Skip to main content

Advertisement

Log in

Eusociality is linked to caste-specific differences in metabolism, immune system, and somatic maintenance-related processes in an ant species

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The social organization of many primate, bird and rodent species and the role of individuals within that organization are associated with specific individual physiological traits. However, this association is perhaps most pronounced in eusocial insects (e.g., termites, ants). In such species, genetically close individuals show significant differences in behavior, physiology, and life expectancy. Studies addressing the metabolic changes according to the social role are still lacking. We aimed at understanding how sociality could influence essential molecular processes in a eusocial insect, the black garden ant (Lasius niger) where queens can live up to ten times longer than workers. Using mass spectrometry-based analysis, we explored the whole metabolome of queens, nest-workers and foraging workers. A former proteomics study done in the same species allowed us to compare the findings of both approaches. Confirming the former results at the proteome level, we showed that queens had fewer metabolites related to immunity. Contrary to our predictions, we did not find any metabolite linked to reproduction in queens. Among the workers, foragers had a metabolic signature reflecting a more stressful environment and a more highly stimulated immune system. We also found that nest-workers had more digestion-related metabolites. Hence, we showed that specific metabolic signatures match specific social roles. Besides, we identified metabolites differently expressed among behavioral castes and involved in nutrient sensing and longevity pathways (e.g., sirtuins, FOXO). The links between such molecular pathways and aging being found in an increasing number of taxa, our results confirm and strengthen their potential universality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All the data analyzed are available online as electronic supplementary material (ESM1, Tables S1–S7).

Code availability

Not applicable.

References

  1. Snart CJP, Hardy ICW, Barrett DA (2015) Entometabolomics: applications of modern analytical techniques to insect studies. Entomol Exp Appl 155:1–17. https://doi.org/10.1111/eea.12281

    Article  PubMed  PubMed Central  Google Scholar 

  2. Aliferis KA, Copley T, Jabaji S (2012) Gas chromatography–mass spectrometry metabolite profiling of worker honey bee (Apis mellifera L.) hemolymph for the study of Nosema ceranae infection. J Insect Physiol 58:1349–1359. https://doi.org/10.1016/j.jinsphys.2012.07.010

    Article  CAS  PubMed  Google Scholar 

  3. Colinet H, Renault D, Charoy-Guével B, Com E (2012) Metabolic and proteomic profiling of diapause in the Aphid parasitoid Praon volucre. PLoS One 7:e32606. https://doi.org/10.1371/journal.pone.0032606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Derecka K, Blythe MJ, Malla S et al (2013) Transient exposure to low levels of insecticide affects metabolic networks of honeybee larvae. PLoS One 8:e68191. https://doi.org/10.1371/journal.pone.0068191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shi T, Burton S, Wang Y et al (2018) Metabolomic analysis of honey bee, Apis mellifera L. response to thiacloprid. Pestic Biochem Physiol 152:17–23. https://doi.org/10.1016/j.pestbp.2018.08.003

    Article  CAS  PubMed  Google Scholar 

  6. Rothman JA, Leger L, Kirkwood JS, McFrederick QS (2019) Cadmium and selenate exposure affects the honey bee microbiome and metabolome, and bee-associated bacteria show potential for bioaccumulation. Appl Environ Microbiol. https://doi.org/10.1128/AEM.01411-19

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wu J-L, Zhou C-X, Wu P-J et al (2017) Brain metabolomic profiling of eastern honey bee (Apis cerana) infested with the mite Varroa destructor. PLoS One 12:e0175573. https://doi.org/10.1371/journal.pone.0175573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Birer C, Moreau CS, Tysklind N et al (2020) Disentangling the assembly mechanisms of ant cuticular bacterial communities of two Amazonian ant species sharing a common arboreal nest. Mol Ecol 29:1372–1385. https://doi.org/10.1111/mec.15400

    Article  CAS  PubMed  Google Scholar 

  9. Li Z, Hou M, Qiu Y et al (2020) Changes in antioxidant enzymes activity and metabolomic profiles in the guts of honey bee (Apis mellifera) larvae infected with Ascosphaera apis. Insects 11:419. https://doi.org/10.3390/insects11070419

    Article  CAS  PubMed Central  Google Scholar 

  10. Klupczynska A, Pawlak M, Kokot ZJ, Matysiak J (2018) Application of metabolomic tools for studying low molecular-weight fraction of animal venoms and poisons. Toxins 10:306. https://doi.org/10.3390/toxins10080306

    Article  CAS  PubMed Central  Google Scholar 

  11. Bonavita-Cougourdan A, Clément JL, Lange C (1987) Nestmate recognition: the role of cuticular hydrocarbons in the ant Camponotus vagus Scop. J Entomol Sci 22:1–10

    Article  CAS  Google Scholar 

  12. Liang D, Silverman J (2000) “You are what you eat”: Diet modifies cuticular hydrocarbons and nestmate recognition in the Argentine ant, Linepithema humile. Naturwissenschaften 87:412–416. https://doi.org/10.1007/s001140050752

    Article  CAS  PubMed  Google Scholar 

  13. Wagner D, Tissot M, Cuevas W, Gordon DM (2000) Harvester ants utilize cuticular hydrocarbons in nestmate recognition. J Chem Ecol 26:2245–2257. https://doi.org/10.1023/A:1005529224856

    Article  CAS  Google Scholar 

  14. Dani FR, Jones GR, Destri S et al (2001) Deciphering the recognition signature within the cuticular chemical profile of paper wasps. Anim Behav 62:165–171. https://doi.org/10.1006/anbe.2001.1714

