Skip to main content

Advertisement

Log in

The role of leukocytes in acute ischemic stroke-related thrombosis: a notable but neglected topic

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Ischemic stroke is one of the most serious diseases today, and only a minority of patients are provided with effective clinical treatment. Importantly, leukocytes have gradually been discovered to play vital roles in stroke thrombosis, including promoting the activation of thrombin and the adhesion and aggregation of platelets. However, they have not received enough attention in the field of acute ischemic stroke. It is possible that we could not only prevent stroke-related thrombosis by inhibiting leukocyte activation, but also target leukocyte components to dissolve thrombi in the cerebral artery. In this review, we expound the mechanisms by which leukocytes are activated and participate in the formation of stroke thrombus, then describe the histopathology of leukocytes in thrombi of stroke patients and the influence of leukocyte composition on vascular recanalization effects and patient prognosis. Finally, we discuss the relevant antithrombotic strategies targeting leukocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

No data have been generated in the completion of this review.

References

  1. Powers WJ (2020) Acute ischemic stroke. N Engl J Med 383(3):252–260. https://doi.org/10.1056/NEJMcp1917030

    Article  PubMed  Google Scholar 

  2. Phipps MS, Cronin CA (2020) Management of acute ischemic stroke. BMJ 368:l6983. https://doi.org/10.1136/bmj.l6983

    Article  PubMed  Google Scholar 

  3. GBDS Collaborators (2019) Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18(5):439–458. https://doi.org/10.1016/S1474-4422(19)30034-1

    Article  Google Scholar 

  4. Ospel JM, Holodinsky JK, Goyal M (2020) Management of acute ischemic stroke due to large-vessel occlusion: JACC focus seminar. J Am Coll Cardiol 75(15):1832–1843. https://doi.org/10.1016/j.jacc.2019.10.034

    Article  PubMed  Google Scholar 

  5. Catanese L, Tarsia J, Fisher M (2017) Acute ischemic stroke therapy overview. Circ Res 120(3):541–558. https://doi.org/10.1161/CIRCRESAHA.116.309278

    Article  CAS  PubMed  Google Scholar 

  6. Noubouossie DF, Reeves BN, Strahl BD, Key NS (2019) Neutrophils: back in the thrombosis spotlight. Blood 133(20):2186–2197. https://doi.org/10.1182/blood-2018-10-862243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Swystun LL, Liaw PC (2016) The role of leukocytes in thrombosis. Blood 128(6):753–762. https://doi.org/10.1182/blood-2016-05-718114

    Article  CAS  PubMed  Google Scholar 

  8. Engelmann B, Massberg S (2013) Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol 13(1):34–45. https://doi.org/10.1038/nri3345

    Article  CAS  PubMed  Google Scholar 

  9. Choi MH, Park GH, Lee JS, Lee SE, Lee SJ, Kim JH, Hong JM (2018) Erythrocyte fraction within retrieved thrombi contributes to thrombolytic response in acute ischemic stroke. Stroke 49(3):652–659. https://doi.org/10.1161/STROKEAHA.117.019138

    Article  PubMed  Google Scholar 

  10. Ducroux C, Di Meglio L, Loyau S, Delbosc S, Boisseau W, Deschildre C, Ben Maacha M, Blanc R, Redjem H, Ciccio G, Smajda S, Fahed R, Michel JB, Piotin M, Salomon L, Mazighi M, Ho-Tin-Noe B, Desilles JP (2018) Thrombus neutrophil extracellular traps content impair tPA-induced thrombolysis in acute ischemic stroke. Stroke 49(3):754–757. https://doi.org/10.1161/STROKEAHA.117.019896

    Article  PubMed  Google Scholar 

  11. Nieswandt B, Kleinschnitz C, Stoll G (2011) Ischaemic stroke: a thrombo-inflammatory disease? J Physiol 589(17):4115–4123. https://doi.org/10.1113/jphysiol.2011.212886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Franks ZG, Campbell RA, Weyrich AS, Rondina MT (2010) Platelet-leukocyte interactions link inflammatory and thromboembolic events in ischemic stroke. Ann N Y Acad Sci 1207:11–17. https://doi.org/10.1111/j.1749-6632.2010.05733.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gaertner F, Massberg S (2016) Blood coagulation in immunothrombosis—at the frontline of intravascular immunity. Semin Immunol 28(6):561–569. https://doi.org/10.1016/j.smim.2016.10.010

    Article  CAS  PubMed  Google Scholar 

  14. Vieira-de-Abreu A, Campbell RA, Weyrich AS, Zimmerman GA (2012) Platelets: versatile effector cells in hemostasis, inflammation, and the immune continuum. Semin Immunopathol 34(1):5–30. https://doi.org/10.1007/s00281-011-0286-4

    Article  CAS  PubMed  Google Scholar 

  15. Zhu B, Liu H, Pan Y, Jing J, Li H, Zhao X, Liu L, Wang D, Johnston SC, Wang Z, Wang Y, Wang Y, CHANCE Investigators (2018) Elevated neutrophil and presence of intracranial artery stenosis increase the risk of recurrent stroke. Stroke 49(10):2294–2300. https://doi.org/10.1161/STROKEAHA.118.022126

    Article  PubMed  Google Scholar 

  16. Grau AJ, Boddy AW, Dukovic DA, Buggle F, Lichy C, Brandt T, Hacke W (2004) Leukocyte count as an independent predictor of recurrent ischemic events. Stroke 35(5):1147–1152. https://doi.org/10.1161/01.Str.0000124122.71702.64

    Article  PubMed  Google Scholar 

  17. Zhou M, Zhu L, Cui X, Feng L, Zhao X, He S, Ping F, Li W, Li Y (2016) Influence of diet on leukocyte telomere length, markers of inflammation and oxidative stress in individuals with varied glucose tolerance: a Chinese population study. Nutr J 15:39. https://doi.org/10.1186/s12937-016-0157-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stumvoll M, Goldstein BJ, van Haeften TW (2005) Type 2 diabetes: principles of pathogenesis and therapy. Lancet 365(9467):1333–1346. https://doi.org/10.1016/S0140-6736(05)61032-X

    Article  CAS  PubMed  Google Scholar 

  19. Vekic J, Zeljkovic A, Stefanovic A, Jelic-Ivanovic Z, Spasojevic-Kalimanovska V (2019) Obesity and dyslipidemia. Metabolism 92:71–81. https://doi.org/10.1016/j.metabol.2018.11.005

    Article  CAS  PubMed  Google Scholar 

  20. Bentzon JF, Otsuka F, Virmani R, Falk E (2014) Mechanisms of plaque formation and rupture. Circ Res 114(12):1852–1866. https://doi.org/10.1161/CIRCRESAHA.114.302721

    Article  CAS  PubMed  Google Scholar 

  21. Hansson GK, Robertson AK, Soderberg-Naucler C (2006) Inflammation and atherosclerosis. Annu Rev Pathol 1:297–329. https://doi.org/10.1146/annurev.pathol.1.110304.100100

    Article  CAS  PubMed  Google Scholar 

  22. Kamel H, Healey JS (2017) Cardioembolic stroke. Circ Res 120(3):514–526. https://doi.org/10.1161/CIRCRESAHA.116.308407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ferro JM (2003) Cardioembolic stroke: an update. Lancet Neurol 2(3):177–188. https://doi.org/10.1016/s1474-4422(03)00324-7

