Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 727))

Abstract

Regulated intramembrane proteolysis (RIP) is a highly conserved signaling paradigm whereby membrane-bound signaling proteins are cleaved in their transmembrane region and then released into the cytoplasm to act as signaling molecules. In most if not all cases intramembrane cleavage is preceded and regulated by a membrane proximal cleavage step called ‘ectodomain shedding’. Here we will review the role of ectodomain shedding in RIP of the NOTCH signaling pathway, a highly conserved cell-cell communication pathway that mediates cell fate decisions during development and in adult tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown MS, Ye J, Rawson RB, Goldstein JL. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 2000; 100(4):391–398.

    Article  PubMed  CAS  Google Scholar 

  2. Urban S, Freeman M. Intramembrane proteolysis controls diverse signalling pathways throughout evolution. Curr Opin Genet Dev 2002; 12(5):512–518.

    Article  PubMed  CAS  Google Scholar 

  3. Osborne TF, Espenshade PJ. Evolutionary conservation and adaptation in the mechanism that regulates SREBP action: what a long, strange tRIP it’s been. Genes Dev 2009; 23(22):2578–2591.

    Article  PubMed  CAS  Google Scholar 

  4. Zhang K, Kaufman RJ. From endoplasmic-reticulum stress to the inflammatory response. Nature 2008; 454(7203):455–462.

    Article  PubMed  CAS  Google Scholar 

  5. Urban S, Lee JR, Freeman M. Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell 2001; 107(2):173–182.

    Article  PubMed  CAS  Google Scholar 

  6. Weihofen A, Binns K, Lemberg MK et al. Identification of signal peptide peptidase, a presenilin-type aspartic protease. Science 2002; 296(5576):2215–2218.

    Article  PubMed  CAS  Google Scholar 

  7. De Strooper B, Saftig P, Craessaerts K et al. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 1998; 391(6665):387–390.

    Article  PubMed  CAS  Google Scholar 

  8. Kopan R, Ilagan MX. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 2009; 137(2):216–233.

    Article  PubMed  CAS  Google Scholar 

  9. Kopan R, Goate A. A common enzyme connects notch signaling and Alzheimer’s disease. Genes Dev 2000; 14(22):2799–2806.

    Article  PubMed  CAS  Google Scholar 

  10. Feng L, Yan H, Wu Z et al. Structure of a site-2 protease family intramembrane metalloprotease. Science 2007; 318(5856):1608–1612.

    Article  PubMed  CAS  Google Scholar 

  11. Golde TE, Eckman CB. Physiologic and pathologic events mediated by intramembranous and juxtamembranous proteolysis. Sci STKE 2003; 2003(172):RE4.

    Article  PubMed  Google Scholar 

  12. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science 1999; 284(5415):770–776.

    Article  PubMed  CAS  Google Scholar 

  13. Gazave E, Lapebie P, Richards GS et al. Origin and evolution of the Notch signalling pathway: an overview from eukaryotic genomes. BMC Evol Biol 2009; 9:249.

    Article  PubMed  CAS  Google Scholar 

  14. Wilson A, Radtke F. Multiple functions of Notch signaling in self-renewing organs and cancer. FEBS Lett 2006; 580(12):2860–2868.

    Article  PubMed  CAS  Google Scholar 

  15. Vooijs M, Ong CT, Hadland B et al. Mapping the consequence of Notch1 proteolysis in vivo with NIP-CRE. Development. Feb 2007; 134(3):535–544.

    Article  PubMed  CAS  Google Scholar 

  16. Radtke F, Raj K. The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer 2003; 3(10):756–767.

    Article  PubMed  CAS  Google Scholar 

  17. van Es JH, van Gijn ME, Riccio O et al. Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 2005; 435(7044):959–963.

    Article  PubMed  CAS  Google Scholar 

  18. De Strooper B, Annaert W, Cupers P et al. A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 1999; 398(6727):518–522.

    Article  PubMed  CAS  Google Scholar 

  19. Stifani S, Blaumueller CM, Redhead NJ et al. Human homologs of a Drosophila Enhancer of split gene product define a novel family of nuclear proteins. Nat Genet 1992; 2(2):119–127.

    Article  PubMed  CAS  Google Scholar 

  20. Schroeter EH, Kisslinger JA, Kopan R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 1998; 393(6683):382–386.

    Google Scholar 

  21. Christensen S, Kodoyianni V, Bosenberg M et al. lag-1, a gene required for lin-12 and glp-1 signaling in Caenorhabditis elegans, is homologous to human CBF1 and Drosophila Su(H). Development 1996; 122(5):1373–1383.

    PubMed  CAS  Google Scholar 

  22. Fortini ME, Artavanis-Tsakonas S. The suppressor of hairless protein participates in notch receptor signaling. Cell 1994; 79(2):273–282.

    Article  PubMed  CAS  Google Scholar 

  23. Fryer CJ, Lamar E, Turbachova I et al. Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex. Genes Dev 2002; 16(11):1397–1411.

    Article  PubMed  CAS  Google Scholar 

  24. Gordon WR, Vardar-Ulu D, Histen G et al. Structural basis for autoinhibition of Notch. Nat Struct Mol Biol 2007; 14(4):295–300.