    Article  Google Scholar 

  15. Châline N, Sandoz J-C, Martin SJ et al (2005) Learning and discrimination of individual cuticular hydrocarbons by honeybees (Apis mellifera). Chem Senses 30:327–335. https://doi.org/10.1093/chemse/bji027

    Article  CAS  PubMed  Google Scholar 

  16. Torres CW, Brandt M, Tsutsui ND (2007) The role of cuticular hydrocarbons as chemical cues for nestmate recognition in the invasive Argentine ant (Linepithema humile). Insectes Soc 54:363–373. https://doi.org/10.1007/s00040-007-0954-5

    Article  Google Scholar 

  17. Singer TL (1998) Roles of hydrocarbons in the recognition systems of insects. Integr Comp Biol 38:394–405. https://doi.org/10.1093/icb/38.2.394

    Article  CAS  Google Scholar 

  18. Cuvillier-Hot V, Cobb M, Malosse C, Peeters C (2001) Sex, age and ovarian activity affect cuticular hydrocarbons in Diacamma ceylonense, a queenless ant. J Insect Physiol 47:485–493. https://doi.org/10.1016/S0022-1910(00)00137-2

    Article  CAS  PubMed  Google Scholar 

  19. Greene MJ, Gordon DM (2003) Cuticular hydrocarbons inform task decisions. Nature 423:32–32. https://doi.org/10.1038/423032a

    Article  CAS  PubMed  Google Scholar 

  20. Peeters C, Monnin T, Malosse C (1999) Cuticular hydrocarbons correlated with reproductive status in a queenless ant. Proc R Soc Lond B Biol Sci 266:1323–1327. https://doi.org/10.1098/rspb.1999.0782

    Article  CAS  Google Scholar 

  21. Dietemann V, Peeters C, Liebig J et al (2003) Cuticular hydrocarbons mediate discrimination of reproductives and nonreproductives in the ant Myrmecia gulosa. Proc Natl Acad Sci 100:10341–10346. https://doi.org/10.1073/pnas.1834281100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. de Biseau J-C, Passera L, Daloze D, Aron S (2004) Ovarian activity correlates with extreme changes in cuticular hydrocarbon profile in the highly polygynous ant, Linepithema humile. J Insect Physiol 50:585–593. https://doi.org/10.1016/j.jinsphys.2004.04.005

    Article  CAS  PubMed  Google Scholar 

  23. Tragust S (2016) External immune defence in ant societies (Hymenoptera: Formicidae): the role of antimicrobial venom and metapleural gland secretion. Myrmecol News 23:119–128

    Google Scholar 

  24. Beattie AJ, Turnbull CL, Hough T, Knox RB (1986) Antibiotic production: a possible function for the metapleural glands of ants (Hymenoptera: Formicidae). Ann Entomol Soc Am 79:448–450. https://doi.org/10.1093/aesa/79.3.448

    Article  Google Scholar 

  25. Ortius-Lechner D, Maile R, Morgan ED, Boomsma JJ (2000) Metapleural gland secretion of the leaf-cutter ant Acromyrmex octospinosus: new compounds and their functional significance. J Chem Ecol 26:1667–1683. https://doi.org/10.1023/A:1005543030518

    Article  CAS  Google Scholar 

  26. Fernández-Marín H, Zimmerman JK, Rehner SA, Wcislo WT (2006) Active use of the metapleural glands by ants in controlling fungal infection. Proc R Soc B Biol Sci 273:1689–1695. https://doi.org/10.1098/rspb.2006.3492

    Article  Google Scholar 

  27. Cammaerts MC, Evershed RP, Morgan ED (1981) Comparative study of the dufour gland secretions of workers of four species of Myrmica ants. J Insect Physiol 27:59–65. https://doi.org/10.1016/0022-1910(81)90033-0

    Article  CAS  Google Scholar 

  28. Jaffe K, Puche H (1984) Colony-specific territorial marking with the metapleural gland secretion in the ant Solenopsis geminata (Fabr). J Insect Physiol 30:265–270. https://doi.org/10.1016/0022-1910(84)90126-4

    Article  Google Scholar 

  29. Hölldobler B, David Morgan E, Oldham NJ et al (2004) Dufour gland secretion in the harvester ant genus Pogonomyrmex. Chemoecology 14:101–106. https://doi.org/10.1007/s00049-003-0267-8

    Article  CAS  Google Scholar 

  30. Regnier FE, Wilson EO (1968) The alarm-defence system of the ant Acanthomyops claviger. J Insect Physiol 14:955–970. https://doi.org/10.1016/0022-1910(68)90006-1

    Article  CAS  Google Scholar 

  31. Wheeler JW, Blum MS (1973) Alkylpyrazine alarm pheromones in Ponerine ants. Science 182:501–503. https://doi.org/10.1126/science.182.4111.501

    Article  CAS  PubMed  Google Scholar 

  32. Hernández JV, Cabrera A, Jaffe K (1999) Mandibular gland secretion in different castes of the leaf-cutter ant Atta laevigata. J Chem Ecol 25:2433–2444. https://doi.org/10.1023/A:1020813905989

    Article  Google Scholar 

  33. Leclercq S, de Biseau J-C, Braekman J-C et al (2000) Furanocembranoid diterpenes as defensive compounds in the Dufour gland of the ant Crematogaster brevispinosa rochai. Tetrahedron 56:2037–2042. https://doi.org/10.1016/S0040-4020(00)00113-7

