unlocking the mechanism of aggregation and the associated toxicity. Biochimie 140:176–192. https://doi.org/10.1016/j.biochi.2017.07.011

    Article  CAS  PubMed  Google Scholar 

  75. Vassar R, Cole S (2008) The basic biology of BACE1: a key therapeutic target for alzheimers disease. Curr Genomics 8:509–530. https://doi.org/10.2174/138920207783769512

    Article  Google Scholar 

  76. Schenk D, Basi GS, Pangalos MN (2012) Treatment strategies targeting amyloid β-protein. Cold Spring Harb Perspect Med 2:1–32. https://doi.org/10.1101/cshperspect.a006387

    Article  CAS  Google Scholar 

  77. Citron M (2004) β-Secretase inhibition for the treatment of Alzheimer’s disease—promise and challenge. Trends Pharmacol Sci 25:92–97. https://doi.org/10.1016/j.tips.2003.12.004

    Article  CAS  PubMed  Google Scholar 

  78. Hemming ML, Elias JE, Gygi SP, Selkoe DJ (2009) Identification of β-secretase (BACE1) substrates using quantitative proteomics. PLoS ONE. https://doi.org/10.1371/journal.pone.0008477

    Article  PubMed  PubMed Central  Google Scholar 

  79. Barão S, Moechars D, Lichtenthaler SF, De Strooper B (2016) BACE1 physiological functions may limit its use as therapeutic target for alzheimer’s disease. Trends Neurosci 39:158–169. https://doi.org/10.1016/j.tins.2016.01.003

    Article  CAS  PubMed  Google Scholar 

  80. Coimbra JRM, Marques DFF, Baptista SJ et al (2018) Highlights in BACE1 inhibitors for Alzheimer’s disease treatment. Front Chem 6:1–10. https://doi.org/10.3389/fchem.2018.00178

    Article  CAS  Google Scholar 

  81. Harrison SM, Harper AJ, Hawkins J et al (2003) BACE1 (β-secretase) transgenic and knockout mice: identification of neurochemical deficits and behavioral changes. Mol Cell Neurosci 24:646–655. https://doi.org/10.1016/S1044-7431(03)00227-6

    Article  CAS  PubMed  Google Scholar 

  82. Dominguez D, Tournoy J, Hartmann D et al (2005) Phenotypic and biochemical analyses of BACE1- and BACE2-deficient mice. J Biol Chem 280:30797–30806. https://doi.org/10.1074/jbc.M505249200

    Article  CAS  PubMed  Google Scholar 

  83. Willem M, Garratt AN, Novak B et al (2006) Control of peripheral nerve myelination by the β-secretase BACE1. Science 314(80):664–666. https://doi.org/10.1126/science.1132341

    Article  CAS  PubMed  Google Scholar 

  84. Birchmeier C, Nave KA (2008) Neuregulin-1, a key axonal signal that drives schwann cell growth and differentiation. Glia 56:1491–1497. https://doi.org/10.1002/glia.20753

    Article  PubMed  Google Scholar 

  85. Hu X, Hicks CW, He W et al (2006) Bace1 modulates myelination in the central and peripheral nervous system. Nat Neurosci 9:1520–1525. https://doi.org/10.1038/nn1797

    Article  CAS  PubMed  Google Scholar 

  86. Kim DY, Carey BW, Wang H et al (2007) BACE1 regulates voltage-gated sodium channels and neuronal activity. Nat Cell Biol 9:755–764. https://doi.org/10.1038/ncb1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang R, Chen S, Liu Y et al (2015) All-trans-retinoic acid reduces BACE1 expression under inflammatory conditions via modulation of nuclear factor κB (NFκB) signaling. J Biol Chem 290:22532–22542. https://doi.org/10.1074/jbc.M115.662908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yan R, Bienkowski MJ, Shuck ME et al (1999) Membrane-anchored aspartyl protease with Alzheimer’s disease β-secretase activity. Nature 402:533–537. https://doi.org/10.1038/990107

    Article  CAS  PubMed  Google Scholar 

  89. Lin X, Koelsch G, Wu S et al (2000) Human aspartic protease memapsin 2 cleaves the β-secretase site of β-amyloid precursor protein. Proc Natl Acad Sci 97:1456–1460. https://doi.org/10.1073/pnas.97.4.1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Farzan M, Schnitzler CE, Vasilieva N et al (2000) BACE2, a β-secretase homolog, cleaves at the β site and within the amyloid-β region of the amyloid-β precursor protein. Proc Natl Acad Sci 97:9712–9717. https://doi.org/10.1073/pnas.160115697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sun X, He G, Song W (2006) BACE2, as a novel APP θ-secretase, is not responsible for the pathogenesis of Alzheimer’s disease in Down syndrome. FASEB J 20:1369–1376. https://doi.org/10.1096/fj.05-5632com

    Article  CAS  PubMed  Google Scholar 

  92. Basi G, Frigon N, Barbour R et al (2003) Antagonistic effects of β-site amyloid precursor protein-cleaving enzymes 1 and 2 β-amyloid peptide production in cells. J Biol Chem 278:31512–31520. https://doi.org/10.1074/jbc.M300169200

    Article  CAS  PubMed  Google Scholar 

  93. Farzan M, Schnitzler CE, Vasilieva N et al (2000) BACE2, a β-secretase homolog, cleaves at the β site and within the amyloid-β region of the amyloid-β precursor protein. Proc Natl Acad Sci USA 97:9712–9717. https://doi.org/10.1073/pnas.160115697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fluhrer R, Capell A, Westmeyer G et al (2002) A non-amyloidogenic function of BACE-2 in the secretory pathway. J Neurochem 81:1011–1020. https://doi.org/10.1046/j.1471-4159.2002.00908.x