    Article  PubMed  CAS  Google Scholar 

  25. van Tetering G, van Diest P, Verlaan I et al. Metalloprotease ADAM10 is required for Notch1 site 2 cleavage. J Biol Chem. 2009; 284(45):31018–31027.

    Article  PubMed  CAS  Google Scholar 

  26. Weng AP, Ferrando AA, Lee W et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306(5694):269–271.

    Article  PubMed  CAS  Google Scholar 

  27. Kimble J, Simpson P. The LIN-12/Notch signaling pathway and its regulation. Annu Rev Cell Dev Biol 1997; 13:333–361.

    Article  PubMed  CAS  Google Scholar 

  28. Panin VM, Papayannopoulos V, Wilson R, Irvine KD. Fringe modulates Notch-ligand interactions. Nature 1997; 387(6636):908–912.

    Article  PubMed  CAS  Google Scholar 

  29. Okajima T, Irvine KD. Regulation of notch signaling by o-linked fucose. Cell 2002; 111(6):893–904.

    Article  PubMed  CAS  Google Scholar 

  30. Moloney DJ, Panin VM, Johnston SH et al. Fringe is a glycosyltransferase that modifies Notch. Nature 2000; 406(6794):369–375.

    Article  PubMed  CAS  Google Scholar 

  31. Haines N, Irvine KD. Glycosylation regulates Notch signalling. Nat Rev Mol Cell Biol 2003; 4(10):786–797.

    PubMed  CAS  Google Scholar 

  32. Struhl G, Greenwald I. Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature 1999; 398(6727):522–525.

    Article  PubMed  CAS  Google Scholar 

  33. Huppert SS, Le A, Schroeter EH et al. Embryonic lethality in mice homozygous for a processing-deficient allele of Notch1. Nature 2000; 405(6789):966–970.

    Article  PubMed  CAS  Google Scholar 

  34. Kopan R, Schroeter EH, Weintraub H, Nye JS. Signal transduction by activated mNotch: importance of proteolytic processing and its regulation by the extracellular domain. Proc Natl Acad Sci USA 1996; 93(4):1683–1688.

    Article  PubMed  CAS  Google Scholar 

  35. Blaumueller CM, Qi H, Zagouras P, Artavanis-Tsakonas S. Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell 1997; 90(2):281–291.

    Article  PubMed  CAS  Google Scholar 

  36. Logeat F, Bessia C, Brou C et al. The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc Natl Acad Sci USA 1998; 95(14):8108–8112.

    Article  PubMed  CAS  Google Scholar 

  37. Bush G, diSibio G, Miyamoto A et al. Ligand-induced signaling in the absence of furin processing of Notch1. Dev Biol 2001; 229(2):494–502.

    Article  PubMed  CAS  Google Scholar 

  38. Kidd S, Lieber T. Furin cleavage is not a requirement for Drosophila Notch function. Mech Dev 2002; 115(1–2):41–51.

    Article  PubMed  CAS  Google Scholar 

  39. Gordon WR, Vardar-Ulu D, L’Heureux S et al. Effects of S1 cleavage on the structure, surface export, and signaling activity of human Notch1 and Notch2. PLoS One. 2009; 4(8):e6613.

    Article  PubMed  CAS  Google Scholar 

  40. Greenwald I. Structure/function studies of lin-12/Notch proteins. Curr Opin Genet Devel 1994; 4(4):556–562.

    Article  CAS  Google Scholar 

  41. Lieber T, Kidd S, Alcamo E et al. Antineurogenic phenotypes induced by truncated Notch proteins indicate a role in signal transduction and may point to a novel function for Notch in nuclei. Genes Devel 1993; 7(10):1949–1965.

    Article  PubMed  CAS  Google Scholar 

  42. Sanchez-Irizarry C, Carpenter AC, Weng AP et al. Notch subunit heterodimerization and prevention of ligand-independent proteolytic activation depend, respectively, on a novel domain and the LNR repeats. Mol Cell Biol 2004; 24(21):9265–9273.

    Article  PubMed  CAS  Google Scholar 

  43. Nichols JT, Miyamoto A, Olsen SL et al. DSL ligand endocytosis physically dissociates Notch1 heterodimers before activating proteolysis can occur. J Cell Biol 2007; 176(4):445–458.

    Article  PubMed  CAS  Google Scholar 

  44. Malecki MJ, Sanchez-Irizarry C, Mitchell JL et al. Leukemia-associated mutations within the NOTCH1 heterodimerization domain fall into at least two distinct mechanistic classes. Mol Cell Biol 2006; 26(12):4642–4651.

    Article  PubMed  CAS  Google Scholar 

  45. Bozkulak EC, Weinmaster G. Selective use of ADAM10 and ADAM17 in activation of Notch1 signaling. Mol Cell Biol 2009; 29(21):5679–5695.

    Article  PubMed  CAS  Google Scholar 

  46. Parks AL, Klueg KM, Stout JR, Muskavitch MA. Ligand endocytosis drives receptor dissociation and activation in the Notch pathway. Development 2000; 127(7):1373–1385.

    PubMed  CAS  Google Scholar 

  47. Brou C, Logeat F, Gupta N et al. A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol Cell 2000; 5(2):207–216.

    Article  PubMed  CAS  Google Scholar 

  48. Mumm JS, Schroeter EH, Saxena MT et al. A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch1. Mol Cell 2000; 5(2):197–206.