    Article  CAS  Google Scholar 

  34. Sinotte VM, Renelies-Hamilton J, Taylor BA et al (2020) Synergies between division of labor and gut microbiomes of social insects. Front Ecol Evol 7:503. https://doi.org/10.3389/fevo.2019.00503

    Article  Google Scholar 

  35. Hölldobler B, Wilson EO (1990) The ants. Harvard University Press

    Book  Google Scholar 

  36. Sumner S, Bell E, Taylor D (2018) A molecular concept of caste in insect societies. Curr Opin Insect Sci 25:42–50. https://doi.org/10.1016/j.cois.2017.11.010

    Article  PubMed  Google Scholar 

  37. Keller L, Genoud M (1997) Extraordinary lifespans in ants: a test of evolutionary theories of ageing. Nature 389:958–960. https://doi.org/10.1038/40130

    Article  CAS  Google Scholar 

  38. Robinson GE, Strambi C, Strambi A, Feldlaufer MF (1991) Comparison of juvenile hormone and ecdysteroid haemolymph titres in adult worker and queen honey bees (Apis mellifera). J Insect Physiol 37:929–935. https://doi.org/10.1016/0022-1910(91)90008-N

    Article  CAS  Google Scholar 

  39. Gospocic J, Shields EJ, Glastad KM et al (2017) The neuropeptide corazonin controls social behavior and caste identity in ants. Cell 170:748–759

    Article  CAS  Google Scholar 

  40. Graeff J, Jemielity S, Parker JD et al (2007) Differential gene expression between adult queens and workers in the ant Lasius niger. Mol Ecol 16:675–683

    Article  Google Scholar 

  41. Fang Y, Song F, Zhang L et al (2012) Differential antennal proteome comparison of adult honeybee drone, worker and queen (Apis mellifera L.). J Proteomics 75:756–773

    Article  CAS  Google Scholar 

  42. Begna D, Han B, Feng M et al (2012) Differential expressions of nuclear proteomes between honeybee (Apis mellifera L.) queen and worker larvae: a deep insight into caste pathway decisions. J Proteome Res 11:1317–1329. https://doi.org/10.1021/pr200974a

    Article  CAS  PubMed  Google Scholar 

  43. Lucas ER, Keller L (2018) Elevated expression of ageing and immunity genes in queens of the black garden ant. Exp Gerontol 108:92–98. https://doi.org/10.1016/j.exger.2018.03.020

    Article  CAS  PubMed  Google Scholar 

  44. Morton Wheeler W (1908) The polymorphism of ants. Ann Entomol Soc Am 1:39–69. https://doi.org/10.1093/aesa/1.1.39

    Article  Google Scholar 

  45. Jeanne RL (1986) The evolution of the organization of work in social insects. Ital J Zool 20:119–133. https://doi.org/10.1080/00269786.1986.10736494

    Article  Google Scholar 

  46. Seeley TD (1986) Division of labour among worker honeybees. Ethology 71:249–251. https://doi.org/10.1111/j.1439-0310.1986.tb00588.x

    Article  Google Scholar 

  47. Harvell CD (1994) The evolution of polymorphism in colonial invertebrates and social insects. Q Rev Biol 69:155–185. https://doi.org/10.1086/418538

    Article  Google Scholar 

  48. Chapuisat M, Keller L (2002) Division of labour influences the rate of ageing in weaver ant workers. Proc R Soc Lond B Biol Sci 269:909–913

    Article  Google Scholar 

  49. Kohlmeier P, Negroni MA, Kever M et al (2017) Intrinsic worker mortality depends on behavioral caste and the queens’ presence in a social insect. Sci Nat. https://doi.org/10.1007/s00114-017-1452-x

    Article  Google Scholar 

  50. Amdam GV (2005) Social control of aging and frailty in bees. Longevity and frailty. Springer, pp 17–26

    Chapter  Google Scholar 

  51. Baker N, Wolschin F, Amdam GV (2012) Age-related learning deficits can be reversible in honeybees Apis mellifera. Exp Gerontol 47:764–772. https://doi.org/10.1016/j.exger.2012.05.011

    Article  PubMed  Google Scholar 

  52. Münch D, Amdam G (2013) Brain aging and performance plasticity in honeybees. Handb Behav Neurosci 22:487–500

    Article  Google Scholar 

  53. Guidugli KR, Nascimento AM, Amdam GV et al (2005) Vitellogenin regulates hormonal dynamics in the worker caste of a eusocial insect. FEBS Lett 579:4961–4965

    Article  CAS  Google Scholar 

  54. Nelson CM, Ihle KE, Fondrk MK et al (2007) The gene vitellogenin has multiple coordinating effects on social organization. PLoS Biol. https://doi.org/10.1371/journal.pbio.0050062

    Article  PubMed  PubMed Central  Google Scholar 

  55. Azevedo DO, Zanuncio JC, Delabie JHC, Serrão JE (2011) Temporal variation of vitellogenin synthesis in Ectatomma tuberculatum (Formicidae: Ectatomminae) workers. J Insect Physiol 57:972–977

    Article  CAS  Google Scholar 

  56. Corona M, Libbrecht R, Wurm Y et al (2013) Vitellogenin underwent subfunctionalization to acquire caste and behavioral specific expression in the harvester ant Pogonomyrmex barbatus. PLoS Genet. https://doi.org/10.1371/journal.pgen.1003730