    Article  CAS  PubMed  Google Scholar 

  95. Yan R, Munzner JB, Shuck ME, Bienkowski MJ (2001) BACE2 functions as an alternative α-secretase in cells*. J Biol Chem 276:34019–34027. https://doi.org/10.1074/jbc.M105583200

    Article  CAS  PubMed  Google Scholar 

  96. Azkona G, Levannon D, Groner Y, Dierssen M (2010) In vivo effects of APP are not exacerbated by BACE2 co-overexpression: behavioural characterization of a double transgenic mouse model. Amino Acids 39:1571–1580. https://doi.org/10.1007/s00726-010-0662-8

    Article  CAS  PubMed  Google Scholar 

  97. Azkona G, Amador-Arjona A, Obradors-Tarragó C et al (2010) Characterization of a mouse model overexpressing beta-site APP-cleaving enzyme 2 reveals a new role for BACE2. Genes Brain Behav 9:160–172. https://doi.org/10.1111/j.1601-183X.2009.00538.x

    Article  CAS  PubMed  Google Scholar 

  98. Abdul-Hay SO, Sahara T, McBride M et al (2012) Identification of BACE2 as an avid ß-amyloid-degrading protease. Mol Neurodegener 7:46. https://doi.org/10.1186/1750-1326-7-46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bennett BD, Babu-Khan S, Loeloff R et al (2000) Expression analysis of BACE2 in brain and peripheral tissues*. J Biol Chem 275:20647–20651. https://doi.org/10.1074/jbc.M002688200

    Article  CAS  PubMed  Google Scholar 

  100. Wang Z, Xu Q, Cai F et al (2019) BACE2, a conditional β-secretase, contributes to Alzheimer’s disease pathogenesis. JCI Insight 4:1–15. https://doi.org/10.1172/jci.insight.123431

    Article  Google Scholar 

  101. Holler CJ, Webb RL, Laux AL et al (2012) BACE2 expression increases in human neurodegenerative disease. Am J Pathol 180:337–350. https://doi.org/10.1016/j.ajpath.2011.09.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wolfe MS (2006) The γ-secretase complex: membrane-embedded proteolytic ensemble. Current 2006:45

    Google Scholar 

  103. De Strooper B, Iwatsubo T, Wolfe MS (2012) Presenilins and y-secretase: structure, function, and role in alzheimer disease. Cold Spring Harb Perspect Med 2:a006304–a006304. https://doi.org/10.1101/cshperspect.a006304

    Article  PubMed  PubMed Central  Google Scholar 

  104. Wolfe MS, Selkoe DJ, Xia W et al (1999) Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and [gamma]-secretase activity : Abstract : Nature. Nature 398:513–517

    Article  CAS  PubMed  Google Scholar 

  105. Chávez-Gutiérrez L, Tolia A, Maes E et al (2008) Glu332 in the nicastrin ectodomain is essential for γ-secretase complex maturation but not for its activity. J Biol Chem 283:20096–20105. https://doi.org/10.1074/jbc.M803040200

    Article  CAS  PubMed  Google Scholar 

  106. Hasegawa H, Sanjo N, Chen F et al (2004) Both the sequence and length of the C terminus of PEN-2 are critical for intermolecular interactions and function of presenilin complexes. J Biol Chem 279:46455–46463. https://doi.org/10.1074/jbc.M406289200

    Article  CAS  PubMed  Google Scholar 

  107. Shah S, Lee SF, Tabuchi K et al (2005) Nicastrin functions as a γ-secretase-substrate receptor. Cell 122:435–447. https://doi.org/10.1016/j.cell.2005.05.022

    Article  CAS  PubMed  Google Scholar 

  108. Edbauer D, Winkler E, Regula JT et al (2003) Reconstitution of γ-secretase activity. Nat Cell Biol 5:486–488. https://doi.org/10.1038/ncb960

    Article  CAS  PubMed  Google Scholar 

  109. Nornes S, Newman M, Wells S et al (2009) Independent and cooperative action of Psen2 with Psen1 in zebrafish embryos. Exp Cell Res 315:2791–2801. https://doi.org/10.1016/j.yexcr.2009.06.023

    Article  CAS  PubMed  Google Scholar 

  110. Hemming ML, Elias JE, Gygi SP, Selkoe DJ (2008) Proteomic profiling of γ-secretase substrates and mapping of substrate requirements. PLoS Biol 6:2314–2328. https://doi.org/10.1371/journal.pbio.0060257

    Article  CAS  Google Scholar 

  111. Beel AJ, Sanders CR (2008) Substrate specificity of γ-secretase and other intramembrane proteases. Cell Mol Life Sci 65:1311–1334. https://doi.org/10.1007/s00018-008-7462-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Takami M, Nagashima Y, Sano Y et al (2009) γ-Secretase: successive tripeptide and tetrapeptide release from the transmembrane domain of β-carboxyl terminal fragment. J Neurosci 29:13042–13052. https://doi.org/10.1523/JNEUROSCI.2362-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Qi-Takahara Y, Morishima-Kawashima M, Tanimura Y et al (2005) Longer forms of amyloid β protein: implications for the mechanism of intramembrane cleavage by γ-secretase. J Neurosci 25:436–445. https://doi.org/10.1523/JNEUROSCI.1575-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Weidemann A, Eggert S, Reinhard FBM et al (2002) A novel ε-cleavage within the transmembrane domain of the Alzheimer amyloid precursor protein demonstrates homology with notch processing. Biochemistry 41:2825–2835. https://doi.org/10.1021/bi015794o

