Skip to main content

Advertisement

Log in

Nonsense suppression therapies in human genetic diseases

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

About 11% of all human disease-associated gene lesions are nonsense mutations, resulting in the introduction of an in-frame premature translation-termination codon (PTC) into the protein-coding gene sequence. When translated, PTC-containing mRNAs originate truncated and often dysfunctional proteins that might be non-functional or have gain-of-function or dominant-negative effects. Therapeutic strategies aimed at suppressing PTCs to restore deficient protein function—the so-called nonsense suppression (or PTC readthrough) therapies—have the potential to provide a therapeutic benefit for many patients and in a broad range of genetic disorders, including cancer. These therapeutic approaches comprise the use of translational readthrough-inducing compounds that make the translational machinery recode an in-frame PTC into a sense codon. However, most of the mRNAs carrying a PTC can be rapidly degraded by the surveillance mechanism of nonsense-mediated decay (NMD), thus decreasing the levels of PTC-containing mRNAs in the cell and their availability for PTC readthrough. Accordingly, the use of NMD inhibitors, or readthrough-compound potentiators, may enhance the efficiency of PTC suppression. Here, we review the mechanisms of PTC readthrough and their regulation, as well as the recent advances in the development of novel approaches for PTC suppression, and their role in personalized medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mort M, Ivanov D, Cooper DN, Chuzhanova NA (2008) A meta-analysis of nonsense mutations causing human genetic disease. Hum Mutat 29:1037–1047

    Article  CAS  PubMed  Google Scholar 

  2. Savas S, Tuzmen S, Ozcelik H (2006) Human SNPs resulting in premature stop codons and protein truncation. Hum Genomics 2:274–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Maquat LE, Kinniburgh AJ, Ross J (1981) Unstable β-globin mRNA in β-thalassemia. Cell 27:543–553

    Article  CAS  PubMed  Google Scholar 

  4. Zhang J, Maquat LE (1996) Evidence that the decay of nucleus-associated nonsense mRNA for human triosephosphate isomerase involves nonsense codon recognition after splicing. RNA 2:235–243

    PubMed  PubMed Central  Google Scholar 

  5. Holbrook JA, Neu-Yilik G, Hentze MW, Kulozik AE (2004) Nonsense-mediated decay approaches the clinic. Nat Genet 36:801–808

    Article  CAS  PubMed  Google Scholar 

  6. Popp MW-L, Maquat LE (2013) Organizing principles of mammalian nonsense-mediated mRNA decay. Annu Rev Genet 47:139–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Frischmeyer PA, Dietz HC (1999) Nonsense-mediated mRNA decay in health and disease. Hum Mol Genet 8:1893–1900

    Article  CAS  PubMed  Google Scholar 

  8. Kugler W, Enssle J, Hentze MW, Kulozik AE (1995) Nuclear degradation of nonsense mutated β-globin mRNA: a post-transcriptional mechanism to protect heterozygotes from severe clinical manifestations of β-thalassemia? Nucleic Acids Res 13:413–418

    Article  Google Scholar 

  9. Ho PJ, Wickramasinghe SN, Rees DC, Lee MJ, EdenThein A (1997) Erythroblastic inclusions in dominantly inherited beta thalassemias. Blood 89:322–328

    Article  CAS  PubMed  Google Scholar 

  10. Keeling KM, Xue X, Gunn G, Bedwell DM (2014) Therapeutics based on stop codon readthrough. Annu Rev Genomics Hum Genet 15:371–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Keeling KM, Bedwell DM (2011) Suppression of nonsense mutations as a therapeutic approach to treat genetic diseases. Wiley Interdiscip Rev RNA 2:837–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee H-LR, Dougherty JP (2012) Pharmaceutical therapies to recode nonsense mutations in inherited diseases. Pharmacol Ther 136:227–266

    Article  CAS  PubMed  Google Scholar 

  13. Morais P, Adachi H, Yu YT (2020) Suppression of nonsense mutations by new emerging technologies. Int J Mol Sci 21:4394