    Article  PubMed  PubMed Central  Google Scholar 

  57. Libbrecht R, Oxley PR, Kronauer DJ, Keller L (2013) Ant genomics sheds light on the molecular regulation of social organization. Genome Biol 14:212

    Article  Google Scholar 

  58. Kohlmeier P, Feldmeyer B, Foitzik S (2018) Vitellogenin-like A–associated shifts in social cue responsiveness regulate behavioral task specialization in an ant. PLoS Biol 16:e2005747. https://doi.org/10.1371/journal.pbio.2005747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Quque M, Benhaim-Delarbre M, Deneubourg J-L et al (2019) Division of labour in the black garden ant (Lasius niger) leads to three distinct proteomes. J Insect Physiol 117:103907. https://doi.org/10.1016/j.jinsphys.2019.103907

    Article  CAS  PubMed  Google Scholar 

  60. Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730. https://doi.org/10.1128/MCB.19.3.1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hunt JH, Wolschin F, Henshaw MT et al (2010) Differential gene expression and protein abundance evince ontogenetic bias toward castes in a primitively eusocial wasp. PLoS One 5:e10674. https://doi.org/10.1371/journal.pone.0010674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. LeBoeuf AC, Waridel P, Brent CS et al (2016) Oral transfer of chemical cues, growth proteins and hormones in social insects. eLife. https://doi.org/10.7554/eLife.20375

    Article  PubMed  PubMed Central  Google Scholar 

  63. Konorov EA, Nikitin MA, Mikhailov KV et al (2017) Genomic exaptation enables Lasius niger adaptation to urban environments. BMC Evol Biol 17:39. https://doi.org/10.1186/s12862-016-0867-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Keller L (1998) Queen lifespan and colony characteristics in ants and termites. Insectes Soc 45:235–246. https://doi.org/10.1007/s000400050084

    Article  Google Scholar 

  65. R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  66. Josse J, Husson F (2016) missMDA: a package for handling missing values in multivariate data analysis. J Stat Softw 70:1–31

    Article  Google Scholar 

  67. Lê S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25(1):1–18

    Article  Google Scholar 

  68. Love M (2014) Assessment of DESeq2 performance through simulation. In: www.huber.embl.de/DESeq2paper. https://www.huber.embl.de/DESeq2paper/vignettes/simulation.pdf. Accessed 4 Apr 2019

  69. Gu Z, Eils R, Schlesner M (2016) Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32:2847–2849. https://doi.org/10.1093/bioinformatics/btw313

    Article  CAS  PubMed  Google Scholar 

  70. Barupal DK, Haldiya PK, Wohlgemuth G et al (2012) MetaMapp: mapping and visualizing metabolomic data by integrating information from biochemical pathways and chemical and mass spectral similarity. BMC Bioinformatics 13:99. https://doi.org/10.1186/1471-2105-13-99

    Article  PubMed  PubMed Central  Google Scholar 

  71. Barupal DK, Fiehn O (2017) Chemical similarity enrichment analysis (ChemRICH) as alternative to biochemical pathway mapping for metabolomic datasets. Sci Rep 7:14567. https://doi.org/10.1038/s41598-017-15231-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pang Z, Chong J, Zhou G et al (2021) MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res 49:W388–W396. https://doi.org/10.1093/nar/gkab382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schymanski EL, Jeon J, Gulde R et al (2014) Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol 48:2097–2098. https://doi.org/10.1021/es5002105

    Article  CAS  PubMed  Google Scholar 

  74. Hughes TD (1976) Nitrogen release from isobutylidene diurea: soil pH and fertilizer particle size effects. Agron J 68:103–106. https://doi.org/10.2134/agronj1976.00021962006800010027x

    Article  CAS  Google Scholar 

  75. Retnakaran A, Wright JE (1987) Control of insect pests with benzoylphenyl ureas. In: Wright JE, Retnakaran A (eds) Chitin and benzoylphenyl ureas. Springer, Dordrecht, pp 205–282

    Chapter  Google Scholar 

  76. Cremer S, Armitage SAO, Schmid-Hempel P (2007) Social immunity. Curr Biol 17:R693–R702. https://doi.org/10.1016/j.cub.2007.06.008

    Article  CAS  PubMed  Google Scholar 

  77. Walker TN, Hughes WOH (2009) Adaptive social immunity in leaf-cutting ants. Biol Lett. https://doi.org/10.1098/rsbl.2009.0107

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hamilton C, Lejeune BT, Rosengaus RB (2011) Trophallaxis and prophylaxis: social immunity in the carpenter ant Camponotus pennsylvanicus. Biol Lett 7:89–92. https://doi.org/10.1098/rsbl.2010.0466

    Article  PubMed  Google Scholar 

  79. Le Conte Y, Alaux C, Martin J-F et al (2011) Social immunity in honeybees (Apis mellifera): transcriptome analysis of varroa-hygienic behaviour. Insect Mol Biol 20:399–408. https://doi.org/10.1111/j.1365-2583.2011.01074.x

    Article  CAS  PubMed  Google Scholar 

  80. Aanen DK (2018) Social immunity: the disposable individual. Curr Biol 28:R322–R324. https://doi.org/10.1016/j.cub.2018.02.050