    Article  CAS  PubMed  Google Scholar 

  115. Sastre M, Steiner H, Fuchs K et al (2001) Presenilin-dependent γ-secretase processing of β-amyloid precursor protein at a site corresponding to the S3 cleavage of Notch. EMBO Rep 2:835–841. https://doi.org/10.1093/embo-reports/kve180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol 8:101–112. https://doi.org/10.1038/nrm2101

    Article  CAS  PubMed  Google Scholar 

  117. Fluhrer R, Steiner H, Haass C (2009) Intramembrane Proteolysis by signal peptide peptidases: a comparative discussion of GXGD-type aspartyl proteases. J Biol Chem 284:13975–13979. https://doi.org/10.1074/jbc.R800040200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Fluhrer R, Fukumori A, Martin L et al (2008) Intramembrane proteolysis of GXGD-type aspartyl proteases is slowed by a familial Alzheimer disease-like mutation. J Biol Chem 283:30121–30128. https://doi.org/10.1074/jbc.M806092200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Fluhrer R, Grammer G, Israel L et al (2006) A γ-secretase-like intramembrane cleavage of TNFα by the GxGD aspartyl protease SPPL2b. Nat Cell Biol 8:894–896. https://doi.org/10.1038/ncb1450

    Article  CAS  PubMed  Google Scholar 

  120. Kapoor A, Wang BJ, Hsu WM et al (2013) Retinoic acid-elicited RARα/RXRα signaling attenuates aβ production by directly inhibiting γ-secretase-mediated cleavage of amyloid precursor protein. ACS Chem Neurosci 4:1093–1100. https://doi.org/10.1021/cn400039s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Checler F, Afram E, Pardossi-Piquard R, Lauritzen I (2021) Is γ-secretase a beneficial inactivating enzyme of the toxic APP C-terminal fragment C99? J Biol Chem. https://doi.org/10.1016/j.jbc.2021.100489

    Article  PubMed  PubMed Central  Google Scholar 

  122. Kampmann E, Mey J (2007) Retinoic acid enhances Erk phosphorylation in the chick retina. Neurosci Lett 426:18–22. https://doi.org/10.1016/j.neulet.2007.07.039

    Article  CAS  PubMed  Google Scholar 

  123. Higashi S, Miyazaki K (2003) Novel processing of β-amyloid precursor protein catalyzed by membrane type 1 matrix metalloproteinase releases a fragment lacking the inhibitor domain against gelatinase A. Biochemistry 42:6514–6526. https://doi.org/10.1021/bi020643m

    Article  CAS  PubMed  Google Scholar 

  124. Ahmad M, Takino T, Miyamori H et al (2006) Cleavage of amyloid-β precursor protein (APP) by membrane-type matrix metalloproteinases. J Biochem 139:517–526. https://doi.org/10.1093/jb/mvj054

    Article  CAS  PubMed  Google Scholar 

  125. Py NA, Bonnet AE, Bernard A et al (2014) Differential spatio-temporal regulation of MMPs in the 5xFAD mouse model of Alzheimer ’ s disease: evidence for a pro-amyloidogenic role of MT1-MMP. Aging Neurosci 6:1–17. https://doi.org/10.3389/fnagi.2014.00247

    Article  CAS  Google Scholar 

  126. Marchalant Y, Bonnet AE, Crouzin N, Carrete A (2016) MT5-MMP is a new pro-amyloidogenic proteinase that promotes amyloid pathology and cognitive decline in a transgenic mouse model of Alzheimer’s disease. J Alzheimer Dis 2016:217–236. https://doi.org/10.1007/s00018-015-1992-1

    Article  CAS  Google Scholar 

  127. Baranger K, Bonnet AE, Girard SD et al (2017) MT5-MMP promotes Alzheimer ’ s pathogenesis in the frontal cortex of 5xFAD mice and APP trafficking in vitro. J Alzheimer Dis 9:1–17. https://doi.org/10.3389/fnmol.2016.00163

    Article  CAS  Google Scholar 

  128. Hook VYH, Kindy M, Hook G (2008) Inhibitors of cathepsin B improve memory and reduce ␤ -amyloid in transgenic alzheimer disease mice expressing the wild-type, but not the swedish mutant, ␤ -secretase site of the amyloid precursor protein *. J Biol Chem 283:7745–7753. https://doi.org/10.1074/jbc.M708362200

    Article  CAS  PubMed  Google Scholar 

  129. Ladror US, Snyder SW, Wang GT et al (1994) Cleavage at the amino and carboxyl termini of Alzheimer’s amyloid-beta by cathepsin D. J Biol Chem 269:18422–18428

    Article  CAS  PubMed  Google Scholar 

  130. Cataldo AM, Barnett JL, Berman SA et al (1995) Gene expression and cellular content of cathepsin D in Alzheimer’s disease brain: evidence for early up-regulation of the endosomal-lysosomal system. Neuron 14:671–680. https://doi.org/10.1016/0896-6273(95)90324-0

    Article  CAS  PubMed  Google Scholar 

  131. Saftig P, Peters C, von Figura K et al (1996) Amyloidogenic processing of human amyloid precursor protein in hippocampal neurons devoid of cathepsin D. J Biol Chem 271:27241–27244. https://doi.org/10.1074/jbc.271.44.27241

    Article  CAS  PubMed  Google Scholar 

  132. Hook V, Schechter I, Hans-Ulrich Demuth GH (2009) Alternative pathways for production of beta-amyloid peptides of alzheimer’s disease. Biol Chem 389:993–1006. https://doi.org/10.1515/BC.2008.124