    Article  PubMed  CAS  Google Scholar 

  49. Jarriault S, Brou C, Logeat F et al. Signalling downstream of activated mammalian Notch. Nature 1995; 377(6547):355–358.

    Article  PubMed  CAS  Google Scholar 

  50. Sanalkumar R, Dhanesh SB, James J. Non-canonical activation of Notch signaling/target genes in vertebrates. Cell Mol Life Sci 2010; 67(17):2957–2968.

    Article  PubMed  CAS  Google Scholar 

  51. Wolfsberg TG, Primakoff P, Myles DG, White JM. ADAM, a novel family of membrane proteins containing A Disintegrin and Metalloprotease domain: multipotential functions in cell-cell and cell-matrix interactions. J Cell Biol 1995; 131(2):275–278.

    Article  PubMed  CAS  Google Scholar 

  52. Murphy G. Regulation of the proteolytic disintegrin metalloproteinases, the’ sheddases’. Semin Cell Dev Biol 2009; 20(2):138–145.

    Article  PubMed  CAS  Google Scholar 

  53. Seals DF, Courtneidge SA. The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev 2003; 17(1):7–30.

    Article  PubMed  CAS  Google Scholar 

  54. Rawlings ND, Barrett AJ, Bateman A. MEROPS: the peptidase database. Nucleic Acids Res 2010; 38(Database issue):D227–233.

    Article  PubMed  CAS  Google Scholar 

  55. Porter S, Clark IM, Kevorkian L, Edwards DR. The ADAMTS metalloproteinases. Biochem J 2005; 386(Pt 1):15–27.

    PubMed  CAS  Google Scholar 

  56. Howard L, Maciewicz RA, Blobel CP. Cloning and characterization of ADAM28: evidence for autocatalytic pro-domain removal and for cell surface localization of mature ADAM28. Biochem J 2000; 348 Pt 1:21–27.

    Article  PubMed  CAS  Google Scholar 

  57. Schlomann U, Wildeboer D, Webster A et al. The metalloprotease disintegrin ADAM8. Processing by autocatalysis is required for proteolytic activity and cell adhesion. J Biol Chem 2002; 277(50):48210–48219.

    Article  PubMed  CAS  Google Scholar 

  58. Gomis-Ruth FX. Catalytic domain architecture of metzincin metalloproteases. J Biol Chem 2009; 284(23):15353–15357.

    Article  PubMed  CAS  Google Scholar 

  59. Georgiadis D, Yiotakis A. Specific targeting of metzincin family members with small-molecule inhibitors: progress toward a multifarious challenge. Bioorg Med Chem 2008; 16(19):8781–8794.

    Article  PubMed  CAS  Google Scholar 

  60. Van Wart HE, Birkedal-Hansen H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci USA 1990; 87(14):5578–5582.

    Article  PubMed  Google Scholar 

  61. Becker JW, Marcy AI, Rokosz LL et al. Stromelysin-1: three-dimensional structure of the inhibited catalytic domain and of the C-truncated proenzyme. Protein Sci 1995; 4(10):1966–1976.

    Article  PubMed  CAS  Google Scholar 

  62. Gaultier A, Cousin H, Darribere T, Alfandari D. ADAM13 disintegrin and cysteine-rich domains bind to the second heparin-binding domain of fibronectin. J Biol Chem 2002; 277(26):23336–23344.

    Article  PubMed  CAS  Google Scholar 

  63. Hoiruchi K, Blobel CP. Studies from ADAM knockout mice. In: Hooper NM, Lendeckel U, eds. The ADAM Family of Proteases. New York: Springer, 2005:29–64.

    Chapter  Google Scholar 

  64. Cho C, Bunch DO, Faure JE et al. Fertilization defects in sperm from mice lacking fertilin beta. Science 1998; 281(5384):1857–1859.

    Article  PubMed  CAS  Google Scholar 

  65. Nishimura H, Cho C, Branciforte DR, Myles DG et al.. Analysis of loss of adhesive function in sperm lacking cyritestin or fertilin beta. Dev Biol 2001; 233(1):204–213.

    Article  PubMed  CAS  Google Scholar 

  66. Weskamp G, Cai H, Brodie TA et al. Mice lacking the metalloprotease-disintegrin MDC9 (ADAM9) have no evident major abnormalities during development or adult life. Mol Cell Biol 2002; 22(5):1537–1544.

    Article  PubMed  CAS  Google Scholar 

  67. Sahin U, Weskamp G, Kelly K et al. Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J Cell Biol 2004; 164(5):769–779.

    Article  PubMed  CAS  Google Scholar 

  68. Huovila AP, Turner AJ, Pelto-Huikko M et al. Shedding light on ADAM metalloproteinases. Trends Biochem Sci 2005; 30(7):413–422.

    Article  PubMed  CAS  Google Scholar 

  69. Brew K, Nagase H. The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim Biophys Acta 2010; 1803(1):55–71.

    Article  PubMed  CAS  Google Scholar 

  70. Amour A, Slocombe PM, Webster A et al. TNF-alpha converting enzyme (TACE) is inhibited by TIMP-3. FEBS Lett 1998; 435(1):39–44.

    Article  PubMed  CAS  Google Scholar 

  71. Amour A, Knight CG, Webster A et al. The in vitro activity of ADAM-10 is inhibited by TIMP-1 and TIMP-3. FEBS Lett 19 2000; 473(3):275–279.