    Article  PubMed  Google Scholar 

  24. Becker RC, Owens AP 3rd, Sadayappan S (2020) Tissue-level inflammation and ventricular remodeling in hypertrophic cardiomyopathy. J Thromb Thrombolysis 49(2):177–183. https://doi.org/10.1007/s11239-019-02026-1

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vazquez-Garza E, Jerjes-Sanchez C, Navarrete A, Joya-Harrison J, Rodriguez D (2017) Venous thromboembolism: thrombosis, inflammation, and immunothrombosis for clinicians. J Thromb Thrombolysis 44(3):377–385. https://doi.org/10.1007/s11239-017-1528-7

    Article  CAS  PubMed  Google Scholar 

  26. Yan SF, Mackman N, Kisiel W, Stern DM, Pinsky DJ (1999) Hypoxia/Hypoxemia-Induced activation of the procoagulant pathways and the pathogenesis of ischemia-associated thrombosis. Arterioscler Thromb Vasc Biol 19(9):2029–2035. https://doi.org/10.1161/01.atv.19.9.2029

    Article  CAS  PubMed  Google Scholar 

  27. Davi G, Patrono C (2007) Platelet activation and atherothrombosis. N Engl J Med 357(24):2482–2494. https://doi.org/10.1056/NEJMra071014

    Article  CAS  PubMed  Google Scholar 

  28. Nieswandt B, Pleines I, Bender M (2011) Platelet adhesion and activation mechanisms in arterial thrombosis and ischaemic stroke. J Thromb Haemost 9(Suppl 1):92–104. https://doi.org/10.1111/j.1538-7836.2011.04361.x

    Article  CAS  PubMed  Google Scholar 

  29. Schrottmaier WC, Mussbacher M, Salzmann M, Assinger A (2020) Platelet-leukocyte interplay during vascular disease. Atherosclerosis 307:109–120. https://doi.org/10.1016/j.atherosclerosis.2020.04.018

    Article  CAS  PubMed  Google Scholar 

  30. Pircher J, Engelmann B, Massberg S, Schulz C (2019) Platelet-neutrophil crosstalk in atherothrombosis. Thromb Haemost 119(8):1274–1282. https://doi.org/10.1055/s-0039-1692983

    Article  PubMed  Google Scholar 

  31. Li J, Kim K, Barazia A, Tseng A, Cho J (2015) Platelet-neutrophil interactions under thromboinflammatory conditions. Cell Mol Life Sci 72(14):2627–2643. https://doi.org/10.1007/s00018-015-1845-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tao L, Changfu W, Linyun L, Bing M, Xiaohui H (2016) Correlations of platelet-leukocyte aggregates with P-selectin S290N and P-selectin glycoprotein ligand-1 M62I genetic polymorphisms in patients with acute ischemic stroke. J Neurol Sci 367:95–100. https://doi.org/10.1016/j.jns.2016.05.046

    Article  CAS  PubMed  Google Scholar 

  33. Htun P, Fateh-Moghadam S, Tomandl B, Handschu R, Klinger K, Stellos K, Garlichs C, Daniel W, Gawaz M (2006) Course of platelet activation and platelet-leukocyte interaction in cerebrovascular ischemia. Stroke 37(9):2283–2287. https://doi.org/10.1161/01.STR.0000236638.75591.61

    Article  CAS  PubMed  Google Scholar 

  34. Ishikawa T, Shimizu M, Kohara S, Takizawa S, Kitagawa Y, Takagi S (2012) Appearance of WBC-platelet complex in acute ischemic stroke, predominantly in atherothrombotic infarction. J Atheroscler Thromb 19(5):494–501. https://doi.org/10.5551/jat.10637

    Article  PubMed  Google Scholar 

  35. Marquardt L, Anders C, Buggle F, Palm F, Hellstern P, Grau AJ (2009) Leukocyte-platelet aggregates in acute and subacute ischemic stroke. Cerebrovasc Dis 28(3):276–282. https://doi.org/10.1159/000228710

    Article  CAS  PubMed  Google Scholar 

  36. Zeller JA, Frahm K, Baron R, Stingele R, Deuschl G (2004) Platelet-leukocyte interaction and platelet activation in migraine: a link to ischemic stroke? J Neurol Neurosurg Psychiatry 75(7):984–987. https://doi.org/10.1136/jnnp.2003.019638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yago T, Liu Z, Ahamed J, McEver RP (2018) Cooperative PSGL-1 and CXCR2 signaling in neutrophils promotes deep vein thrombosis in mice. Blood 132(13):1426–1437. https://doi.org/10.1182/blood-2018-05-850859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sreeramkumar V, Adrover JM, Ballesteros I, Cuartero MI, Rossaint J, Bilbao I, Nacher M, Pitaval C, Radovanovic I, Fukui Y, McEver RP, Filippi MD, Lizasoain I, Ruiz-Cabello J, Zarbock A, Moro MA, Hidalgo A (2014) Neutrophils scan for activated platelets to initiate inflammation. Science 346(6214):1234–1238. https://doi.org/10.1126/science.1256478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Volcik KA, Ballantyne CM, Coresh J, Folsom AR, Boerwinkle E (2007) Specific P-selectin and P-selectin glycoprotein ligand-1 genotypes/haplotypes are associated with risk of incident CHD and ischemic stroke: the Atherosclerosis Risk in Communities (ARIC) Study. Atherosclerosis 195(1):e76-82. https://doi.org/10.1016/j.atherosclerosis.2007.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vandendries ER, Furie BC, Furie B (2004) Role of P-selectin and PSGL-1 in coagulation and thrombosis. Thromb Haemost 92(3):459–466. https://doi.org/10.1160/TH04-05-0306

    Article  PubMed  Google Scholar 

  41. Merten M, Thiagarajan P (2004) P-selectin in arterial thrombosis. Z Kardiol 93(11):855–863. https://doi.org/10.1007/s00392-004-0146-5

    Article  CAS  PubMed  Google Scholar 

  42. Zarbock A, Muller H, Kuwano Y, Ley K (2009) PSGL-1-dependent myeloid leukocyte activation. J Leukoc Biol 86(5):1119–1124. https://doi.org/10.1189/jlb.0209117

    Article  CAS  PubMed  Google Scholar 

  43. Evangelista V, Manarini S, Rotondo S, Martelli N, Polischuk R, McGregor JL, de Gaetano G, Cerletti C (1996) Platelet/polymorphonuclear leukocyte interaction in dynamic conditions: evidence of adhesion cascade and cross talk between P-selectin and the beta 2 integrin CD11b/CD18. Blood 88(11):4183–4194

    Article  CAS  PubMed  Google Scholar 

  44. Diacovo TG, Roth SJ, Buccola JM, Bainton DF, Springer TA (1996) Neutrophil rolling, arrest, and transmigration across activated, surface-adherent platelets via sequential action of P-selectin and the beta 2-integrin CD11b/CD18. Blood 88(1):146–157

    Article  CAS  PubMed  Google Scholar 

  45. Wang H, Kleiman K, Wang J, Luo W, Guo C, Eitzman DT (2015) Deficiency of P-selectin glycoprotein ligand-1 is protective against the prothrombotic effects of interleukin-1beta. J Thromb Haemost 13(12):2273–2276. https://doi.org/10.1111/jth.13146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. von Bruhl ML, Stark K, Steinhart A, Chandraratne S, Konrad I, Lorenz M, Khandoga A, Tirniceriu A, Coletti R, Kollnberger M, Byrne RA, Laitinen I, Walch A, Brill A, Pfeiler S, Manukyan D, Braun S, Lange P, Riegger J, Ware J, Eckart A, Haidari S, Rudelius M, Schulz C, Echtler K, Brinkmann V, Schwaiger M, Preissner KT, Wagner DD, Mackman N, Engelmann B, Massberg S (2012) Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 209(4):819–835. https://doi.org/10.1084/jem.20112322