    Article  CAS  Google Scholar 

  133. Jefferson T, Čaušević M, auf dem Keller U et al (2011) Metalloprotease meprin beta generates nontoxic N-terminal amyloid precursor protein fragments in vivo. J Biol Chem 286:27741–27750. https://doi.org/10.1074/jbc.M111.252718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Scharfenberg F, Armbrust F, Marengo L et al (2019) Regulation of the alternative β-secretase meprin β by ADAM-mediated shedding. Cell Mol Life Sci 76:3193–3206. https://doi.org/10.1007/s00018-019-03179-1

    Article  CAS  PubMed  Google Scholar 

  135. Scharfenberg F, Helbig A, Sammel M et al (2020) Degradome of soluble ADAM10 and ADAM17 metalloproteases. Cell Mol Life Sci 77:331–350. https://doi.org/10.1007/s00018-019-03184-4

    Article  CAS  PubMed  Google Scholar 

  136. Walter S, Jumpertz T, Hüttenrauch M et al (2019) The metalloprotease ADAMTS4 generates N-truncated Aβ4-x species and marks oligodendrocytes as a source of amyloidogenic peptides in Alzheimer’s disease. Acta Neuropathol 137:239–257. https://doi.org/10.1007/s00401-018-1929-5

    Article  CAS  PubMed  Google Scholar 

  137. Hayashita-Kinoh H, Kinoh H, Okada A et al (2001) Membrane-type 5 matrix metalloproteinase is expressed in differentiated neurons and regulates axonal growth. Cell Growth Differ Mol Biol J Am Assoc Cancer Res 12:573–580

    CAS  Google Scholar 

  138. Niederreither K, Dollé P (2008) Retinoic acid in development: towards an integrated view. Nat Rev Genet 9:541–553. https://doi.org/10.1038/nrg2340

    Article  CAS  PubMed  Google Scholar 

  139. Pino-Lagos K, Benson MJ, Noelle RJ (2008) Retinoic acid in the immune system. Ann N Y Acad Sci 1143:170–187. https://doi.org/10.1196/annals.1443.017

    Article  CAS  PubMed  Google Scholar 

  140. Krupsky M, Fine A, Berk JL, Goldstein RH (1993) The effect of retinoic acid on amino acid uptake and protein synthesis by lung fibroblasts. J Biol Chem 268:23283–23288. https://doi.org/10.1016/s0021-9258(19)49460-x

    Article  CAS  PubMed  Google Scholar 

  141. Lichtenthaler SF (2011) Alpha-secretase in Alzheimer’s disease: Molecular identity, regulation and therapeutic potential. J Neurochem 116:10–21. https://doi.org/10.1111/j.1471-4159.2010.07081.x

    Article  CAS  PubMed  Google Scholar 

  142. Duong V, Rochette-Egly C (2011) The molecular physiology of nuclear retinoic acid receptors. From health to disease. Biochim Biophys Acta Mol Basis Dis 1812:1023–1031. https://doi.org/10.1016/j.bbadis.2010.10.007

    Article  CAS  Google Scholar 

  143. Mark M, Ghyselinck NB, Chambon P (2006) Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu Rev Pharmacol Toxicol 46:451–480. https://doi.org/10.1146/annurev.pharmtox.46.120604.141156

    Article  CAS  PubMed  Google Scholar 

  144. Moutinho M, Codocedo JF, Puntambekar SS, Landreth GE (2019) Nuclear receptors as therapeutic targets for neurodegenerative diseases: lost in translation. Annu Rev Pharmacol Toxicol 59:237–261. https://doi.org/10.1146/annurev-pharmtox-010818-021807

    Article  CAS  PubMed  Google Scholar 

  145. Goncalves MB, Clarke E, Hobbs C et al (2013) Amyloid β inhibits retinoic acid synthesis exacerbating Alzheimer disease pathology which can be attenuated by an retinoic acid receptor α agonist. Eur J Neurosci 37:1182–1192. https://doi.org/10.1111/ejn.12142

    Article  PubMed  PubMed Central  Google Scholar 

  146. Das BC, Dasgupta S, Ray SK (2019) Potential therapeutic roles of retinoids for prevention of neuroinflammation and neurodegeneration in Alzheimer’s disease. Neural Regen Res 14:1880–1892. https://doi.org/10.4103/1673-5374.259604

    Article  PubMed  PubMed Central  Google Scholar 

  147. Trigo D, Goncalves MB, Corcoran JPT (2019) The regulation of mitochondrial dynamics in neurite outgrowth by retinoic acid receptor β signaling. FASEB J 33:7225–7235. https://doi.org/10.1096/fj.201802097R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. David M, Hodak E, Lowe NJ (1988) Adverse effects of retinoids. Med Toxicol Adverse Drug Exp 3:273–288. https://doi.org/10.1007/BF03259940

    Article  CAS  PubMed  Google Scholar 

  149. Aryal A, Upreti S (2017) A brief review on systemic retinoids. Int J Pharm Sci Res 8:3630–3639

    CAS  Google Scholar 

  150. Allenby G, Bocquel MT, Saunders M et al (1993) Retinoic acid receptors and retinoid X receptors: interactions with endogenous retinoic acids. Proc Natl Acad Sci U S A 90:30–34. https://doi.org/10.1073/pnas.90.1.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lohnes D, Kastner P, Dierich A et al (1993) Function of retinoic acid receptor γ in the mouse. Cell 73:643–658. https://doi.org/10.1016/0092-8674(93)90246-M

    Article  CAS  PubMed  Google Scholar 

  152. Bastien J, Rochette-Egly C (2004) Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene 328:1–16. https://doi.org/10.1016/j.gene.2003.12.005