    Article  CAS  PubMed  Google Scholar 

  81. Stanley-Samuelson DW, Jensen E, Nickerson KW et al (1991) Insect immune response to bacterial infection is mediated by eicosanoids. Proc Natl Acad Sci 88:1064–1068. https://doi.org/10.1073/pnas.88.3.1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Miller JS, Nguyen T, Stanley-Samuelson DW (1994) Eicosanoids mediate insect nodulation responses to bacterial infections. Proc Natl Acad Sci 91:12418–12422. https://doi.org/10.1073/pnas.91.26.12418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tapia CV, Falconer M, Tempio F et al (2014) Melanocytes and melanin represent a first line of innate immunity against Candida albicans. Med Mycol 52:445–454. https://doi.org/10.1093/mmy/myu026

    Article  CAS  PubMed  Google Scholar 

  84. Nakhleh J, El Moussawi L, Osta MA (2017) The melanization response in insect immunity. Advances in insect physiology. Elsevier, pp 83–109

    Google Scholar 

  85. Abdel-Shafi S (2017) Production of terpenoids, terpene alcohol, fatty acids and n2 compounds by bacillus amyloliquefaciens s5i4 isolated from archaeological egyptian soil. Adv Tech Clin Microbiol 1:3–18

    Google Scholar 

  86. Sclocco A, Teseo S (2020) Microbial associates and social behavior in ants. Artif Life Robot 25:552–560. https://doi.org/10.1007/s10015-020-00645-z

    Article  Google Scholar 

  87. Feldhaar H, Gross R (2008) Immune reactions of insects on bacterial pathogens and mutualists. Microbes Infect 10:1082–1088. https://doi.org/10.1016/j.micinf.2008.07.010

    Article  CAS  PubMed  Google Scholar 

  88. Konrad M, Grasse AV, Tragust S, Cremer S (2015) Anti-pathogen protection versus survival costs mediated by an ectosymbiont in an ant host. Proc R Soc B Biol Sci 282:20141976. https://doi.org/10.1098/rspb.2014.1976

    Article  CAS  Google Scholar 

  89. Zientz E, Feldhaar H, Stoll S, Gross R (2005) Insights into the microbial world associated with ants. Arch Microbiol 184:199–206. https://doi.org/10.1007/s00203-005-0041-0

    Article  CAS  PubMed  Google Scholar 

  90. de Souza DJ, Lenoir A, Kasuya MCM et al (2013) Ectosymbionts and immunity in the leaf-cutting ant Acromyrmex subterraneus subterraneus. Brain Behav Immun 28:182–187. https://doi.org/10.1016/j.bbi.2012.11.014

    Article  PubMed  Google Scholar 

  91. López-Uribe MM, Sconiers WB, Frank SD et al (2016) Reduced cellular immune response in social insect lineages. Biol Lett 12:20150984. https://doi.org/10.1098/rsbl.2015.0984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. He S, Sieksmeyer T, Che Y et al (2020) Evidence for reduced immune gene diversity and activity during the evolution of termites. bioRxiv. https://doi.org/10.1101/2020.07.09.192013

    Article  PubMed  PubMed Central  Google Scholar 

  93. Judice CC, Carazzole MF, Festa F et al (2006) Gene expression profiles underlying alternative caste phenotypes in a highly eusocial bee, Melipona quadrifasciata. Insect Mol Biol 15:33–44. https://doi.org/10.1111/j.1365-2583.2005.00605.x

    Article  CAS  PubMed  Google Scholar 

  94. Lucas ER, Romiguier J, Keller L (2017) Gene expression is more strongly influenced by age than caste in the ant Lasius niger. Mol Ecol 26:5058–5073. https://doi.org/10.1111/mec.14256

    Article  CAS  PubMed  Google Scholar 

  95. Grozinger CM, Fan Y, Hoover SE, Winston ML (2007) Genome-wide analysis reveals differences in brain gene expression patterns associated with caste and reproductive status in honey bees (Apis mellifera). Mol Ecol 16:4837–4848. https://doi.org/10.1111/j.1365-294X.2007.03545.x

    Article  CAS  PubMed  Google Scholar 

  96. Blomquist GJ, Borgeson CE, Vundla M (1991) Polyunsaturated fatty acids and eicosanoids in insects. Insect Biochem 21:99–106. https://doi.org/10.1016/0020-1790(91)90069-Q

    Article  CAS  Google Scholar 

  97. Mravec B (2006) Salsolinol, a derivate of dopamine, is a possible modulator of catecholaminergic transmission: a review of recent developments. Physiol Res 55(4):353–64

    CAS  PubMed  Google Scholar 

  98. Quintanilla ME, Rivera-Meza M, Berríos-Cárcamo P et al (2016) (R)-Salsolinol, a product of ethanol metabolism, stereospecifically induces behavioral sensitization and leads to excessive alcohol intake. Addict Biol 21:1063–1071. https://doi.org/10.1111/adb.12268

    Article  CAS  PubMed  Google Scholar 

  99. Kang JH (2013) Salsolinol, a catechol neurotoxin, induces oxidative modification of cytochrome c. BMB Rep 46:119–123. https://doi.org/10.5483/BMBRep.2013.46.2.220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cuyamendous C, Leung KS, Durand T et al (2015) Synthesis and discovery of phytofurans: metabolites of α-linolenic acid peroxidation. Chem Commun 51:15696–15699. https://doi.org/10.1039/C5CC05736A

    Article  CAS  Google Scholar 

  101. Cuyamendous C, de la Torre A, Lee YY et al (2016) The novelty of phytofurans, isofurans, dihomo-isofurans and neurofurans: discovery, synthesis and potential application. Biochimie 130:49–62. https://doi.org/10.1016/j.biochi.2016.08.002