    Article  CAS  Google Scholar 

  47. Wang Y, Sakuma M, Chen Z, Ustinov V, Shi C, Croce K, Zago AC, Lopez J, Andre P, Plow E, Simon DI (2005) Leukocyte engagement of platelet glycoprotein Ibalpha via the integrin Mac-1 is critical for the biological response to vascular injury. Circulation 112(19):2993–3000. https://doi.org/10.1161/CIRCULATIONAHA.105.571315

    Article  CAS  PubMed  Google Scholar 

  48. Santoso S, Sachs UJ, Kroll H, Linder M, Ruf A, Preissner KT, Chavakis T (2002) The junctional adhesion molecule 3 (JAM-3) on human platelets is a counterreceptor for the leukocyte integrin Mac-1. J Exp Med 196(5):679–691. https://doi.org/10.1084/jem.20020267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lievens D, Zernecke A, Seijkens T, Soehnlein O, Beckers L, Munnix IC, Wijnands E, Goossens P, van Kruchten R, Thevissen L, Boon L, Flavell RA, Noelle RJ, Gerdes N, Biessen EA, Daemen MJ, Heemskerk JW, Weber C, Lutgens E (2010) Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis. Blood 116(20):4317–4327. https://doi.org/10.1182/blood-2010-01-261206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Simon DI, Chen Z, Xu H, Li CQ, Dong J, McIntire LV, Ballantyne CM, Zhang L, Furman MI, Berndt MC, Lopez JA (2000) Platelet glycoprotein ibalpha is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18). J Exp Med 192(2):193–204. https://doi.org/10.1084/jem.192.2.193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang Y, Gao H, Shi C, Erhardt PW, Pavlovsky A, Soloviev DA, Bledzka K, Ustinov V, Zhu L, Qin J, Munday AD, Lopez J, Plow E, Simon DI (2017) Leukocyte integrin Mac-1 regulates thrombosis via interaction with platelet GPIbα. Nat Commun 8:15559. https://doi.org/10.1038/ncomms15559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Grau AJ, Lichy C (2003) Editorial comment: stroke and the CD40-CD40 ligand system: at the hinge between inflammation and thrombosis. Stroke 34(6):1417–1418. https://doi.org/10.1161/01.Str.0000076520.37414.91

    Article  PubMed  Google Scholar 

  53. Renesto P, Chignard M (1993) Enhancement of cathepsin G-induced platelet activation by leukocyte elastase: consequence for the neutrophil-mediated platelet activation. Blood 82(1):139–144

    Article  CAS  PubMed  Google Scholar 

  54. Faraday N, Schunke K, Saleem S, Fu J, Wang B, Zhang J, Morrell C, Dore S (2013) Cathepsin G-dependent modulation of platelet thrombus formation in vivo by blood neutrophils. PLoS ONE 8(8):e71447. https://doi.org/10.1371/journal.pone.0071447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Toscano EC, Silva BC, Victoria EC, Cardoso AC, Miranda AS, Sugimoto MA, Sousa LP, Carvalho BA, Kangussu LM, Silva DG, Rodrigues FG, da Silva Barcelos L, Vasconcelos AC, Amaral FA, Teixeira MM, Teixeira AL, Rachid MA (2016) Platelet-activating factor receptor (PAFR) plays a crucial role in experimental global cerebral ischemia and reperfusion. Brain Res Bull 124:55–61. https://doi.org/10.1016/j.brainresbull.2016.03.022

    Article  CAS  PubMed  Google Scholar 

  56. Uchiyama S, Yamazaki M, Maruyama S (1991) Role of platelet-activating factor in aggregation of leukocytes and platelets in cerebral ischemia. Lipids 26(12):1247–1249. https://doi.org/10.1007/bf02536541

    Article  CAS  PubMed  Google Scholar 

  57. Rohrbach MS, Wheatley CL, Slifman NR, Gleich GJ (1990) Activation of platelets by eosinophil granule proteins. J Exp Med 172(4):1271–1274. https://doi.org/10.1084/jem.172.4.1271

    Article  CAS  PubMed  Google Scholar 

  58. Marx C, Novotny J, Salbeck D, Zellner KR, Nicolai L, Pekayvaz K, Kilani B, Stockhausen S, Bürgener N, Kupka D, Stocker TJ, Weckbach LT, Pircher J, Moser M, Joner M, Desmet W, Adriaenssens T, Neumann FJ, Gerschlick AH, Ten Berg JM, Lorenz M, Stark K (2019) Eosinophil-platelet interactions promote atherosclerosis and stabilize thrombosis with eosinophil extracellular traps. Blood 134(21):1859–1872. https://doi.org/10.1182/blood.2019000518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dib PRB, Quirino-Teixeira AC, Merij LB, Pinheiro MBM, Rozini SV, Andrade FB, Hottz ED (2020) Innate immune receptors in platelets and platelet-leukocyte interactions. J Leukoc Biol 108(4):1157–1182. https://doi.org/10.1002/jlb.4mr0620-701r

    Article  CAS  PubMed  Google Scholar 

  60. Schattner M (2019) Platelet TLR4 at the crossroads of thrombosis and the innate immune response. J Leukoc Biol 105(5):873–880. https://doi.org/10.1002/jlb.Mr0618-213r

    Article  CAS  PubMed  Google Scholar 

  61. Maugeri N, Evangelista V, Piccardoni P, Dell’Elba G, Celardo A, de Gaetano G, Cerletti C (1992) Transcellular metabolism of arachidonic acid: increased platelet thromboxane generation in the presence of activated polymorphonuclear leukocytes. Blood 80(2):447–451

    Article  CAS  PubMed  Google Scholar 

  62. Falati S, Liu Q, Gross P, Merrill-Skoloff G, Chou J, Vandendries E, Celi A, Croce K, Furie BC, Furie B (2003) Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle P-selectin glycoprotein ligand 1 and platelet P-selectin. J Exp Med 197(11):1585–1598. https://doi.org/10.1084/jem.20021868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lindemann S, Tolley ND, Dixon DA, McIntyre TM, Prescott SM, Zimmerman GA, Weyrich AS (2001) Activated platelets mediate inflammatory signaling by regulated interleukin 1beta synthesis. J Cell Biol 154(3):485–490. https://doi.org/10.1083/jcb.200105058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Stark K, Philippi V, Stockhausen S, Busse J, Antonelli A, Miller M, Schubert I, Hoseinpour P, Chandraratne S, von Bruhl ML, Gaertner F, Lorenz M, Agresti A, Coletti R, Antoine DJ, Heermann R, Jung K, Reese S, Laitinen I, Schwaiger M, Walch A, Sperandio M, Nawroth PP, Reinhardt C, Jackel S, Bianchi ME, Massberg S (2016) Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice. Blood 128(20):2435–2449. https://doi.org/10.1182/blood-2016-04-710632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vogel S, Bodenstein R, Chen Q, Feil S, Feil R, Rheinlaender J, Schaffer TE, Bohn E, Frick JS, Borst O, Munzer P, Walker B, Markel J, Csanyi G, Pagano PJ, Loughran P, Jessup ME, Watkins SC, Bullock GC, Sperry JL, Zuckerbraun BS, Billiar TR, Lotze MT, Gawaz M, Neal MD (2015) Platelet-derived HMGB1 is a critical mediator of thrombosis. J Clin Invest 125(12):4638–4654. https://doi.org/10.1172/JCI81660