    Article  CAS  Google Scholar 

  72. Smookler DS, Mohammed FF, Kassiri Z et al. Tissue inhibitor of metalloproteinase 3 regulates TNF-dependent systemic inflammation. J Immunol 2006; 176(2):721–725.

    PubMed  CAS  Google Scholar 

  73. Sapir A, Assa-Kunik E, Tsruya R et al. Unidirectional Notch signaling depends on continuous cleavage of Delta. Development 2005; 132(1):123–132.

    Article  PubMed  CAS  Google Scholar 

  74. Lieber T, Kidd S, Young MW. kuzbanian-mediated cleavage of Drosophila Notch. Genes Dev 2002; 16(2):209–221.

    Article  PubMed  CAS  Google Scholar 

  75. Klein T. kuzbanian is required cell autonomously during Notch signalling in the Drosophila wing. Dev Genes Evol 2002; 212(5):251–255.

    Article  PubMed  CAS  Google Scholar 

  76. Jarriault S, Greenwald I. Evidence for functional redundancy between C. elegans ADAM proteins SUP-17/ Kuzbanian and ADM-4/TACE. Dev Biol 2005; 287(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  77. Sotillos S, Roch F, Campuzano S. The metalloprotease-disintegrin Kuzbanian participates in Notch activation during growth and patterning of Drosophila imaginal discs. Development 1997; 124(23):4769–4779.

    PubMed  CAS  Google Scholar 

  78. Pan D, Rubin GM. Kuzbanian controls proteolytic processing of Notch and mediates lateral inhibition during Drosophila and vertebrate neurogenesis. Cell 1997; 90(2):271–280.

    Article  PubMed  CAS  Google Scholar 

  79. Wen C, Metzstein MM, Greenwald I. SUP-17, a Caenorhabditis elegans ADAM protein related to Drosophila KUZBANIAN, and its role in LIN-12/NOTCH signalling. Development 1997; 124(23):4759–4767.

    PubMed  CAS  Google Scholar 

  80. Rooke J, Pan D, Xu T, Rubin GM. KUZ, a conserved metalloprotease-disintegrin protein with two roles in Drosophila neurogenesis. Science 1996; 273(5279):1227–1231.

    Article  PubMed  CAS  Google Scholar 

  81. Janes PW, Saha N, Barton WA et al. Adam meets Eph: an ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell 2005; 123(2):291–304.

    Article  PubMed  CAS  Google Scholar 

  82. Fambrough D, Pan D, Rubin GM, Goodman CS. The cell surface metalloprotease/disintegrin Kuzbanian is required for axonal extension in Drosophila. Proc Natl Acad Sci USA 1996; 93(23):13233–13238.

    Article  PubMed  CAS  Google Scholar 

  83. Hattori M, Osterfield M, Flanagan JG. Regulated cleavage of a contact-mediated axon repellent. Science 2000; 289(5483):1360–1365.

    Article  PubMed  CAS  Google Scholar 

  84. Delwig A, Rand MD. Kuz and TACE can activate Notch independent of ligand. Cell Mol Life Sci 2008; 65(14):2232–2243.

    Article  PubMed  CAS  Google Scholar 

  85. Borrell-Pages M, Rojo F, Albanell J et al. TACE is required for the activation of the EGFR by TGF-alpha in tumors. EMBO J 2003; 22(5):1114–1124.

    Article  PubMed  CAS  Google Scholar 

  86. Conlon RA, Reaume AG, Rossant J. Notch1 is required for the coordinate segmentation of somites. Development 1995; 121(5):1533–1545.

    PubMed  CAS  Google Scholar 

  87. Swiatek PJ, Lindsell CE, del Amo FF et al. Notch1 is essential for postimplantation development in mice. Genes Dev 1994; 8(6):707–719.

    Article  PubMed  CAS  Google Scholar 

  88. Peschon JJ, Slack JL, Reddy P et al. An Essential Role For Ectodomain Shedding in Mammalian Development. Science 1998; 282(5392):1281–1284.

    Article  PubMed  CAS  Google Scholar 

  89. Hartmann D, De Strooper B, Serneels L et al. The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts. Hum Mol Genet 2002; 11(21):2615–2624.

    Article  PubMed  CAS  Google Scholar 

  90. Radtke F, Wilson A, Stark G et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 1999; 10(5):547–558.

    Article  PubMed  CAS  Google Scholar 

  91. Manilay JO, Anderson AC, Kang C, Robey EA. Impairment of thymocyte development by dominant-negative Kuzbanian (ADAM-10) is rescued by the Notch ligand, delta-1. J Immunol 2005; 174(11):6732–6741.

    PubMed  CAS  Google Scholar 

  92. Tian L, Wu X, Chi C et al. ADAM10 is essential for proteolytic activation of Notch during thymocyte development. Int Immunol 2008; 20(9):1181–1187.

    Article  PubMed  CAS  Google Scholar 

  93. Jorissen E, Prox J, Bernreuther C et al. The disintegrin/metalloproteinase ADAM10 is essential for the establishment of the brain cortex. J Neurosci 2010; 30(14):4833–4844.

    Article  PubMed  CAS  Google Scholar 

  94. Dyczynska E, Sun D, Yi H et al. Proteolytic processing of delta-like 1 by ADAM proteases. J Biol Chem 2007; 282(1):436–444.