    Article  CAS  PubMed  Google Scholar 

  153. le Maire A, Teyssier C, Balaguer P et al (2019) Regulation of RXR-RAR heterodimers by RXR- and RAR-specific ligands and their combinations. Cells 8:1392. https://doi.org/10.3390/cells8111392

    Article  CAS  PubMed Central  Google Scholar 

  154. Smith SM (1994) Retinoic acid receptor isoform β2 is an early marker for alimentary tract and central nervous system positional specification in the chicken. Dev Dyn 200:14–25. https://doi.org/10.1002/aja.1002000103

    Article  CAS  PubMed  Google Scholar 

  155. Parrado A, Despouy G, Kraïba R et al (2001) Retinoic acid receptor α1 variants, RARα1ΔB and RARα1ΔBC, define a new class of nuclear receptor isoforms. Nucleic Acids Res 29:4901–4908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Nagpal S, Zelent A, Chambon P (1992) RAR-β4, a retinoic acid receptor isoform is generated from RAR-β2 by alternative splicing and usage of a CUG initiator codon. Proc Natl Acad Sci USA 89:2718–2722. https://doi.org/10.1073/pnas.89.7.2718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Pogenberg V, Guichoul JF, Vivat-Hannah V et al (2005) Characterization of the interaction between retinoic acid receptor/retinoid X receptor (RAR/RXR) heterodimers and transcriptional coactivators through structural and fluorescence anisotropy studies. J Biol Chem 280:1625–1633. https://doi.org/10.1074/jbc.M409302200

    Article  CAS  PubMed  Google Scholar 

  158. Rotondo JC, Borghi A, Selvatici R et al (2018) Association of retinoic acid receptor β gene with onset and progression of lichen sclerosus-associated vulvar squamous cell carcinoma. JAMA Dermatol 154:819–823. https://doi.org/10.1001/jamadermatol.2018.1373

    Article  PubMed  PubMed Central  Google Scholar 

  159. Borthwick AD, Goncalves MB, Corcoran JPT (2020) Recent advances in the design of RAR α and RAR β agonists as orally bioavailable drugs. A review. Bioorganic Med Chem 28:115664. https://doi.org/10.1016/j.bmc.2020.115664

    Article  CAS  Google Scholar 

  160. Lohnes D, Kastner P, Dierich A et al (1993) Function of retinoic acid receptor gamma in the mouse. Cell 73:643–658. https://doi.org/10.1016/0092-8674(93)90246-m

    Article  CAS  PubMed  Google Scholar 

  161. Di Rocco A, Uchibe K, Larmour C et al (2015) Selective retinoic acid receptor γ agonists promote repair of injured skeletal muscle in mouse. Am J Pathol 185:2495–2504. https://doi.org/10.1016/j.ajpath.2015.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Heyman RA, Mangelsdorf DJ, Dyck JA et al (1992) 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell 68:397–406. https://doi.org/10.1016/0092-8674(92)90479-v

    Article  CAS  PubMed  Google Scholar 

  163. le Maire A, Teyssier C, Balaguer P et al (2019) Regulation of RXR-RAR heterodimers by RXR- and RAR-specific ligands and their combinations. Cells. https://doi.org/10.3390/cells8111392

    Article  PubMed  PubMed Central  Google Scholar 

  164. Proschak E, Heitel P, Kalinowsky L, Merk D (2017) Opportunities and challenges for fatty acid mimetics in drug discovery. J Med Chem 60:5235–5266. https://doi.org/10.1021/acs.jmedchem.6b01287

    Article  CAS  PubMed  Google Scholar 

  165. Pollinger J, Gellrich L, Schierle S et al (2019) Tuning nuclear receptor selectivity of Wy14,643 towards selective retinoid X receptor modulation. J Med Chem 62:2112–2126. https://doi.org/10.1021/acs.jmedchem.8b01848

    Article  CAS  PubMed  Google Scholar 

  166. Schierle S, Merk D (2019) Therapeutic modulation of retinoid X receptors–SAR and therapeutic potential of RXR ligands and recent patents. Expert Opin Ther Pat 29:605–621. https://doi.org/10.1080/13543776.2019.1643322

    Article  CAS  PubMed  Google Scholar 

  167. Wan YJ, An D, Cai Y et al (2000) Hepatocyte-specific mutation establishes retinoid X receptor alpha as a heterodimeric integrator of multiple physiological processes in the liver. Mol Cell Biol 20:4436–4444. https://doi.org/10.1128/MCB.20.12.4436-4444.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wan YJ, Cai Y, Lungo W et al (2000) Peroxisome proliferator-activated receptor alpha-mediated pathways are altered in hepatocyte-specific retinoid X receptor alpha-deficient mice. J Biol Chem 275:28285–28290. https://doi.org/10.1074/jbc.M000934200

    Article  CAS  PubMed  Google Scholar 

  169. Wan Y-JY, Han G, Cai Y et al (2003) Hepatocyte retinoid X receptor-alpha-deficient mice have reduced food intake, increased body weight, and improved glucose tolerance. Endocrinology 144:605–611. https://doi.org/10.1210/en.2002-221003

    Article  CAS  PubMed  Google Scholar 

  170. Cramer PE, Cirrito JR, Wesson DW et al (2012) ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models. Science 335:1503–1506. https://doi.org/10.1126/science.1217697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Jiang Q, Lee CYD, Mandrekar S et al (2008) ApoE promotes the proteolytic degradation of Abeta. Neuron 58:681–693. https://doi.org/10.1016/j.neuron.2008.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Poirier J (2000) Apolipoprotein E and Alzheimer’s disease. A role in amyloid catabolism. Ann N Y Acad Sci 924:81–90. https://doi.org/10.1111/j.1749-6632.2000.tb05564.x