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wu H, Li R, Pei LG, Wei ZH, Kang LN, Wang L, Xie J, Xu B (2018) Emerging role of high mobility group Box-1 in thrombosis-related diseases. Cell Physiol Biochem 47(4):1319–1337. https://doi.org/10.1159/000490818

    Article  CAS  PubMed  Google Scholar 

  67. Ghasemzadeh M, Hosseini E (2015) Intravascular leukocyte migration through platelet thrombi: directing leukocytes to sites of vascular injury. Thromb Haemost 113(6):1224–1235. https://doi.org/10.1160/TH14-08-0662

    Article  PubMed  Google Scholar 

  68. Flierl U, Bauersachs J, Schafer A (2015) Modulation of platelet and monocyte function by the chemokine fractalkine (CX3 CL1) in cardiovascular disease. Eur J Clin Invest 45(6):624–633. https://doi.org/10.1111/eci.12443

    Article  CAS  PubMed  Google Scholar 

  69. Gleissner CA, von Hundelshausen P, Ley K (2008) Platelet chemokines in vascular disease. Arterioscler Thromb Vasc Biol 28(11):1920–1927. https://doi.org/10.1161/ATVBAHA.108.169417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kattula S, Byrnes JR, Wolberg AS (2017) Fibrinogen and fibrin in hemostasis and thrombosis. Arterioscler Thromb Vasc Biol 37(3):e13–e21. https://doi.org/10.1161/atvbaha.117.308564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nemerson Y (1988) Tissue factor and hemostasis. Blood 71(1):1–8

    Article  CAS  PubMed  Google Scholar 

  72. Kretz CA, Vaezzadeh N, Gross PL (2010) Tissue factor and thrombosis models. Arterioscler Thromb Vasc Biol 30(5):900–908. https://doi.org/10.1161/atvbaha.108.177477

    Article  CAS  PubMed  Google Scholar 

  73. Grover SP, Mackman N (2018) Tissue factor: an essential mediator of hemostasis and trigger of thrombosis. Arterioscler Thromb Vasc Biol 38(4):709–725. https://doi.org/10.1161/ATVBAHA.117.309846

    Article  CAS  PubMed  Google Scholar 

  74. Grover SP, Mackman N (2020) Tissue factor in atherosclerosis and atherothrombosis. Atherosclerosis 307:80–86. https://doi.org/10.1016/j.atherosclerosis.2020.06.003

    Article  CAS  PubMed  Google Scholar 

  75. Gross PL, Furie BC, Merrill-Skoloff G, Chou J, Furie B (2005) Leukocyte-versus microparticle-mediated tissue factor transfer during arteriolar thrombus development. J Leukoc Biol 78(6):1318–1326. https://doi.org/10.1189/jlb.0405193

    Article  CAS  PubMed  Google Scholar 

  76. Maugeri N, Brambilla M, Camera M, Carbone A, Tremoli E, Donati MB, de Gaetano G, Cerletti C (2006) Human polymorphonuclear leukocytes produce and express functional tissue factor upon stimulation. J Thromb Haemost 4(6):1323–1330. https://doi.org/10.1111/j.1538-7836.2006.01968.x

    Article  CAS  PubMed  Google Scholar 

  77. Darbousset R, Thomas GM, Mezouar S, Frere C, Bonier R, Mackman N, Renne T, Dignat-George F, Dubois C, Panicot-Dubois L (2012) Tissue factor-positive neutrophils bind to injured endothelial wall and initiate thrombus formation. Blood 120(10):2133–2143. https://doi.org/10.1182/blood-2012-06-437772

    Article  CAS  PubMed  Google Scholar 

  78. Massberg S, Grahl L, von Bruehl ML, Manukyan D, Pfeiler S, Goosmann C, Brinkmann V, Lorenz M, Bidzhekov K, Khandagale AB, Konrad I, Kennerknecht E, Reges K, Holdenrieder S, Braun S, Reinhardt C, Spannagl M, Preissner KT, Engelmann B (2010) Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 16(8):887–896. https://doi.org/10.1038/nm.2184

    Article  CAS  PubMed  Google Scholar 

  79. Pratt CW, Tobin RB, Church FC (1990) Interaction of heparin cofactor II with neutrophil elastase and cathepsin G. J Biol Chem 265(11):6092–6097

    Article  CAS  PubMed  Google Scholar 

  80. Higuchi DA, Wun TC, Likert KM, Broze GJ Jr (1992) The effect of leukocyte elastase on tissue factor pathway inhibitor. Blood 79(7):1712–1719

    Article  CAS  PubMed  Google Scholar 

  81. Jochum M, Lander S, Heimburger N, Fritz H (1981) Effect of human granulocytic elastase on isolated human antithrombin III. Hoppe Seylers Z Physiol Chem 362(2):103–112. https://doi.org/10.1515/bchm2.1981.362.1.103

    Article  CAS  PubMed  Google Scholar 

  82. Gale AJ, Rozenshteyn D (2008) Cathepsin G, a leukocyte protease, activates coagulation factor VIII. Thromb Haemost 99(1):44–51. https://doi.org/10.1160/TH07-08-0495

    Article  CAS  PubMed  Google Scholar 

  83. Allen DH, Tracy PB (1995) Human coagulation factor V is activated to the functional cofactor by elastase and cathepsin G expressed at the monocyte surface. J Biol Chem 270(3):1408–1415. https://doi.org/10.1074/jbc.270.3.1408

    Article  CAS  PubMed  Google Scholar 

  84. Plescia J, Altieri DC (1996) Activation of Mac-1 (CD11b/CD18)-bound factor X by released cathepsin G defines an alternative pathway of leucocyte initiation of coagulation. Biochem J 319(Pt 3):873–879. https://doi.org/10.1042/bj3190873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tracy PB, Rohrbach MS, Mann KG (1983) Functional prothrombinase complex assembly on isolated monocytes and lymphocytes. J Biol Chem 258(12):7264–7267

    Article  CAS  PubMed  Google Scholar 

  86. Tracy PB, Eide LL, Mann KG (1985) Human prothrombinase complex assembly and function on isolated peripheral blood cell populations. J Biol Chem 260(4):2119–2124

    Article  CAS  PubMed  Google Scholar 

  87. Coughlin SR (2005) Protease-activated receptors in hemostasis, thrombosis and vascular biology. J Thromb Haemost 3(8):1800–1814. https://doi.org/10.1111/j.1538-7836.2005.01377.x

    Article  CAS  PubMed  Google Scholar 

  88. Bizios R, Lai L, Fenton JW 2nd, Malik AB (1986) Thrombin-induced chemotaxis and aggregation of neutrophils. J Cell Physiol 128(3):485–490. https://doi.org/10.1002/jcp.1041280318

    Article  CAS  PubMed  Google Scholar 

  89. Bar-Shavit R, Kahn A, Fenton JW 2nd, Wilner GD (1983) Chemotactic response of monocytes to thrombin. J Cell Biol 96(1):282–285. https://doi.org/10.1083/jcb.96.1.282

    Article  CAS  PubMed  Google Scholar 

  90. Lawrence SM, Corriden R, Nizet V (2020) How neutrophils meet their end. Trends Immunol 41(6):531–544. https://doi.org/10.1016/j.it.2020.03.008