    Article  PubMed  CAS  Google Scholar 

  95. Tousseyn T, Thathiah A, Jorissen E et al. ADAM10, the rate-limiting protease of regulated intramembrane proteolysis of Notch and other proteins, is processed by ADAMS-9, ADAMS-15, and the gamma-secretase. J Biol Chem 2009; 284(17):11738–11747.

    Article  PubMed  CAS  Google Scholar 

  96. Sawey ET, Johnson JA, Crawford HC. Matrix metalloproteinase 7 controls pancreatic acinar cell transdifferentiation by activating the Notch signaling pathway. Proc Natl Acad Sci USA 2007; 104(49):19327–19332.

    Article  PubMed  CAS  Google Scholar 

  97. Gibb DR, El Shikh M, Kang DJ et al. ADAM10 is essential for Notch2-dependent marginal zone B cell development and CD23 cleavage in vivo. J Exp Med 2010; 207(3):623–635.

    Article  PubMed  CAS  Google Scholar 

  98. Six E, Ndiaye D, Laabi Y et al. The Notch ligand Delta1 is sequentially cleaved by an ADAM protease and gamma-secretase. Proc Natl Acad Sci USA 2003; 100(13):7638–7643.

    Article  PubMed  CAS  Google Scholar 

  99. LaVoie MJ, Selkoe DJ. The Notch ligands, Jagged and Delta, are sequentially processed by alpha-secretase and presenilin/gamma-secretase and release signaling fragments. J Biol Chem 2003; 278(36):34427–34437.

    Article  PubMed  CAS  Google Scholar 

  100. Ikeuchi T, Sisodia SS. The Notch ligands, Delta1 and Jagged2, are substrates for presenilin-dependent “gamma-secretase” cleavage. J Biol Chem 2003; 278(10):7751–7754.

    Article  PubMed  CAS  Google Scholar 

  101. Bland CE, Kimberly P, Rand MD. Notch-induced proteolysis and nuclear localization of the Delta ligand. J Biol Chem 2003; 278(16):13607–13610.

    Article  PubMed  CAS  Google Scholar 

  102. Qi H, Rand MD, Wu X et al. Processing of the notch ligand delta by the metalloprotease Kuzbanian. Science 1999; 283(5398):91–94.

    Article  PubMed  CAS  Google Scholar 

  103. Klueg KM, Parody TR, Muskavitch MAT. Complex Proteolytic Processing Acts On Delta, a Transmembrane Ligand For Notch, During Drosophila Development. Mol Biol Cell 1998; 9(7):1709–1723.

    PubMed  CAS  Google Scholar 

  104. Chen N, Greenwald I. The lateral signal for LIN-12/Notch in C. elegans vulval development comprises redundant secreted and transmembrane DSL proteins. Dev Cell 2004; 6(2):183–192.

    Article  PubMed  CAS  Google Scholar 

  105. Sun X, Artavanis-Tsakonas S. Secreted forms of DELTA and SERRATE define antagonists of Notch signaling in Drosophila. Development 1997; 124(17):3439–3448.

    PubMed  CAS  Google Scholar 

  106. Noguera-Troise I, Daly C, Papadopoulos NJ et al. Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 2006; 444(7122):1032–1037.

    Article  PubMed  CAS  Google Scholar 

  107. Shimizu K, Chiba S, Saito T et al. Integrity of intracellular domain of Notch ligand is indispensable for cleavage required for release of the Notch2 intracellular domain. EMBO J 2002; 21(3):294–302.

    Article  PubMed  CAS  Google Scholar 

  108. Varnum-Finney B, Wu L, Yu M et al. Immobilization of Notch ligand, Delta-1, is required for induction of Notch signaling. J Cell Sci 2000; 113(23):4313–4318.

    PubMed  CAS  Google Scholar 

  109. Mishra-Gorur K, Rand MD, Perez-Villamil B, Artavanis-Tsakonas S. Down-regulation of Delta by proteolytic processing. J Cell Biol 2002; 159(2):313–324.

    Article  PubMed  CAS  Google Scholar 

  110. Delwig A, Bland C, Beem-Miller M, Kimberly P, Rand MD. Endocytosis-independent mechanisms of Delta ligand proteolysis. Exp Cell Res 2006; 312(8):1345–1360.

    Article  PubMed  CAS  Google Scholar 

  111. Wang W, Struhl G. Drosophila Epsin mediates a select endocytic pathway that DSL ligands must enter to activate Notch. Development 2004; 131(21):5367–5380.

    Article  PubMed  CAS  Google Scholar 

  112. Zolkiewska A. ADAM proteases: ligand processing and modulation of the Notch pathway. Cell Mol Life Sci 2008; 65(13):2056–2068.

    Article  PubMed  CAS  Google Scholar 

  113. de Celis JF, Bray SJ. The Abruptex domain of Notch regulates negative interactions between Notch, its ligands and Fringe. Development 2000; 127(6):1291–1302.

    PubMed  Google Scholar 

  114. Jacobsen TL, Brennan K, Martinez Arias A, Muskavitch MAT. Cis-interactions between Delta and Notch modulate neurogenic signalling in Drosophila. Development 1998; 125(22):4531–4540.

    PubMed  CAS  Google Scholar 

  115. Ohlstein B, Spradling A. Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential notch signaling. Science 2007; 315(5814):988–992.