    Article  CAS  PubMed Central  Google Scholar 

  14. Hinnebusch AG (2014) The scanning mechanism of eukaryotic translation initiation. Annu Rev Biochem 83:779–812

    Article  CAS  PubMed  Google Scholar 

  15. Jackson RJ, Hellen CUT, Pestova TV (2010) The mechanism of eukaryotic translation initiation. Nat Rev Mol Cell Biol 11:113–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lomakin Ivan B, Steitz Thomas A (2013) The initiation of mammalian protein synthesis and the mechanism of scanning. Nature 500:307–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shirokikh NE, Preiss T (2018) Translation initiation by cap-dependent ribosome recruitment: recent insights and open questions. Wiley Interdiscip Rev RNA 9:e1473

    Article  PubMed  Google Scholar 

  18. Dever TE, Green R (2012) The elongation, termination, and recycling phases of translation in eukaryotes. Cold Spring Harb Perspect Biol 4:1–16

    Article  Google Scholar 

  19. Dever TE, Dinman JD, Green R (2018) Translation elongation and recoding in eukaryotes. Cold Spring Harb Perspect Biol 10:a032649

    Article  PubMed  PubMed Central  Google Scholar 

  20. Schuller AP, Green R (2018) Roadblocks and resolutions in eukaryotic translation. Nat Rev Mol Cell Biol 19:526–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Frolova L, Goff XL, Rasmussen HH et al (1994) A highly conserved eukaryotic protein family possessing properties of polypeptide chain release factor. Nature 372:701–703

    Article  CAS  PubMed  Google Scholar 

  22. Brown A, Shao S, Murray J, Hegde RS, Ramakrishnan V (2015) Structural basis for stop codon recognition in eukaryotes. Nature 524:493–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Song H, Mugnier P, Das Amit K, Tuite MF, Hemmings BA, Barford D (2000) The crystal structure of human eukaryotic release factor eRF1—mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell 100:311–321

    Article  CAS  PubMed  Google Scholar 

  24. Zhouravleva G, Frolova L, Goff XL, Guellec RL, Inge-vechtomov S, Kisselev L, Philippe M, Zhouravleva G (1995) Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3 Xenopus SUP35C. EMBO J 14:4065–4072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stansfield I, Jones KM, Kushnirov VV, Dagkesamanskaya AR, Poznyakovski AI, Paushkin SV, Nierras CR, Cox BS, Ter-Avanesyan MD, Tuite MF (1995) The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J 14:4365–4373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hellen CUT (2018) Translation termination and ribosome recycling in eukaryotes. Cold Spring Harb Perspect Biol 10:1–19

    Article  Google Scholar 

  27. Ivanov A, Mikhailova T, Eliseev B, Yeramala L, Sokolova E, Susorov D, Shuvalov A, Schaffitzel C, Alkalaeva E (2016) PABP enhances release factor recruitment and stop codon recognition during translation termination. Nucleic Acids Res 44:7766–7776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mikhailova T, Shuvalova E, Ivanov A, Susorov D, Shuvalov A, Kolosov PM, Alkalaeva E (2017) RNA helicase DDX19 stabilizes ribosomal elongation and termination complexes. Nucleic Acids Res 45:1307–1318

    Article  CAS  PubMed  Google Scholar 

  29. Beißel C, Neumann B, Uhse S, Hampe I, Karki P, Krebber H (2019) Translation termination depends on the sequential ribosomal entry of eRF1 and eRF3. Nucleic Acids Res 47:4798–4813