    Article  CAS  PubMed  Google Scholar 

  91. Thalin C, Hisada Y, Lundstrom S, Mackman N, Wallen H (2019) Neutrophil extracellular traps: villains and targets in arterial, venous, and cancer-associated thrombosis. Arterioscler Thromb Vasc Biol 39(9):1724–1738. https://doi.org/10.1161/ATVBAHA.119.312463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. de Bont CM, Boelens WC, Pruijn GJM (2019) NETosis, complement, and coagulation: a triangular relationship. Cell Mol Immunol 16(1):19–27. https://doi.org/10.1038/s41423-018-0024-0

    Article  CAS  PubMed  Google Scholar 

  93. Sorensen OE, Borregaard N (2016) Neutrophil extracellular traps—the dark side of neutrophils. J Clin Invest 126(5):1612–1620. https://doi.org/10.1172/JCI84538

    Article  PubMed  PubMed Central  Google Scholar 

  94. Gould TJ, Lysov Z, Liaw PC (2015) Extracellular DNA and histones: double-edged swords in immunothrombosis. J Thromb Haemost 13(Suppl 1):S82-91. https://doi.org/10.1111/jth.12977

    Article  CAS  PubMed  Google Scholar 

  95. Martinod K, Wagner DD (2014) Thrombosis: tangled up in NETs. Blood 123(18):2768–2776. https://doi.org/10.1182/blood-2013-10-463646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pfeiler S, Stark K, Massberg S, Engelmann B (2017) Propagation of thrombosis by neutrophils and extracellular nucleosome networks. Haematologica 102(2):206–213. https://doi.org/10.3324/haematol.2016.142471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Doring Y, Soehnlein O, Weber C (2017) Neutrophil extracellular traps in atherosclerosis and atherothrombosis. Circ Res 120(4):736–743. https://doi.org/10.1161/CIRCRESAHA.116.309692

    Article  CAS  PubMed  Google Scholar 

  98. Adams HP Jr, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, Marsh EE 3rd (1993) Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of org 10172 in acute stroke treatment. Stroke 24(1):35–41. https://doi.org/10.1161/01.str.24.1.35

    Article  PubMed  Google Scholar 

  99. Cestari DM, Weine DM, Panageas KS, Segal AZ, DeAngelis LM (2004) Stroke in patients with cancer: incidence and etiology. Neurology 62(11):2025–2030. https://doi.org/10.1212/01.wnl.0000129912.56486.2b

    Article  CAS  PubMed  Google Scholar 

  100. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD Jr, Wrobleski SK, Wakefield TW, Hartwig JH, Wagner DD (2010) Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA 107(36):15880–15885. https://doi.org/10.1073/pnas.1005743107

    Article  PubMed  PubMed Central  Google Scholar 

  101. Grasso S, Neumann A, Lang IM, Etscheid M, von Kockritz-Blickwede M, Kanse SM (2018) Interaction of factor VII activating protease (FSAP) with neutrophil extracellular traps (NETs). Thromb Res 161:36–42. https://doi.org/10.1016/j.thromres.2017.11.012

    Article  CAS  PubMed  Google Scholar 

  102. Noubouossie DF, Whelihan MF, Yu YB, Sparkenbaugh E, Pawlinski R, Monroe DM, Key NS (2017) In vitro activation of coagulation by human neutrophil DNA and histone proteins but not neutrophil extracellular traps. Blood 129(8):1021–1029. https://doi.org/10.1182/blood-2016-06-722298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ivanov I, Shakhawat R, Sun MF, Dickeson SK, Puy C, McCarty OJ, Gruber A, Matafonov A, Gailani D (2017) Nucleic acids as cofactors for factor XI and prekallikrein activation: different roles for high-molecular-weight kininogen. Thromb Haemost 117(4):671–681. https://doi.org/10.1160/TH16-09-0691

    Article  PubMed  PubMed Central  Google Scholar 

  104. Gould TJ, Vu TT, Swystun LL, Dwivedi DJ, Mai SH, Weitz JI, Liaw PC (2014) Neutrophil extracellular traps promote thrombin generation through platelet-dependent and platelet-independent mechanisms. Arterioscler Thromb Vasc Biol 34(9):1977–1984. https://doi.org/10.1161/ATVBAHA.114.304114

    Article  CAS  PubMed  Google Scholar 

  105. Barranco-Medina S, Pozzi N, Vogt AD, Di Cera E (2013) Histone H4 promotes prothrombin autoactivation. J Biol Chem 288(50):35749–35757. https://doi.org/10.1074/jbc.M113.509786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ammollo CT, Semeraro F, Xu J, Esmon NL, Esmon CT (2011) Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation. J Thromb Haemost 9(9):1795–1803. https://doi.org/10.1111/j.1538-7836.2011.04422.x

    Article  CAS  PubMed  Google Scholar 

  107. Kim SJ, Jenne CN (2016) Role of platelets in neutrophil extracellular trap (NET) production and tissue injury. Semin Immunol 28(6):546–554. https://doi.org/10.1016/j.smim.2016.10.013

    Article  CAS  PubMed  Google Scholar 

  108. Carestia A, Rivadeneyra L, Romaniuk MA, Fondevila C, Negrotto S, Schattner M (2013) Functional responses and molecular mechanisms involved in histone-mediated platelet activation. Thromb Haemost 110(5):1035–1045. https://doi.org/10.1160/TH13-02-0174

    Article  CAS  PubMed  Google Scholar 

  109. Semeraro F, Ammollo CT, Morrissey JH, Dale GL, Friese P, Esmon NL, Esmon CT (2011) Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood 118(7):1952–1961. https://doi.org/10.1182/blood-2011-03-343061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhou P, Li T, Jin J, Liu Y, Li B, Sun Q, Tian J, Zhao H, Liu Z, Ma S, Zhang S, Novakovic VA, Shi J, Hu S (2020) Interactions between neutrophil extracellular traps and activated platelets enhance procoagulant activity in acute stroke patients with ICA occlusion. EBioMedicine 53:102671. https://doi.org/10.1016/j.ebiom.2020.102671

    Article  PubMed  PubMed Central  Google Scholar 

  111. Tadie JM, Bae HB, Jiang S, Park DW, Bell CP, Yang H, Pittet JF, Tracey K, Thannickal VJ, Abraham E, Zmijewski JW (2013) HMGB1 promotes neutrophil extracellular trap formation through interactions with Toll-like receptor 4. Am J Physiol Lung Cell Mol Physiol 304(5):L342-349. https://doi.org/10.1152/ajplung.00151.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Maugeri N, Campana L, Gavina M, Covino C, De Metrio M, Panciroli C, Maiuri L, Maseri A, D’Angelo A, Bianchi ME, Rovere-Querini P, Manfredi AA (2014) Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J Thromb Haemost 12(12):2074–2088. https://doi.org/10.1111/jth.12710

    Article  CAS  PubMed  Google Scholar 

  113. Constantinescu-Bercu A, Grassi L, Frontini M, Salles C II, Woollard K, Crawley JT (2020) Activated alphaIIbbeta3 on platelets mediates flow-dependent NETosis via SLC44A2. Elife. https://doi.org/10.7554/eLife.53353