    Article  PubMed  CAS  Google Scholar 

  116. Lowell S, Jones P, Le Roux I et al. Stimulation of human epidermal differentiation by delta-notch signalling at the boundaries of stem-cell clusters. Curr Biol 2000; 10(9):491–500.

    Article  PubMed  CAS  Google Scholar 

  117. de Celis J, Barrio R, del AA, Garcia BA. Genetic and molecular characterization of a Notch mutation in its Delta-and Serrate-binding domain in Drosophila. Proc Natl Acad Sci USA 1993; 90(9):4037–4041.

    Article  PubMed  Google Scholar 

  118. Kimble J, Henderson S, Crittenden S. Notch/Lin-12 Signaling-Transduction By Regulated Protein Slicing. Trends Biochem Sci 1998; 23(9):353–357.

    Article  PubMed  Google Scholar 

  119. Vooijs M, Schroeter EH, Pan Y et al. Ectodomain shedding and intramembrane cleavage of mammalian Notch proteins is not regulated through oligomerization. J Biol Chem 2004; 279(49):50864–50873.

    Article  PubMed  CAS  Google Scholar 

  120. Kelly DF, Lake RJ, Middelkoop TC et al. Molecular structure and dimeric organization of the Notch extracellular domain as revealed by electron microscopy. PLoS ONE 2010; 5(5):e10532.

    Article  PubMed  CAS  Google Scholar 

  121. Sanchez-Irizarry C, Malecki M, Lee W et al. Functional Analysis of Leukemia-Associated Mutations Involving the Heterodimerization Domain of NOTCH1: 2005 Am Soc Hematol 2005.

    Google Scholar 

  122. Ahimou F, Mok LP, Bardot B, Wesley C. The adhesion force of Notch with Delta and the rate of Notch signaling. J Cell Biol 2004; 167(6):1217–1229.

    Article  PubMed  CAS  Google Scholar 

  123. Anders A, Gilbert S, Garten W et al. Regulation of the alpha-secretase ADAM10 by its prodomain and proprotein convertases. FASEB J 2001; 15(10):1837–1839.

    PubMed  CAS  Google Scholar 

  124. Blobel CP. ADAMs: key components in EGFR signalling and development. Nat Rev Mol Cell Biol 2005; 6(1):32–43.

    Article  PubMed  CAS  Google Scholar 

  125. Arribas J, Lopez-Casillas F, Massague J. Role of the juxtamembrane domains of the transforming growth factor-alpha precursor and the beta-amyloid precursor protein in regulated ectodomain shedding. J Biol Chem 1997; 272(27):17160–17165.

    Article  PubMed  CAS  Google Scholar 

  126. Struhl G, Adachi A. Requirements for presenilin-dependent cleavage of notch and other transmembrane proteins. Mol Cell 2000; 6(3):625–636.

    Article  PubMed  CAS  Google Scholar 

  127. Shah S, Lee SF, Tabuchi K et al. Nicastrin functions as a gamma-secretase-substrate receptor. Cell 2005; 122(3):435–447.

    Article  PubMed  CAS  Google Scholar 

  128. Caescu CI, Jeschke GR, Turk BE. Active-site determinants of substrate recognition by the metalloproteinases TACE and ADAM10. Biochem J 2009; 424(1):79–88.

    Article  PubMed  CAS  Google Scholar 

  129. Sisodia SS. Beta-amyloid precursor protein cleavage by a membrane-bound protease. Proc Natl Acad Sci USA 1992; 89(13):6075–6079.

    Article  PubMed  CAS  Google Scholar 

  130. Sulis ML, Williams O, Palomero T et al. NOTCH1 extracellular juxtamembrane expansion mutations in T-ALL. Blood 2008; 112(3):733–740.

    Article  PubMed  CAS  Google Scholar 

  131. Pruessmeyer J, Ludwig A. The good, the bad and the ugly substrates for ADAM10 and ADAM17 in brain pathology, inflammation and cancer. Semin Cell Dev Biol 2009; 20(2):164–174.

    Article  PubMed  CAS  Google Scholar 

  132. Endres K, Fahrenholz F. Upregulation of the alpha-secretase ADAM10— risk or reason for hope? FEBS J 2010; 277(7):1585–1596.

    Article  PubMed  CAS  Google Scholar 

  133. Kuhn PH, Wang H, Dislich B et al. ADAM10 is the physiologically relevant, constitutive alpha-secretase of the amyloid precursor protein in primary neurons. EMBO J 2010; 29(17):3020–3032.

    Article  PubMed  CAS  Google Scholar 

  134. Lammich S, Kojro E, Postina R et al. Constitutive and regulated alpha-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc Natl Acad Sci USA 1999; 96(7):3922–3927.

    Article  PubMed  CAS  Google Scholar 

  135. Buxbaum JD, Liu KN, Luo YX et al. Evidence That Tumor Necrosis Factor Alpha Converting Enzyme Is Involved in Regulated Alpha-Secretase Cleavage of the Alzheimer Amyloid Protein Precursor. J Biol Chem 1998; 273(43):27765–27767.