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pisarev AV, Skabkin MA, Pisareva VP, Skabkina OV, Rakotondrafara AM, Hentze MW, Hellen CUT, Pestova TV (2010) The role of ABCE1 in eukaryotic posttermination ribosomal recycling. Mol Cell 37:196–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Annibaldis G, Domanski M, Dreos R, Contu L, Carl S, Kläy N, Mühlemann O (2020) Readthrough of stop codons under limiting ABCE1 concentration involves frameshifting and inhibits nonsense-mediated mRNA decay. Nucleic Acids Res 48:10259–10279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pisarev AV, Hellen CUTT, Pestova TV (2007) Recycling of eukaryotic posttermination ribosomal complexes. Cell 131:286–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Drugeon G, Jean-Jean O, Frolova L, Le G, Philippe M, Kisselev L, Haenni AL (1997) Eukaryotic release factor 1 (eRF1) abolishes readthrough and competes with suppressor tRNAs at all three termination codons in messenger RNA. Nucleic Acids Res 25:2254–2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bonetti B, Bedwell DM (1995) The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae. J Mol Biol 251:334–345

    Article  CAS  PubMed  Google Scholar 

  35. Dabrowski M, Bukowy-Bieryllo Z, Zietkiewicz E (2015) Translational readthrough potential of natural termination codons in eucaryotes—the impact of RNA sequence. RNA Biol 12:950–958

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fearon K, Mcclendon V, Bonetti B, Bedwell DM (1994) Premature translation termination mutations are efficiently suppressed in a highly conserved region of yeast Ste6p, a member of the ATP-binding cassette (ABC) transporter family. J Biol Chem 269:17802–17808

    Article  CAS  PubMed  Google Scholar 

  37. Floquet C, Hatin I, Rousset J-P, Bidou L (2012) Statistical analysis of readthrough levels for nonsense mutations in mammalian cells reveals a major determinant of response to gentamicin. PLoS Genet 8:e1002608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Loughran G, Chou M-Y, Ivanov IP, Jungreis I, Kellis M, Kiran AM, Baranov PV, Atkins JF (2014) Evidence of efficient stop codon readthrough in four mammalian genes. Nucleic Acids Res 42:8928–8938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Namy O, Hatin I, Rousset J-P (2001) Impact of the six nucleotides downstream of the stop codon on translation termination. EMBO Rep 2:787–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cridge AG, Crowe-McAuliffe C, Mathew SF, Tate WP (2018) Eukaryotic translational termination efficiency is influenced by the 3′ nucleotides within the ribosomal mRNA channel. Nucleic Acids Res 46:1927–1944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McCaughan KK, Brown CM, Dalphin ME, Berry MJ, Tate WP (1995) Translational termination efficiency in mammals is influenced by the base following the stop codon. Proc Natl Acad Sci USA 92:5431–5435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hofhuis J, Dieterle S, George R, Schueren F, Thoms S (2017) Dual reporter systems for the analysis of translational readthrough in mammals. Methods Mol Biol 1595:81–92

    Article  CAS  PubMed  Google Scholar 

  43. Peccarelli M, Kebaara BW (2014) Regulation of natural mRNAs by the nonsense-mediated mRNA decay pathway. Eukarytic Cell 13:1126–1135

    Article  Google Scholar 

  44. Wolin SL, Maquat LE (2019) Cellular RNA surveillance in health and disease. Science 366:822–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Steneberg P, Samakovlis C (2001) A novel stop codon readthrough mechanism produces functional Headcase protein in Drosophila trachea. EMBO Rep 2:593–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Firth AE, Wills NM, Gesteland RF, Atkins JF (2011) Stimulation of stop codon readthrough: frequent presence of an extended 3’ RNA structural element. Nucleic Acids Res 39:6679–6691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Karijolich J, Yu Y-T (2011) Converting nonsense codons into sense codons by targeted pseudouridylation. Nature 474:395–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Amrani N, Ganesan R, Kervestin S, Mangus DA, Ghosh S, Jacobson A (2004) A faux 3′-UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay. Nature 432:112–118

    Article  CAS  PubMed  Google Scholar 

  49. Beznosková P, Pavlíková Z, Zeman J, Aitken CE, Valášek LS (2019) Yeast applied readthrough inducing system (YARIS): an invivo assay for the comprehensive study of translational readthrough. Nucleic Acids Res 47:6339–6350