    Article  PubMed  PubMed Central  Google Scholar 

  114. Etulain J, Martinod K, Wong SL, Cifuni SM, Schattner M, Wagner DD (2015) P-selectin promotes neutrophil extracellular trap formation in mice. Blood 126(2):242–246. https://doi.org/10.1182/blood-2015-01-624023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Pertiwi KR, de Boer OJ, Mackaaij C, Pabittei DR, de Winter RJ, Li X, van der Wal AC (2019) Extracellular traps derived from macrophages, mast cells, eosinophils and neutrophils are generated in a time-dependent manner during atherothrombosis. J Pathol 247(4):505–512. https://doi.org/10.1002/path.5212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Chow OA, von Kockritz-Blickwede M, Bright AT, Hensler ME, Zinkernagel AS, Cogen AL, Gallo RL, Monestier M, Wang Y, Glass CK, Nizet V (2010) Statins enhance formation of phagocyte extracellular traps. Cell Host Microbe 8(5):445–454. https://doi.org/10.1016/j.chom.2010.10.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yousefi S, Gold JA, Andina N, Lee JJ, Kelly AM, Kozlowski E, Schmid I, Straumann A, Reichenbach J, Gleich GJ, Simon HU (2008) Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med 14(9):949–953. https://doi.org/10.1038/nm.1855

    Article  CAS  PubMed  Google Scholar 

  118. Jimenez-Alcazar M, Kim N, Fuchs TA (2017) Circulating extracellular DNA: cause or consequence of thrombosis? Semin Thromb Hemost 43(6):553–561. https://doi.org/10.1055/s-0036-1597284

    Article  CAS  PubMed  Google Scholar 

  119. Gould TJ, Vu TT, Stafford AR, Dwivedi DJ, Kim PY, Fox-Robichaud AE, Weitz JI, Liaw PC (2015) Cell-free DNA modulates clot structure and impairs fibrinolysis in sepsis. Arterioscler Thromb Vasc Biol 35(12):2544–2553. https://doi.org/10.1161/ATVBAHA.115.306035

    Article  CAS  PubMed  Google Scholar 

  120. Xu RG, Ariens RAS (2020) Insights into the composition of stroke thrombi: heterogeneity and distinct clot areas impact treatment. Haematologica 105(2):257–259. https://doi.org/10.3324/haematol.2019.238816

    Article  PubMed  PubMed Central  Google Scholar 

  121. Heo JH, Nam HS, Kim YD, Choi JK, Kim BM, Kim DJ, Kwon I (2020) Pathophysiologic and therapeutic perspectives based on thrombus histology in stroke. J Stroke 22(1):64–75. https://doi.org/10.5853/jos.2019.03440

    Article  PubMed  PubMed Central  Google Scholar 

  122. Bacigaluppi M, Semerano A, Gullotta GS, Strambo D (2019) Insights from thrombi retrieved in stroke due to large vessel occlusion. J Cereb Blood Flow Metab 39(8):1433–1451. https://doi.org/10.1177/0271678X19856131

    Article  PubMed  PubMed Central  Google Scholar 

  123. Gounis MJ, Chapot R (2017) Histological composition and the origin of the thrombus: a new diagnostic assay for secondary stroke prevention? Stroke 48(8):2040–2041. https://doi.org/10.1161/STROKEAHA.117.017630

    Article  PubMed  Google Scholar 

  124. Staessens S, Fitzgerald S, Andersson T, Clarencon F, Denorme F, Gounis MJ, Hacke W, Liebeskind DS, Szikora I, van Es A, Brinjikji W, Doyle KM, De Meyer SF (2020) Histological stroke clot analysis after thrombectomy: technical aspects and recommendations. Int J Stroke 15(5):467–476. https://doi.org/10.1177/1747493019884527

    Article  CAS  PubMed  Google Scholar 

  125. Genchi A, Semerano A, Gullotta GS, Strambo D, Schwarz G, Bergamaschi A, Panni P, Simionato F, Scomazzoni F, Michelozzi C, Pozzato M, Maugeri N, Comi G, Falini A, Roveri L, Filippi M, Martino G, Bacigaluppi M (2021) Cerebral thrombi of cardioembolic etiology have an increased content of neutrophil extracellular traps. J Neurol Sci 423:117355. https://doi.org/10.1016/j.jns.2021.117355

    Article  CAS  PubMed  Google Scholar 

  126. Maekawa K, Shibata M, Nakajima H, Mizutani A, Kitano Y, Seguchi M, Yamasaki M, Kobayashi K, Sano T, Mori G, Yabana T, Naito Y, Shimizu S, Miya F (2018) Erythrocyte-rich thrombus is associated with reduced number of maneuvers and procedure time in patients with acute ischemic stroke undergoing mechanical thrombectomy. Cerebrovasc Dis Extra 8(1):39–49. https://doi.org/10.1159/000486042

    Article  PubMed  PubMed Central  Google Scholar 

  127. Novotny J, Oberdieck P, Titova A, Pelisek J, Chandraratne S, Nicol P, Hapfelmeier A, Joner M, Maegdefessel L, Poppert H, Pircher J, Massberg S, Friedrich B, Zimmer C, Schulz C, Boeckh-Behrens T (2020) Thrombus NET content is associated with clinical outcome in stroke and myocardial infarction. Neurology 94(22):e2346–e2360. https://doi.org/10.1212/WNL.0000000000009532

    Article  CAS  PubMed  Google Scholar 

  128. Staessens S, Denorme F, Francois O, Desender L, Dewaele T, Vanacker P, Deckmyn H, Vanhoorelbeke K, Andersson T, De Meyer SF (2020) Structural analysis of ischemic stroke thrombi: histological indications for therapy resistance. Haematologica 105(2):498–507. https://doi.org/10.3324/haematol.2019.219881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Goebel J, Gaida BJ, Wanke I, Kleinschnitz C, Koehrmann M, Forsting M, Moenninghoff C, Radbruch A, Junker A (2020) Is histologic thrombus composition in acute stroke linked to stroke etiology or to interventional parameters? AJNR Am J Neuroradiol 41(4):650–657. https://doi.org/10.3174/ajnr.A6467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Fitzgerald S, Dai D, Wang S, Douglas A, Kadirvel R, Layton KF, Thacker IC, Gounis MJ, Chueh JY, Puri AS, Almekhlafi M, Demchuk AM, Hanel RA, Sauvageau E, Aghaebrahim A, Yoo AJ, Kvamme P, Pereira VM, Kayan Y, Almandoz JED, Nogueira RG, Rabinstein AA, Kallmes DF, Doyle KM, Brinjikji W (2019) Platelet-rich emboli in cerebral large vessel occlusion are associated with a large artery atherosclerosis source. Stroke 50(7):1907–1910. https://doi.org/10.1161/STROKEAHA.118.024543

    Article  PubMed  PubMed Central  Google Scholar 

  131. Shin JW, Jeong HS, Kwon HJ, Song KS, Kim J (2018) High red blood cell composition in clots is associated with successful recanalization during intra-arterial thrombectomy. PLoS ONE 13(5):e0197492. https://doi.org/10.1371/journal.pone.0197492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sporns PB, Hanning U, Schwindt W, Velasco A, Minnerup J, Zoubi T, Heindel W, Jeibmann A, Niederstadt TU (2017) Ischemic stroke: what does the histological composition tell us about the origin of the thrombus? Stroke 48(8):2206–2210. https://doi.org/10.1161/STROKEAHA.117.016590

    Article  PubMed  Google Scholar 

  133. Laridan E, Denorme F, Desender L, Francois O, Andersson T, Deckmyn H, Vanhoorelbeke K, De Meyer SF (2017) Neutrophil extracellular traps in ischemic stroke thrombi. Ann Neurol 82(2):223–232. https://doi.org/10.1002/ana.24993