    Article  CAS  PubMed  Google Scholar 

  173. Poirier J (1996) Apolipoprotein E in the brain and its role in alzheimer’s disease. J Psychiatry Neurosci 21(2):128

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Chang T-Y, Yamauchi Y, Hasan MT, Chang C (2017) Cellular cholesterol homeostasis and Alzheimer’s disease. J Lipid Res 58:2239–2254. https://doi.org/10.1194/jlr.R075630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185. https://doi.org/10.1126/science.1566067

    Article  CAS  PubMed  Google Scholar 

  176. Poirier J (1994) Apolipoprotein E in animal models of CNS injury and in alzheimer’s disease. Trends Neurosci 17:525–530. https://doi.org/10.1016/0166-2236(94)90156-2

    Article  CAS  PubMed  Google Scholar 

  177. Yamanaka M, Ishikawa T, Griep A et al (2012) PPARγ/RXRα-induced and CD36-mediated microglial amyloid-β phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice. J Neurosci 32:17321–17331. https://doi.org/10.1523/JNEUROSCI.1569-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Giguere V, Ong ES, Segui P, Evans RM (1987) Identification of a receptor for the morphogen retinoic acid. Nature 330:624–629. https://doi.org/10.1038/330624a0

    Article  CAS  PubMed  Google Scholar 

  179. Goncalves MB, Malmqvist T, Clarke E et al (2015) Neuronal RARβ signaling modulates PTEN activity directly in neurons and via exosome transfer in astrocytes to prevent glial scar formation and induce spinal cord regeneration. J Neurosci 35:15731–15745. https://doi.org/10.1523/JNEUROSCI.1339-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Wang X, Dasari S, Nowakowski GS et al (2017) Retinoic acid receptor alpha drives cell cycle progression and is associated with increased sensitivity to retinoids in T-cell lymphoma. Oncotarget 8:26245–26255. https://doi.org/10.18632/oncotarget.15441

    Article  PubMed  PubMed Central  Google Scholar 

  181. Corcoran J, Shroot B, Pizzey J, Maden M (2000) The role of retinoic acid receptors in neurite outgrowth from different populations of embryonic mouse dorsal root ganglia. J Cell Sci 113(1):2567–2574

    Article  CAS  PubMed  Google Scholar 

  182. Mark M, Ghyselinck NB, Chambon P (2009) Function of retinoic acid receptors during embryonic development. Nucl Recept Signal. https://doi.org/10.1621/nrs.07002

    Article  PubMed  PubMed Central  Google Scholar 

  183. Das BC, Thapa P, Karki R et al (2014) Retinoic acid signaling pathways in development and diseases. Bioorg Med Chem 22:673–683. https://doi.org/10.1016/j.bmc.2013.11.025

    Article  CAS  PubMed  Google Scholar 

  184. Duester G (2008) Retinoic acid synthesis and signaling during early organogenesis. Cell 134:921–931. https://doi.org/10.1016/j.cell.2008.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Goncalves MBCV, Agudo M, Connor S et al (2009) Sequential RARβ and α signalling in vivo can induce adult forebrain neural progenitor cells to differentiate into neurons through Shh and FGF signalling pathways. Dev Biol 326:305–313. https://doi.org/10.1016/j.ydbio.2008.11.018

    Article  CAS  PubMed  Google Scholar 

  186. Al TZ, Gaouar S, Piskunov A et al (2014) Phosphorylation of the retinoic acid receptor RARγ2 is crucial for the neuronal differentiation of mouse embryonic stem cells. J Cell Sci 127:2095–2105. https://doi.org/10.1242/jcs.145979

    Article  CAS  Google Scholar 

  187. Kam RKT, Deng Y, Chen Y, Zhao H (2012) Retinoic acid synthesis and functions in early embryonic development. Cell Biosci 2:11. https://doi.org/10.1186/2045-3701-2-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Goncalves MB, Wu Y, Clarke E et al (2019) Regulation of myelination by exosome associated retinoic acid release from NG2-positive cells. J Neurosci 39:3013–3027. https://doi.org/10.1523/JNEUROSCI.2922-18.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Olivares AM, Moreno-Ramos OA, Haider NB (2015) Role of nuclear receptors in central nervous system development and associated diseases. J Exp Neurosci 92:93–121. https://doi.org/10.4137/JEN.S25480

    Article  Google Scholar 

  190. Mattei MG, de Thé H, Mattei JF et al (1988) Assignment of the human hap retinoic acid receptor RAR beta gene to the p24 band of chromosome 3. Hum Genet 80:189–190. https://doi.org/10.1007/BF00702867

    Article  CAS  PubMed  Google Scholar 

  191. Corcoran J, Maden M (1999) Nerve growth factor acts via retinoic acid synthesis to stimulate neurite outgrowth. Nat Neurosci 2:307–308. https://doi.org/10.1038/7214

    Article  CAS  PubMed  Google Scholar 

  192. Noy N (2010) Between death and survival: retinoic acid in regulation of apoptosis. Annu Rev Nutr 30:201–217. https://doi.org/10.1146/annurev.nutr.28.061807.155509

    Article  CAS  PubMed  Google Scholar 

  193. Dollé P (2009) Developmental expression of retinoic acid receptors (RARs). Nucl Recept Signal 7:e006. https://doi.org/10.1621/nrs.07006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Gudas LJ (1994) Retinoids and vertebrate development. J Biol Chem 269:15399–15402