    Article  CAS  PubMed  Google Scholar 

  102. Yonny ME, Rodríguez Torresi A, Cuyamendous C et al (2016) Thermal stress in melon plants: phytoprostanes and phytofurans as oxidative stress biomarkers and the effect of antioxidant supplementation. J Agric Food Chem 64:8296–8304. https://doi.org/10.1021/acs.jafc.6b03011

    Article  CAS  PubMed  Google Scholar 

  103. Eeva T, Tanhuanpää S, Råbergh C et al (2000) Biomarkers and fluctuating asymmetry as indicators of pollution-induced stress in two hole-nesting passerines. Funct Ecol 14:235–243. https://doi.org/10.1046/j.1365-2435.2000.00406.x

    Article  Google Scholar 

  104. Smith KL, Galloway TS, Depledge MH (2000) Neuro-endocrine biomarkers of pollution-induced stress in marine invertebrates. Sci Total Environ 262:185–190. https://doi.org/10.1016/S0048-9697(00)00599-4

    Article  CAS  PubMed  Google Scholar 

  105. Torres R, Velando A (2007) Male reproductive senescence: the price of immune-induced oxidative damage on sexual attractiveness in the blue-footed booby. J Anim Ecol 76:1161–1168

    Article  Google Scholar 

  106. Tkachenko H, Kurhaluk N (2012) Pollution-induced oxidative stress and biochemical parameter alterations in the blood of white stork nestlings Ciconia ciconia from regions with different degrees of contamination in Poland. J Environ Monit 14:3182–3191. https://doi.org/10.1039/C2EM30391D

    Article  CAS  PubMed  Google Scholar 

  107. Marri V, Richner H (2015) Immune response, oxidative stress and dietary antioxidants in great tit nestlings. Comp Biochem Physiol A Mol Integr Physiol 179:192–196. https://doi.org/10.1016/j.cbpa.2014.10.013

    Article  CAS  PubMed  Google Scholar 

  108. Parker JD, Parker KM, Sohal BH et al (2004) Decreased expression of Cu-Zn superoxide dismutase 1 in ants with extreme lifespan. Proc Natl Acad Sci USA 101:3486–3489. https://doi.org/10.1073/pnas.0400222101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rovito D, Giordano C, Vizza D et al (2013) Omega-3 PUFA ethanolamides DHEA and EPEA induce autophagy through PPARγ activation in MCF-7 breast cancer cells. J Cell Physiol 228:1314–1322. https://doi.org/10.1002/jcp.24288

    Article  CAS  PubMed  Google Scholar 

  110. Rovito D, Giordano C, Plastina P et al (2015) Omega-3 DHA- and EPA–dopamine conjugates induce PPARγ-dependent breast cancer cell death through autophagy and apoptosis. Biochim Biophys Acta BBA Gen Subj 1850:2185–2195. https://doi.org/10.1016/j.bbagen.2015.08.004

    Article  CAS  Google Scholar 

  111. Cuervo AM, Bergamini E, Brunk UT et al (2005) Autophagy and aging: the importance of maintaining “clean” cells. Autophagy. https://doi.org/10.4161/auto.1.3.2017

    Article  PubMed  Google Scholar 

  112. Bergamini E, Cavallini G, Donati A, Gori Z (2007) The role of autophagy in aging. Ann N Y Acad Sci 1114:69–78. https://doi.org/10.1196/annals.1396.020

    Article  CAS  PubMed  Google Scholar 

  113. Morselli E, Maiuri MC, Markaki M et al (2010) Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death Dis 1:e10–e10. https://doi.org/10.1038/cddis.2009.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Guo Q, Yu C, Zhang C et al (2018) Highly selective, potent and pral mTOR inhibitor for treatment of cancer as autophagy inducer. J Med Chem 61:881–904. https://doi.org/10.1021/acs.jmedchem.7b01402

    Article  CAS  PubMed  Google Scholar 

  115. Elphick MR (2012) The evolution and comparative neurobiology of endocannabinoid signalling. Philos Trans R Soc B Biol Sci 367:3201–3215. https://doi.org/10.1098/rstb.2011.0394

    Article  CAS  Google Scholar 

  116. Connor AJ, Watts JL (2019) Omega-3 and omega-6 fatty acid metabolism: modeling growth and disease using Caenorhabditis elegans. Omega fatty acids in brain and neurological health. Elsevier, pp 107–116

    Chapter  Google Scholar 

  117. Lenoir A (1981) Le comportement alimentaire et la division du travail chez la fourmi Lasius niger. Université de Tours

  118. Went FW, Wheeler J, Wheeler GC (1972) Feeding and digestion in some ants (Veromessor and Manica). Bioscience 22:82–88. https://doi.org/10.2307/1296037

    Article  Google Scholar 

  119. Cassill DL, Butler J, Vinson SB, Wheeler DE (2005) Cooperation during prey digestion between workers and larvae in the ant, Pheidole spadonia. Insectes Soc 52:339–343. https://doi.org/10.1007/s00040-005-0817-x

    Article  Google Scholar 

  120. Erthal M, Peres Silva C, Ian Samuels R (2007) Digestive enzymes in larvae of the leaf cutting ant, Acromyrmex subterraneus (Hymenoptera: Formicidae: Attini). J Insect Physiol 53:1101–1111. https://doi.org/10.1016/j.jinsphys.2007.06.014