    Article  CAS  PubMed  Google Scholar 

  134. Schuhmann MK, Gunreben I, Kleinschnitz C, Kraft P (2016) Immunohistochemical analysis of cerebral thrombi retrieved by mechanical thrombectomy from patients with acute ischemic stroke. Int J Mol Sci 17(3):298. https://doi.org/10.3390/ijms17030298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Dargazanli C, Rigau V, Eker O, Bareiro CR, Machi P, Gascou G, Arquizan C, Ayrignac X, Mourand I, Corlobe A, Lobotesis K, Molinari N, Costes V, Bonafe A, Costalat V (2016) High CD3+ cells in intracranial thrombi represent a biomarker of atherothrombotic stroke. PLoS ONE 11(5):e0154945. https://doi.org/10.1371/journal.pone.0154945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Boeckh-Behrens T, Kleine JF, Zimmer C, Neff F, Scheipl F, Pelisek J, Schirmer L, Nguyen K, Karatas D, Poppert H (2016) Thrombus histology suggests cardioembolic cause in cryptogenic stroke. Stroke 47(7):1864–1871. https://doi.org/10.1161/STROKEAHA.116.013105

    Article  CAS  PubMed  Google Scholar 

  137. Kaesmacher J, Boeckh-Behrens T, Simon S, Maegerlein C, Kleine JF, Zimmer C, Schirmer L, Poppert H, Huber T (2017) Risk of thrombus fragmentation during endovascular stroke treatment. AJNR Am J Neuroradiol 38(5):991–998. https://doi.org/10.3174/ajnr.A5105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Marta-Enguita J, Navarro-Oviedo M, Munoz R, Olier-Arenas J, Zalba G, Lecumberri R, Mendioroz M, Paramo JA, Roncal C, Orbe J (2021) Inside the thrombus: association of hemostatic parameters with outcomes in large vessel stroke patients. Front Neurol 12:599498. https://doi.org/10.3389/fneur.2021.599498

    Article  PubMed  PubMed Central  Google Scholar 

  139. Nosaka M, Ishida Y, Kimura A, Kondo T (2009) Time-dependent appearance of intrathrombus neutrophils and macrophages in a stasis-induced deep vein thrombosis model and its application to thrombus age determination. Int J Legal Med 123(3):235–240. https://doi.org/10.1007/s00414-009-0324-0

    Article  PubMed  Google Scholar 

  140. Staessens S, De Meyer SF (2021) Thrombus heterogeneity in ischemic stroke. Platelets 32(3):331–339. https://doi.org/10.1080/09537104.2020.1748586

    Article  CAS  PubMed  Google Scholar 

  141. Rinder HM, Bonan JL, Rinder CS, Ault KA, Smith BR (1991) Dynamics of leukocyte-platelet adhesion in whole blood. Blood 78(7):1730–1737

    Article  CAS  PubMed  Google Scholar 

  142. Li N, Ji Q, Hjemdahl P (2006) Platelet-lymphocyte conjugation differs between lymphocyte subpopulations. J Thromb Haemost 4(4):874–881. https://doi.org/10.1111/j.1538-7836.2006.01817.x

    Article  CAS  PubMed  Google Scholar 

  143. Srivatsan A, Woollard K (2020) Immunohistologic comparison and thrombus NET analysis in stroke and myocardial infarction. Neurology 94(22):955–956. https://doi.org/10.1212/WNL.0000000000009529

    Article  PubMed  Google Scholar 

  144. Khismatullin RR, Nagaswami C, Shakirova AZ, Vrtkova A, Prochazka V, Gumulec J, Macak J, Litvinov RI, Weisel JW (2020) Quantitative morphology of cerebral thrombi related to intravital contraction and clinical features of ischemic stroke. Stroke 51(12):3640–3650. https://doi.org/10.1161/STROKEAHA.120.031559

    Article  CAS  PubMed  Google Scholar 

  145. Di Meglio L, Desilles JP, Solonomenjanahary M, Labreuche J, Ollivier V, Dupont S, Deschildre C, Maacha MB, Consoli A, Lapergue B, Piotin M, Blanc R, Ho-Tin-Noe B, Mazighi M, compoCLOT Study Group (2020) DNA content in ischemic stroke thrombi can help identify cardioembolic strokes among strokes of undetermined cause. Stroke 51(9):2810–2816. https://doi.org/10.1161/STROKEAHA.120.029134

    Article  CAS  PubMed  Google Scholar 

  146. Yaghi S, Bernstein RA, Passman R, Okin PM, Furie KL (2017) Cryptogenic stroke: research and practice. Circ Res 120(3):527–540. https://doi.org/10.1161/CIRCRESAHA.116.308447

    Article  CAS  PubMed  Google Scholar 

  147. Sadowski M, Zabczyk M, Undas A (2014) Coronary thrombus composition: links with inflammation, platelet and endothelial markers. Atherosclerosis 237(2):555–561. https://doi.org/10.1016/j.atherosclerosis.2014.10.020

    Article  CAS  PubMed  Google Scholar 

  148. Farkas AZ, Farkas VJ, Gubucz I, Szabo L, Balint K, Tenekedjiev K, Nagy AI, Sotonyi P, Hidi L, Nagy Z, Szikora I, Merkely B, Kolev K (2019) Neutrophil extracellular traps in thrombi retrieved during interventional treatment of ischemic arterial diseases. Thromb Res 175:46–52. https://doi.org/10.1016/j.thromres.2019.01.006

    Article  CAS  PubMed  Google Scholar 

  149. Boeckh-Behrens T, Schubert M, Förschler A, Prothmann S, Kreiser K, Zimmer C, Riegger J, Bauer J, Neff F, Kehl V, Pelisek J, Schirmer L, Mehr M, Poppert H (2016) The impact of histological clot composition in embolic stroke. Clin Neuroradiol 26(2):189–197. https://doi.org/10.1007/s00062-014-0347-x

    Article  CAS  PubMed  Google Scholar 

  150. Duffy S, McCarthy R, Farrell M, Thomas S, Brennan P, Power S, O’Hare A, Morris L, Rainsford E, MacCarthy E, Thornton J, Gilvarry M (2019) Per-pass analysis of thrombus composition in patients with acute ischemic stroke undergoing mechanical thrombectomy. Stroke 50(5):1156–1163. https://doi.org/10.1161/STROKEAHA.118.023419

    Article  PubMed  Google Scholar 

  151. Prabhakaran S, Ruff I, Bernstein RA (2015) Acute stroke intervention: a systematic review. JAMA 313(14):1451–1462. https://doi.org/10.1001/jama.2015.3058

    Article  CAS  PubMed  Google Scholar 

  152. Jimenez-Alcazar M, Napirei M, Panda R, Kohler EC, Hovinga JAK, Mannherz HG, Peine S, Renne T, Lammle B, Fuchs TA (2015) Impaired DNase1-mediated degradation of neutrophil extracellular traps is associated with acute thrombotic microangiopathies. J Thromb Haemost 13(5):732–742. https://doi.org/10.1111/jth.12796

    Article  CAS  PubMed  Google Scholar 

  153. Pena-Martinez C, Duran-Laforet V, Garcia-Culebras A, Ostos F, Hernandez-Jimenez M, Bravo-Ferrer I, Perez-Ruiz A, Ballenilla F, Diaz-Guzman J, Pradillo JM, Lizasoain I, Moro MA (2019) Pharmacological modulation of neutrophil extracellular traps reverses thrombotic stroke tPA (tissue-type plasminogen activator) resistance. Stroke 50(11):3228–3237. https://doi.org/10.1161/STROKEAHA.119.026848