    Article  CAS  PubMed  Google Scholar 

  195. Niewiadomska-cimicka A, Krzy A, Ye T (2016) Genome-wide analysis of RAR β transcriptional targets in mouse striatum links retinoic acid signaling with Huntington’s disease and other neurodegenerative disorders. Mol Neurobiol. https://doi.org/10.1007/s12035-016-0010-4

    Article  PubMed  Google Scholar 

  196. Patil SB, Brock JH, Colman DR, Huntley GW (2011) Neuropathic pain- and glial derived neurotrophic factor-associated regulation of cadherins in spinal circuits of the dorsal horn. Pain 152:924–935. https://doi.org/10.1016/j.pain.2011.01.017

    Article  CAS  PubMed  Google Scholar 

  197. Hur EM, Saijilafu ZFQ (2012) Growing the growth cone: remodeling the cytoskeleton to promote axon regeneration. Trends Neurosci 35:164–174. https://doi.org/10.1016/j.tins.2011.11.002

    Article  CAS  PubMed  Google Scholar 

  198. Wu A, Green CR, Rupenthal ID, Moalem-Taylor G (2012) Role of gap junctions in chronic pain. J Neurosci Res 90:337–345. https://doi.org/10.1002/jnr.22764

    Article  CAS  PubMed  Google Scholar 

  199. Maria B, Mendoza- A, Corcoran PT et al (2019) RAR b agonist drug (C286) demonstrates efficacy in a pre-clinical neuropathic pain model. ISCIENCE 20:554–566. https://doi.org/10.1016/j.isci.2019.09.020

    Article  CAS  Google Scholar 

  200. Rataj-baniowska M, Niewiadomska-cimicka A, Paschaki X et al (2015) Retinoic acid receptor B controls development of striatonigral projection neurons through FGF-dependent and Meis1-dependent mechanisms. J Neurosci 35:14467–14475. https://doi.org/10.1523/JNEUROSCI.1278-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Wuarin L, Sidell N, Biology C et al (1990) Retinoids increase perinatal spinal cord neuronal survival and astroglial differentiation. Int J Develop Neurosci 8:317–326. https://doi.org/10.1016/0736-5748(90)90038

    Article  CAS  Google Scholar 

  202. Clark JN, Whiting A, Mccaffery P (2020) Retinoic acid receptor targeted drugs in neurodegenerative disease. Expert Opin Drug Metab Toxicol. https://doi.org/10.1080/17425255.2020.1811232

    Article  PubMed  Google Scholar 

  203. Bourguet W, Gronemeyer H (2011) Retinoic acid receptor modulators: a perspective on recent advances and promises. Expert Opin Therapautic Patients 21:55–63

    Article  Google Scholar 

  204. Shudo K, Fukasawa H, Nakagomi M, Yamagata N (2009) Towards retinoid therapy for alzheimers disease. Curr Alzheimer Res 6:302–311. https://doi.org/10.2174/156720509788486581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Spanjaard RA, Ikeda M, Lee PJ et al (1997) Specific activation of retinoic acid receptors (RARS) and retinoid X receptors reveals a unique role for RARΥ in induction of differentiation and apoptosis of S91 melanoma cells. J Biol Chem 272:18990–18999. https://doi.org/10.1074/jbc.272.30.18990

    Article  CAS  PubMed  Google Scholar 

  206. Hill DS, Ragsdale CW, Brockes JP (1993) Isoform-specific immunological detection of newt retinoic acid receptor y in normal and regenerating limbs. Development 117:937–945. https://doi.org/10.1242/dev.117.3.937

    Article  CAS  PubMed  Google Scholar 

  207. Podleśny-Drabiniok A, Sobska J, De Lera AR et al (2017) Distinct retinoic acid receptor (RAR) isotypes control differentiation of embryonal carcinoma cells to dopaminergic or striatopallidal medium spiny neurons. Sci Rep 7:1–14. https://doi.org/10.1038/s41598-017-13826-x

    Article  CAS  Google Scholar 

  208. Kona SL, Shrestha A, Yi X et al (2017) RARβ2-dependent signaling represses neuronal differentiation in mouse ES cells. Differentiation 98:55–61. https://doi.org/10.1016/j.diff.2017.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Goldfarb S, Fainstein N, Ganz T et al (2021) Electric neurostimulation regulates microglial activation via retinoic acid receptor α signaling. Brain Behav Immun. https://doi.org/10.1016/j.bbi.2021.05.007

    Article  PubMed  Google Scholar 

  210. Goncalves MBCV, Boyle J, Webber DJ et al (2005) Timing of the retinoid-signalling pathway determines the expression of neuronal markers in neural progenitor cells. Dev Biol 278:60–70. https://doi.org/10.1016/j.ydbio.2004.10.015

    Article  CAS  PubMed  Google Scholar 

  211. Haskell GT, LaMantia AS (2005) Retinoic acid signaling identifies a distinct precursor population in the developing and adult forebrain. J Neurosci 25:7636–7647. https://doi.org/10.1523/JNEUROSCI.0485-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Nomoto M, Takeda Y, Uchida S et al (2012) Dysfunction of the RAR/RXR signaling pathway in the forebrain impairs hippocampal memory and synaptic plasticity. Mol Brain 5:1–15. https://doi.org/10.1186/1756-6606-5-8

    Article  CAS  Google Scholar 

  213. Maden M (2002) Retinoid signalling in the development of the central nervous system. Nat Rev Neurosci 3:843–853. https://doi.org/10.1038/nrn963