    Article  PubMed  CAS  Google Scholar 

  136. Werb Z. ECM and cell surface proteolysis: regulating cellular ecology. Cell 1997; 91(4):439–442.

    Article  PubMed  CAS  Google Scholar 

  137. Skovronsky DM, Moore DB, Milla ME et al. Protein kinase C-dependent alpha-secretase competes with beta-secretase for cleavage of amyloid-beta precursor protein in the trans-golgi network. J Biol Chem 2000; 275(4):2568–2575.

    Article  PubMed  CAS  Google Scholar 

  138. Schlondorff J, Becherer JD, Blobel CP. Intracellular maturation and localization of the tumour necrosis factor alpha convertase (TACE). Biochem J 2000; 347 Pt 1:131–138.

    Article  Google Scholar 

  139. Scita G, Di Fiore PP. The endocytic matrix. Nature 2010; 463(7280):464–473.

    Article  PubMed  CAS  Google Scholar 

  140. Le Borgne R, Bardin A, Schweisguth F. The roles of receptor and ligand endocytosis in regulating Notch signaling. Development 2005; 132(8):1751–1762.

    Article  PubMed  CAS  Google Scholar 

  141. Vaccari T, Lu H, Kanwar R et al. Endosomal entry regulates Notch receptor activation in Drosophila melanogaster. J Cell Biol 2008; 180(4):755–762.

    Article  PubMed  CAS  Google Scholar 

  142. Jaekel R, Klein T. The Drosophila Notch inhibitor and tumor suppressor gene lethal (2) giant discs encodes a conserved regulator of endosomal trafficking. Dev Cell Nov 2006; 11(5):655–669.

    Article  PubMed  CAS  Google Scholar 

  143. Wilkin MB, Carbery AM, Fostier M et al. Regulation of notch endosomal sorting and signaling by Drosophila Nedd4 family proteins. Curr Biol Dec 29 2004; 14(24):2237–2244.

    Article  PubMed  CAS  Google Scholar 

  144. Pasternak SH, Bagshaw RD, Guiral M et al. Presenilin, Nicastrin, Amyloid precursor protein, and g-secretaseactivity are co-locelized in the lysosomal membrane. J Biol Chem 2003; 278:26687–26694.

    Article  PubMed  CAS  Google Scholar 

  145. Tagami S, Okochi M, Yanagida K et al. Regulation of Notch signaling by dynamic changes in the precision of S3 cleavage of Notch-1. Mol Cell Biol. Jan 2008; 28(1):165–176.

    Article  PubMed  CAS  Google Scholar 

  146. Fukumori A, Okochi M, Tagami S et al. Presenilin-dependent gamma-secretase on plasma membrane and endosomes is functionally distinct. Biochemistry. Apr 18 2006; 45(15):4907–4914.

    Article  PubMed  CAS  Google Scholar 

  147. Seugnet L, Simpson P, Haenlin M. Requirement For Dynamin During Notch Signaling In Drosophila Neurogenesis. Developmental Biology. 1997; 192(2):585–598.

    Article  PubMed  CAS  Google Scholar 

  148. Gupta-Rossi N, Six E, LeBail O et al. Monoubiquitination and endocytosis direct gamma-secretase cleavage of activated Notch receptor. J Cell Biol. Jul 5 2004; 166(1):73–83.

    Article  PubMed  CAS  Google Scholar 

  149. Wilkin M, Tongngok P, Gensch N et al. Drosophila HOPS and AP-3 complex genes are required for a Deltex-regulated activation of notch in the endosomal trafficking pathway. Dev Cell. Nov 2008; 15(5):762–772.

    Article  PubMed  CAS  Google Scholar 

  150. Rand MD, Grimm LM, Artavanis T sakonas S et al. Calcium depletion dissociates and activates heterodimeric notch receptors. Mol Cell Biol. 2000; 20(5):1825–1835.

    Article  PubMed  CAS  Google Scholar 

  151. Coumailleau F, Furthauer M, Knoblich JA, Gonzalez-Gaitan M. Directional Delta and Notch trafficking in Sara endosomes during asymmetric cell division. Nature. Apr 23 2009; 458(7241):1051–1055.

    Article  PubMed  CAS  Google Scholar 

  152. Ellisen LW, Bird J, West DC et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell. Aug 23 1991; 66(4):649–661.

    Article  PubMed  CAS  Google Scholar 

  153. Stylianou S, Clarke RB, Brennan K. Aberrant activation of notch signaling in human breast cancer. Cancer Res. Feb 1 2006; 66(3):1517–1525.

    Article  PubMed  CAS  Google Scholar 

  154. Reedijk M, Odorcic S, Chang L et al. High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res. Sep 15 2005; 65(18):8530–8537.

    Article  PubMed  CAS  Google Scholar 

  155. Reedijk M, Pinnaduwage D, Dickson BC et al. JAG1 expression is associated with a basal phenotype and recurrence in lymph node-negative breast cancer. Breast Cancer Res Treat. Oct 2008; 111(3):439–448.

    Article  PubMed  CAS  Google Scholar 

  156. Mittal S, Subramanyam D, Dey D et al. Cooperation of Notch and Ras/MAPK signaling pathways in human breast carcinogenesis. Mol Cancer. 2009; 8:128.

    Article  PubMed  CAS  Google Scholar 

  157. Weijzen S, Rizzo P, Braid M et al. Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat Med. Sep 2002; 8(9):979–986.