    Article  CAS  PubMed  Google Scholar 

  154. Martinod K, Demers M, Fuchs TA, Wong SL, Brill A, Gallant M, Hu J, Wang Y, Wagner DD (2013) Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. Proc Natl Acad Sci USA 110(21):8674–8679. https://doi.org/10.1073/pnas.1301059110

    Article  PubMed  PubMed Central  Google Scholar 

  155. Tall AR, Westerterp M (2019) Inflammasomes, neutrophil extracellular traps, and cholesterol. J Lipid Res 60(4):721–727. https://doi.org/10.1194/jlr.S091280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Totani L, Amore C, Di Santo A, Dell’Elba G, Piccoli A, Martelli N, Tenor H, Beume R, Evangelista V (2016) Roflumilast inhibits leukocyte-platelet interactions and prevents the prothrombotic functions of polymorphonuclear leukocytes and monocytes. J Thromb Haemost 14(1):191–204. https://doi.org/10.1111/jth.13173

    Article  CAS  PubMed  Google Scholar 

  157. Della Bona R, Cardillo MT, Leo M, Biasillo G, Gustapane M, Trotta F, Biasucci LM (2013) Polymorphonuclear neutrophils and instability of the atherosclerotic plaque: a causative role? Inflamm Res 62(6):537–550. https://doi.org/10.1007/s00011-013-0617-0

    Article  CAS  PubMed  Google Scholar 

  158. Ramacciotti E, Myers DD Jr, Wrobleski SK, Deatrick KB, Londy FJ, Rectenwald JE, Henke PK, Schaub RG, Wakefield TW (2010) P-selectin/ PSGL-1 inhibitors versus enoxaparin in the resolution of venous thrombosis: a meta-analysis. Thromb Res 125(4):e138-142. https://doi.org/10.1016/j.thromres.2009.10.022

    Article  CAS  PubMed  Google Scholar 

  159. Downing LJ, Wakefield TW, Strieter RM, Prince MR, Londy FJ, Fowlkes JB, Hulin MS, Kadell AM, Wilke CA, Brown SL, Wrobleski SK, Burdick MD, Anderson DC, Greenfield LJ (1997) Anti-P-selectin antibody decreases inflammation and thrombus formation in venous thrombosis. J Vasc Surg 25(5):816–827. https://doi.org/10.1016/s0741-5214(97)70211-8 (discussion 828)

    Article  CAS  PubMed  Google Scholar 

  160. Sommer CJ (2017) Ischemic stroke: experimental models and reality. Acta Neuropathol 133(2):245–261. https://doi.org/10.1007/s00401-017-1667-0

    Article  PubMed  PubMed Central  Google Scholar 

  161. Uzdensky AB (2018) Photothrombotic stroke as a model of ischemic stroke. Transl Stroke Res 9(5):437–451. https://doi.org/10.1007/s12975-017-0593-8

    Article  PubMed  Google Scholar 

  162. Spence JD (2018) Cardioembolic stroke: everything has changed. Stroke Vasc Neurol 3(2):76–83. https://doi.org/10.1136/svn-2018-000143

    Article  PubMed  PubMed Central  Google Scholar 

  163. Macleod MR, Amarenco P, Davis SM, Donnan GA (2004) Atheroma of the aortic arch: an important and poorly recognised factor in the aetiology of stroke. Lancet Neurol 3(7):408–414. https://doi.org/10.1016/S1474-4422(04)00806-3

    Article  PubMed  Google Scholar 

  164. Nicklas JM, Gordon AE, Henke PK (2020) Resolution of deep venous thrombosis: proposed immune paradigms. Int J Mol Sci. https://doi.org/10.3390/ijms21062080

    Article  PubMed  PubMed Central  Google Scholar 

  165. Kolaczkowska E, Jenne CN, Surewaard BG, Thanabalasuriar A, Lee WY, Sanz MJ, Mowen K, Opdenakker G, Kubes P (2015) Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature. Nat Commun 6:6673. https://doi.org/10.1038/ncomms7673

    Article  CAS  PubMed  Google Scholar 

  166. Henke PK, Wakefield T (2009) Thrombus resolution and vein wall injury: dependence on chemokines and leukocytes. Thromb Res 123(Suppl 4):S72-78. https://doi.org/10.1016/S0049-3848(09)70148-3

    Article  CAS  PubMed  Google Scholar 

  167. Barberi S, Montagna G, Rossi L (2019) Expression of urokinase plasminogen activator (uPA) in the leukocytes and tissues of patients with benign and malignant breast lesions. Breast Dis 38(1):15–23. https://doi.org/10.3233/bd-180348

    Article  CAS  PubMed  Google Scholar 

  168. Das R, Pluskota E, Plow EF (2010) Plasminogen and its receptors as regulators of cardiovascular inflammatory responses. Trends Cardiovasc Med 20(4):120–124. https://doi.org/10.1016/j.tcm.2010.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Farrera C, Fadeel B (2013) Macrophage clearance of neutrophil extracellular traps is a silent process. J Immunol 191(5):2647–2656. https://doi.org/10.4049/jimmunol.1300436

    Article  CAS  PubMed  Google Scholar 

  170. Varma MR, Varga AJ, Knipp BS, Sukheepod P, Upchurch GR, Kunkel SL, Wakefield TW, Henke PK (2003) Neutropenia impairs venous thrombosis resolution in the rat. J Vasc Surg 38(5):1090–1098. https://doi.org/10.1016/s0741-5214(03)00431-2

    Article  PubMed  Google Scholar 

  171. Soo KS, Northeast AD, Happerfield LC, Burnand KG, Bobrow LG (1996) Tissue plasminogen activator production by monocytes in venous thrombolysis. J Pathol 178(2):190–194. https://doi.org/10.1002/(SICI)1096-9896(199602)178:2%3c190::AID-PATH454%3e3.0.CO;2-3

    Article  CAS  PubMed  Google Scholar 

  172. Simon DI, Ezratty AM, Francis SA, Rennke H, Loscalzo J (1993) Fibrin(ogen) is internalized and degraded by activated human monocytoid cells via Mac-1 (CD11b/CD18): a nonplasmin fibrinolytic pathway. Blood 82(8):2414–2422

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Rachel Locklin for English corrections on the manuscript.

Funding

This work was supported by the National Key Research and Development Program of China (2018YFC1312200 to Bo Hu), the National Natural Science Foundation of China (Grants: 81820108010 to Bo Hu, and 81671147 to Huijuan Jin) and Major Refractory Diseases Pilot Project of Clinical Collaboration with Chinese and Western Medicine (SATCM-20180339 to Bo Hu).

Author information

Authors and Affiliations

Authors

Contributions

RB and SC wrote and revised the manuscript. SC and QP helped with the literature search and correction of the manuscript. BH and HJ provided the conception and design of the review, and directed the writing of the manuscript.

Corresponding authors

Correspondence to Huijuan Jin or Bo Hu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, R., Chen, S., Chen, S. et al. The role of leukocytes in acute ischemic stroke-related thrombosis: a notable but neglected topic. Cell. Mol. Life Sci. 78, 6251–6264 (2021). https://doi.org/10.1007/s00018-021-03897-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03897-5

Keywords

Navigation