    Article  CAS  PubMed  Google Scholar 

  214. Maden M (2007) Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci 8:755–765. https://doi.org/10.1038/nrn2212

    Article  CAS  PubMed  Google Scholar 

  215. Jarvis CI, Goncalves MB, Clarke E et al (2010) Retinoic acid receptor-α signalling antagonizes both intracellular and extracellular amyloid-β production and prevents neuronal cell death caused by amyloid-β. Eur J Neurosci 32:1246–1255. https://doi.org/10.1111/j.1460-9568.2010.07426.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Mey J, McCaffery P (2004) Retinoic acid signaling in the nervous system of adult vertebrates. Neuroscientist 10:409–421. https://doi.org/10.1177/1073858404263520

    Article  CAS  PubMed  Google Scholar 

  217. Maden M (2000) The role of retinoic acid in embryonic and post-embryonic development. Proc Nutr Soc 59:65–73. https://doi.org/10.1017/S0029665100000082

    Article  CAS  PubMed  Google Scholar 

  218. Corcoran J, Shroot B, Pizzey J, Maden M (2000) The role of retinoic acid receptors in neurite outgrowth from different populations of embryonic mouse dorsal root ganglia. J Cell Sci 113:2567–2574. https://doi.org/10.1242/jcs.113.14.2567

    Article  CAS  PubMed  Google Scholar 

  219. Behairi N, Belkhelfa M, Rafa H et al (2016) All-trans retinoic acid (ATRA) prevents lipopolysaccharide-induced neuroinflammation, amyloidogenesis and memory impairment in aged rats. J Neuroimmunol 300:21–29. https://doi.org/10.1016/j.jneuroim.2016.10.004

    Article  CAS  PubMed  Google Scholar 

  220. Agudo M, Yip P, Davies M et al (2010) A retinoic acid receptor β agonist (CD2019) overcomes inhibition of axonal outgrowth via phosphoinositide 3-kinase signalling in the injured adult spinal cord. Neurobiol Dis 37:147–155. https://doi.org/10.1016/j.nbd.2009.09.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Postina R, Schroeder A, Dewachter I et al (2004) A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J Clin Invest 113:1456–1464. https://doi.org/10.1172/JCI20864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Yang H-Q, Ba M-W, Ren R-J et al (2007) Mitogen activated protein kinase and protein kinase C activation mediate promotion of sAPPα secretion by deprenyl. Neurochem Int 50:74–82. https://doi.org/10.1016/j.neuint.2006.07.016

    Article  CAS  PubMed  Google Scholar 

  223. Moutinho M, Landreth GE (2017) Therapeutic potential of nuclear receptor agonists in Alzheimer’s disease. J Lipid Res 58:1937–1949. https://doi.org/10.1194/jlr.R075556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Sancesario GM, Bernardini S (2018) Alzheimer ’ s disease in the omics era. Clin Biochem. https://doi.org/10.1016/j.clinbiochem.2018.06.011

    Article  PubMed  Google Scholar 

  225. Martins F, Marafona AM, Pereira CD et al (2018) Identification and characterization of the BRI2 interactome in the brain. Sci Rep 8:1–17. https://doi.org/10.1038/s41598-018-21453-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Zhao H, Li S, Li Z et al (2020) Intranasal delivery of 9-cis retinoic acid reduces beta-amyloid deposition via inhibiting astrocyte-mediated inflammation. Aging (Albany NY) 12:5469–5478. https://doi.org/10.18632/aging.102970

    Article  CAS  Google Scholar 

  227. Fukasawa H, Nakagomi M, Yamagata N et al (2012) Tamibarotene: a candidate retinoid drug for Alzheimer’s disease. Biol Pharm Bull 35:1206–1212. https://doi.org/10.1248/bpb.b12-00314

    Article  CAS  PubMed  Google Scholar 

  228. Layton A (2009) The use of isotretinoin in acne. Dermatoendocrinol 1:162–169. https://doi.org/10.4161/derm.1.3.9364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Ormerod AD, Thind CK, Rice SA et al (2012) Influence of isotretinoin on hippocampal-based learning in human subjects. Psychopharmacology 221:667–674. https://doi.org/10.1007/s00213-011-2611-y

    Article  CAS  PubMed  Google Scholar 

  230. Dos Santos GM, Stoye NM, Rose-John S et al (2019) The Synthetic Retinoid Acitretin Increases IL-6 in the Central Nervous System of Alzheimer Disease Model Mice and Human Patients. Front Aging Neurosci 11:182. https://doi.org/10.3389/fnagi.2019.00182

    Article  CAS  Google Scholar 

  231. Cummings JL, Zhong K, Kinney JW et al (2016) Double-blind, placebo-controlled, proof-of-concept trial of bexarotene Xin moderate Alzheimer’s disease. Alzheimer’s Res Ther 8:1–9. https://doi.org/10.1186/s13195-016-0173-2

    Article  CAS  Google Scholar 

  232. Wilhelmus MMM, de Jager M, Rozemuller AJM et al (2012) Transglutaminase 1 and its regulator tazarotene-induced gene 3 localize to neuronal tau inclusions in tauopathies. J Pathol 226:132–142. https://doi.org/10.1002/path.2984

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by ccdrc (Grant no. CENTRO-01-0145-FEDER-000003), fundação para a ciência e a tecnologia (Grant nos. PTDC/DTP-PIC/5587/2014, UID/BIM/04501/2013, 2020.02006.CEECIND).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Odete A. B. da Cruz e Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitória, J.J.M., Trigo, D. & da Cruz e Silva, O.A.B. Revisiting APP secretases: an overview on the holistic effects of retinoic acid receptor stimulation in APP processing. Cell. Mol. Life Sci. 79, 101 (2022). https://doi.org/10.1007/s00018-021-04090-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-021-04090-4

Keywords

Navigation