    Article  PubMed  PubMed Central  Google Scholar 

  50. Blanchet S, Rowe M, Haar TVD, Fabret C, Demais S, Howard MJ, Namy O (2015) New insights into stop codon recognition by eRF1. Nucleic Acids Res 43:3298–3308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Roy B, Leszyk JD, Mangus DA, Jacobson A (2015) Nonsense suppression by near-cognate tRNAs employs alternative base pairing at codon positions 1 and 3. Proc Natl Acad Sci USA 112:3038–3043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Loenarz C, Sekirnik R, Armin Thalhammer A et al (2014) Hydroxylation of the eukaryotic ribosomal decoding center affects translational accuracy. Proc Natl Acad Sci USA 111:4019–4024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bidou L, Allamand V, Rousset J-P, Namy O (2012) Sense from nonsense: therapies for premature stop codon diseases. Trends Mol Med 18:679–688

    Article  CAS  PubMed  Google Scholar 

  54. Bidou L, Hatin I, Perez N, Allamand V, Panthier JJ, Rousset JP (2004) Premature stop codons involved in muscular dystrophies show a broad spectrum of readthrough efficiencies in response to gentamicin treatment. Gene Ther 11:619–627

    Article  CAS  PubMed  Google Scholar 

  55. Jungreis I, Lin MF, Spokony R, Chan CS, Negre N, Victorsen A, White KP, Kellis M (2011) Evidence of abundant stop codon readthrough in Drosophila and other metazoa. Genome Res 21:2096–2113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Manuvakhova M, Keeling K, Bedwell DM (2000) Aminoglycoside antibiotics mediate context-dependent suppression of termination codons in a mammalian translation system. RNA 6:1044–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Howard MT, Shirts BH, Petros LM, Flanigan KM, Gesteland RF, Atkins JF (2000) Sequence specificity of aminoglycoside-induced stop condon readthrough: potential implications for treatment of Duchenne muscular dystrophy. Ann Neurol 48:164–116

    Article  CAS  PubMed  Google Scholar 

  58. Li G, Rice CM (1993) The signal for translational readthrough of a UGA codon in Sindbis virus RNA involves a single cytidine residue immediately downstream of the termination codon. J Virol 67:5062–5067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wangen JR, Green R (2020) Stop codon context influences genome-wide stimulation of termination codon readthrough by aminoglycosides. Chromosom Gene Expr 9:e52611

    CAS  Google Scholar 

  60. Harrell L, Melcher U, Atkins JF (2017) Predominance of six different hexanucleotide recoding signals 3′ of read-through stop codons. Nucleic Acids Res 30:2011–2017

    Article  Google Scholar 

  61. Chevance FFV, Guyon SL, Hughes KT (2014) The effects of codon context on in vivo translation speed. PLoS Genet 10:e1004392

    Article  PubMed  PubMed Central  Google Scholar 

  62. Tork S, Hatin I, Rousset JP, Fabret C (2004) The major 5′ determinant in stop codon read-through involves two adjacent adenines. Nucleic Acids Res 32:415–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gross T, Siepmann A, Sturm D, Windgassen M, Scarcelli JJ, Seedorf M, Cole CN, Krebber H (2007) The DEAD-box RNA helicase Dbp5 functions in translation termination. Science 315:646–649

    Article  CAS  PubMed  Google Scholar 

  64. Freitag J, Ast J, Bölker M (2012) Cryptic peroxisomal targeting via alternative splicing and stop codon read-through in fungi. Nature 485:522–525