    Article  PubMed  CAS  Google Scholar 

  158. Rizzo P, Miao H, D’souza G et al. Cross-talk between notch and the estrogen receptor in breast cancer suggests novel therapeutic approaches. Cancer Res. Jul 1 2008; 68(13):5226–5235.

    Article  PubMed  CAS  Google Scholar 

  159. Parr C, Watkins G, Jiang WG. The possible correlation of Notch-1 and Notch-2 with clinical outcome and tumour clinicopathological parameters in human breast cancer. Int J Mol Med. Nov 2004; 14(5):779–786.

    PubMed  CAS  Google Scholar 

  160. Bouras T, Pal B, Vaillant F et al. Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell. Oct 9 2008; 3(4):429–441.

    Article  PubMed  CAS  Google Scholar 

  161. Raouf A, Zhao Y, To K et al. Transcriptome analysis of the normal human mammary cell commitment and differentiation process. Cell Stem Cell. Jul 3 2008; 3(1):109–118.

    Article  PubMed  CAS  Google Scholar 

  162. Harrison H, Farnie G, Howell SJ et al. Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res. Jan 15 2010; 70(2):709–718.

    Article  PubMed  CAS  Google Scholar 

  163. Thurston G, Noguera-Troise I, Yancopoulos GD. The Delta paradox: DLL4 blockade leads to more tumour vessels but less tumour growth. Nat Rev Cancer. May 2007; 7(5):327–331.

    Article  PubMed  CAS  Google Scholar 

  164. Milano J, McKay J, Dagenais C et al. Modulation of notch processing by gamma-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicol Sci. Nov 2004; 82(1):341–358.

    Article  PubMed  CAS  Google Scholar 

  165. Barten DM, Meredith JE, Jr., Zaczek R et al. Gamma-secretase inhibitors for Alzheimer’s disease: balancing efficacy and toxicity. Drugs R D. 2006; 7(2):87–97.

    Article  PubMed  CAS  Google Scholar 

  166. Real PJ, Tosello V, Palomero T et al. Gamma-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nat Med. Jan 1 2009; 15(1):50–58.

    Article  PubMed  CAS  Google Scholar 

  167. Weggen S, Eriksen JL, Das P et al. A subset of NSAIDs lower amyloidogenic A beta 42 independently of cyclooxygenase activity. Nature. 2001; 414(6860):212–216.

    Article  PubMed  CAS  Google Scholar 

  168. Bergmans BA, De Strooper B. gamma-secretases: from cell biology to therapeutic strategies. Lancet Neurol. Feb 2010; 9(2):215–226.

    Article  PubMed  CAS  Google Scholar 

  169. Aste-Amezaga M, Zhang N, Lineberger JE et al. Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors. PLoS One. 2010; 5(2):e9094.

    Article  PubMed  CAS  Google Scholar 

  170. Li K, Li Y, Wu W et al. Modulation of Notch signaling by antibodies specific for the extracellular negative regulatory region of NOTCH3. J Biol Chem. Mar 21 2008; 283(12):8046–8054.

    Article  PubMed  CAS  Google Scholar 

  171. Wu Y, Cain-Hom C, Choy L et al. Therapeutic antibody targeting of individual Notch receptors. Nature 2010; 464(7291):1052–1057.

    Article  PubMed  CAS  Google Scholar 

  172. Moellering RE, Cornejo M, Davis TN et al. Direct inhibition of the NOTCH transcription factor complex. Nature 2009; 462(7270):182–188.

    Article  PubMed  CAS  Google Scholar 

  173. Duffy MJ, McKiernan E, O’Donovan N, McGowan PM. Role of ADAMs in cancer formation and progression. Clin Cancer Res 2009; 15(4):1140–1144.

    Article  PubMed  CAS  Google Scholar 

  174. Coussens LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 2002; 295(5564):2387–2392.

    Article  PubMed  CAS  Google Scholar 

  175. Fridman JS, Caulder E, Hansbury M et al. Selective inhibition of ADAM metalloproteases as a novel approach for modulating ErbB pathways in cancer. Clin Cancer Res 2007; 13(6):1892–1902.

    Article  PubMed  CAS  Google Scholar 

  176. Zhou BB, Peyton M, He B et al. Targeting ADAM-mediated ligand cleavage to inhibit HER3 and EGFR pathways in non-small cell lung cancer. Cancer Cell 2006; 10(1):39–50.

    Article  PubMed  CAS  Google Scholar 

  177. Witters L, Scherle P, Friedman S et al. Synergistic inhibition with a dual epidermal growth factor receptor/ HER-2/neu tyrosine kinase inhibitor and a disintegrin and metalloprotease inhibitor. Cancer Res 2008; 68(17):7083–7089.

    Article  PubMed  CAS  Google Scholar 

  178. Ludwig A, Hundhausen C, Lambert MH et al. Metalloproteinase inhibitors for the disintegrin-like metalloproteinases ADAM10 and ADAM17 that differentially block constitutive and phorbol ester-inducible shedding of cell surface molecules. Comb Chem High Throughput Screen 2005; 8(2):161–171.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc A. Vooijs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Groot, A.J., Vooijs, M.A. (2012). The Role of Adams in Notch Signaling. In: Reichrath, J., Reichrath, S. (eds) Notch Signaling in Embryology and Cancer. Advances in Experimental Medicine and Biology, vol 727. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0899-4_2

Download citation

Publish with us

Policies and ethics