    Article  CAS  PubMed  Google Scholar 

  121. Yamaguchi F, Hirata Y, Akram H et al (2013) FOXO/TXNIP pathway is involved in the suppression of hepatocellular carcinoma growth by glutamate antagonist MK-801. BMC Cancer 13:468. https://doi.org/10.1186/1471-2407-13-468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Greer EL, Dowlatshahi D, Banko MR et al (2007) An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol 17:1646–1656. https://doi.org/10.1016/j.cub.2007.08.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Greer EL, Brunet A (2007) FOXO transcription factors in ageing and cancer. Acta Physiol 192:19–28. https://doi.org/10.1111/j.1748-1716.2007.01780.x

    Article  CAS  Google Scholar 

  124. Sedding DG (2008) FoxO transcription factors in oxidative stress response and ageing—a new fork on the way to longevity? Biol Chem 389:279–283. https://doi.org/10.1515/BC.2008.033

    Article  CAS  PubMed  Google Scholar 

  125. Lin S-J, Guarente L (2003) Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr Opin Cell Biol 15:241–246. https://doi.org/10.1016/S0955-0674(03)00006-1

    Article  CAS  PubMed  Google Scholar 

  126. Boily G, Seifert EL, Bevilacqua L et al (2008) SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS One 3:e1759. https://doi.org/10.1371/journal.pone.0001759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Anderson R, Prolla T (2009) PGC-1α in aging and anti-aging interventions. Biochim Biophys Acta BBA Gen Subj 1790:1059–1066. https://doi.org/10.1016/j.bbagen.2009.04.005

    Article  CAS  Google Scholar 

  128. Someya S, Yu W, Hallows WC et al (2010) Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143:802–812. https://doi.org/10.1016/j.cell.2010.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kapahi P, Zid B (2004) TOR pathway: linking nutrient sensing to life span. Sci Aging Knowl Environ. https://doi.org/10.1126/sageke.2004.36.pe34

    Article  Google Scholar 

  130. Kapahi P, Chen D, Rogers AN et al (2010) With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab 11:453–465. https://doi.org/10.1016/j.cmet.2010.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Liang Y, Liu C, Lu M et al (2018) Calorie restriction is the most reasonable anti-ageing intervention: a meta-analysis of survival curves. Sci Rep 8:5779. https://doi.org/10.1038/s41598-018-24146-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Terada Y, Narukawa M, Watanabe T (2011) Specific hydroxy fatty acids in royal jelly activate TRPA1. J Agric Food Chem 59:2627–2635. https://doi.org/10.1021/jf1041646

    Article  CAS  PubMed  Google Scholar 

  133. Li X, Huang C, Xue Y (2013) Contribution of lipids in honeybee (Apis mellifera) royal jelly to health. J Med Food 16:96–102. https://doi.org/10.1089/jmf.2012.2425

    Article  CAS  PubMed  Google Scholar 

  134. Sastre J, Pallardó FV, García de la Asunción J, Viña J (2000) Mitochondria, oxidative stress and aging. Free Radic Res 32:189–198

    Article  CAS  Google Scholar 

  135. Speakman JR, Blount JD, Bronikowski AM et al (2015) Oxidative stress and life histories: unresolved issues and current needs. Ecol Evol 5:5745–5757. https://doi.org/10.1002/ece3.1790

    Article  PubMed  PubMed Central  Google Scholar 

  136. Brady EU (1983) Prostaglandins in insects. Insect Biochem 13:443–451. https://doi.org/10.1016/0020-1790(83)90001-X

    Article  CAS  Google Scholar 

  137. Weber H (2002) Fatty acid-derived signals in plants. Trends Plant Sci 7:217–224. https://doi.org/10.1016/S1360-1385(02)02250-1

    Article  CAS  PubMed  Google Scholar 

  138. Horn WS, Smith L, Bills GF et al (1992) Sphingofungins E and F: novel serinepalmitoyl transferase inhibitors from Paecilomyces variotii. J Antibiot (Tokyo). https://doi.org/10.7164/antibiotics.45.1692

    Article  Google Scholar 

  139. Puca AA, Andrew P, Novelli V et al (2007) Fatty acid profile of erythrocyte membranes as possible biomarker of longevity. Rejuvenation Res 11:63–72. https://doi.org/10.1089/rej.2007.0566

    Article  CAS  Google Scholar 

  140. Hulbert AJ (2008) Explaining longevity of different animals: is membrane fatty acid composition the missing link? Age 30:89–97. https://doi.org/10.1007/s11357-008-9055-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Brenner RR (1984) Effect of unsaturated acids on membrane structure and enzyme kinetics. Prog Lipid Res 23:69–96. https://doi.org/10.1016/0163-7827(84)90008-0

    Article  CAS  PubMed  Google Scholar 

  142. Pamplona R, Barja G, Portero-Otín M (2002) Membrane fatty acid unsaturation, protection against oxidative stress, and maximum life span. Ann N Y Acad Sci 959:475–490. https://doi.org/10.1111/j.1749-6632.2002.tb02118.x

    Article  CAS  PubMed  Google Scholar 

  143. Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA (2007) Life and death: metabolic rate, membrane composition, and life span of animals. Physiol Rev 87:1175–1213. https://doi.org/10.1152/physrev.00047.2006

    Article  CAS  PubMed  Google Scholar 

  144. Lucas ER, Keller L (2014) Ageing and somatic maintenance in social insects. Curr Opin Insect Sci 5:31–36. https://doi.org/10.1016/j.cois.2014.09.009

    Article  PubMed  Google Scholar 

  145. do Nascimento RR, Jackson BD, Morgan ED et al (1993) Chemical secretions of two sympatric harvester ants, Pogonomyrmex salinus and Messor lobognathus. J Chem Ecol 19:1993–2005. https://doi.org/10.1007/BF00983802

    Article  PubMed  Google Scholar 

  146. Calvello M, Guerra N, Brandazza A et al (2003) Soluble proteins of chemical communication in the social wasp Polistes dominulus. Cell Mol Life Sci CMLS 60:1933–1943. https://doi.org/10.1007/s00018-003-3186-5

    Article  CAS  PubMed  Google Scholar 

  147. Dani FR (2006) Cuticular lipids as semiochemicals in paper wasps and other social insects. Ann Zool Fenn 43:500–514

    Google Scholar 

  148. Billen J, David Morgan E, Drijfhout F, Farnier K (2009) Unusual structural and chemical characteristics of the Dufour gland in the ant Meranoplus diversus. Physiol Entomol 34:93–97. https://doi.org/10.1111/j.1365-3032.2008.00659.x

    Article  CAS  Google Scholar 

  149. Hui JHL, Hayward A, Bendena WG et al (2010) Evolution and functional divergence of enzymes involved in sesquiterpenoid hormone biosynthesis in crustaceans and insects. Peptides 31:451–455. https://doi.org/10.1016/j.peptides.2009.10.003

    Article  CAS  PubMed  Google Scholar 

  150. De Loof A, Marchal E, Rivera-Perez C et al (2015) Farnesol-like endogenous sesquiterpenoids in vertebrates: the probable but overlooked functional “inbrome” anti-aging counterpart of juvenile hormone of insects? Front Endocrinol. https://doi.org/10.3389/fendo.2014.00222

    Article  Google Scholar 

  151. Robinson GE, Vargo EL (1997) Juvenile hormone in adult eusocial hymenoptera: gonadotropin and behavioral pacemaker. Arch Insect Biochem Physiol 35:559–583. https://doi.org/10.1002/(SICI)1520-6327(1997)35:4%3c559::AID-ARCH13%3e3.0.CO;2-9

    Article  CAS  PubMed  Google Scholar 

  152. Elekonich M, Schulz DJ, Bloch G, Robinson GE (2001) Juvenile hormone levels in honey bee (Apis mellifera L.) foragers: foraging experience and diurnal variation. J Insect Physiol 47:1119–1125. https://doi.org/10.1016/S0022-1910(01)00090-7

    Article  CAS  Google Scholar 

  153. Dolezal AG, Brent CS, Hölldobler B, Amdam GV (2012) Worker division of labor and endocrine physiology are associated in the harvester ant, Pogonomyrmex californicus. J Exp Biol 215:454–460. https://doi.org/10.1242/jeb.060822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Stanley-Samuelson DW, Jurenka RA, Cripps C et al (1988) Fatty acids in insects: composition, metabolism, and biological significance. Arch Insect Biochem Physiol 9:1–33. https://doi.org/10.1002/arch.940090102

    Article  CAS  Google Scholar 

  155. Boomsma JJ, Van Der Have TM (1998) Queen mating and paternity variation in the ant Lasius niger. Mol Ecol 7:1709–1718. https://doi.org/10.1046/j.1365-294x.1998.00504.x

    Article  Google Scholar 

  156. Liu Z, Liu F, Li G et al (2020) Metabolite support of long-term storage of sperm in the spermatheca of honeybee (Apis mellifera) queens. Front Physiol 11:1303. https://doi.org/10.3389/fphys.2020.574856

    Article  CAS  Google Scholar 

  157. Paynter E, Millar AH, Welch M et al (2017) Insights into the molecular basis of long-term storage and survival of sperm in the honeybee (Apis mellifera). Sci Rep 7:40236. https://doi.org/10.1038/srep40236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Arrese EL, Soulages JL (2010) Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol 55:207. https://doi.org/10.1146/annurev-ento-112408-085356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Grześ IM, Okrutniak M, Grzegorzek J (2016) The size-dependent division of labour in monomorphic ant Lasius niger. Eur J Soil Biol 77:1–3. https://doi.org/10.1016/j.ejsobi.2016.08.006

    Article  Google Scholar 

  160. Okrutniak M, Rom B, Turza F, Grześ IM (2020) Body size differences between foraging and intranidal workers of the monomorphic ant Lasius niger. Insects 11:433. https://doi.org/10.3390/insects11070433

    Article  PubMed Central  Google Scholar 

Download references

Funding

The study was supported by the CNRS and the French Proteomic Infrastructure (ProFi; ANR-10-INSB-08-03). M. Quque PhD was funded by the University of Strasbourg and the French Ministry of Education, Research and Innovation.

Author information

Authors and Affiliations

Authors

Contributions

DH, FB, FC, CS and MQ designed the experimental protocol, MQ performed the behavioral observations and prepared samples before use in omics; DH prepared samples for metabolomics and performed the raw data processing; CV performed the LC-HRMS injections for metabolomics; MQ performed the whole statistical analysis and looked for manual functional annotation of metabolites; FB retrieved KEGG functional information; MQ wrote the first draft; CV and DH wrote methodological parts related to metabolomics of this draft; all authors edited the first draft.

Corresponding author

Correspondence to Martin Quque.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 813 KB)

Supplementary file2 (DOCX 312 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quque, M., Villette, C., Criscuolo, F. et al. Eusociality is linked to caste-specific differences in metabolism, immune system, and somatic maintenance-related processes in an ant species. Cell. Mol. Life Sci. 79, 29 (2022). https://doi.org/10.1007/s00018-021-04024-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-021-04024-0

Keywords

Navigation