    Article  CAS  PubMed  Google Scholar 

  65. Dunn JG (2013) Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster. Cell Biol Evol Biol 2:e01179

    Google Scholar 

  66. Loughran G, Jungreis I, Tzani I, Power M, Dmitriev RI, Ivanov IP, Kellis M, Atkins JF (2018) Stop codon readthrough generates a C-terminally extended variant of the human vitamin D receptor with reduced calcitriol response. J Biol Chem 293:4434–4444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yamaguchi Y, Hayashi A, Campagnoni CW, Kimura A, Inuzuka T, Baba H (2012) L-MPZ, a novel isoform of myelin P0, is produced by stop codon readthrough. J Biol Chem 287:17765–17776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Eswarappa SM, Potdar AA, Koch WJ, Fan Y, Vasu K, Lindner D, Willard B, Graham LM, DiCorleto PE, Fox PL (2014) Programmed translational readthrough generates antiangiogenic VEGF-Ax. Cell 157:1605–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schueren F, Lingner T, George R, Hofhuis J, Dickel C, Gärtner J, Thoms S (2014) Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals. Cell Biol Evol Biol 3:e03640

    Google Scholar 

  70. Stiebler AC, Freitag J, Schink KO, Stehlik T, Tillmann BAM, Ast J, Bölker M (2014) Ribosomal readthrough at a short UGA stop codon context triggers dual localization of metabolic enzymes in Fungi and animals. PLoS Genet 10:e1004685

    Article  PubMed  PubMed Central  Google Scholar 

  71. Beznosková P, Wagner S, Jansen ME, Haar TVD, Valášek LS (2015) Translation initiation factor eIF3 promotes programmed stop codon readthrough. Nucleic Acids Res 43:5099–50111

    Article  PubMed  PubMed Central  Google Scholar 

  72. Singh A, Manjunath LE, Kundu P, Sahoo S, Das A, Suma HR, Fox PL, Eswarappa SM (2019) Let-7a-regulated translational readthrough of mammalian AGO1 generates a microRNA pathway inhibitor. EMBO J 38:e100727

    Article  PubMed  PubMed Central  Google Scholar 

  73. Silva AL, Romão L (2009) The mammalian nonsense-mediated mRNA decay pathway: to decay or not to decay! Which players make the decision? FEBS Lett 583:499–505

    Article  CAS  PubMed  Google Scholar 

  74. Rehwinkel J, Raes J, Izaurralde E (2006) Nonsense-mediated mRNA decay: target genes and functional diversification of effectors. Trends Biochem Sci 31:639–646

    Article  CAS  PubMed  Google Scholar 

  75. Mendell JT, Sharifi NA, Meyers JL, Martinez-Murillo F, Dietz HC (2004) Nonsense surveillance regulates expression of diverse classes of mammalian transcripts and mutes genomic noise. Nat Genet 36:1073–1078

    Article  CAS  PubMed  Google Scholar 

  76. Mendell JT, Dietz HC (2001) When the message goes awry: disease-producing mutations that influence mRNA content and performance. Cell 107:411–414

    Article  CAS  PubMed  Google Scholar 

  77. Nicholson P, Yepiskoposyan H, Metze S, Orozco RZ, Kleinschmidt N, Mühlemann O (2010) Nonsense-mediated mRNA decay in human cells: mechanistic insights, functions beyond quality control and the double-life of NMD factors. Cell Mol Life Sci 67:677–700

    Article  CAS  PubMed  Google Scholar 

  78. Hug N, Longman D, Cáceres JF (2016) Mechanism and regulation of the nonsense-mediated decay pathway. Nucleic Acids Res 44:1483–1495

    Article  PubMed  PubMed Central  Google Scholar 

  79. Mühlemann O, Lykke-Andersen J (2010) How and where are nonsense mRNAs degraded in mammalian cells? RNA Biol 7:28–32

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lee WC, Hou BH, Hou CY, Tsao SM, Kao P, Chen HM (2020) Widespread exon junction complex footprints in the RNA degradome mark mRNA degradation before steady state translation. Plant Cell 32:904–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pawlicka K, Kalathiya U, Alfaro J (2020) Nonsense-mediated mRNA decay: Pathologies and the potential for novel therapeutics. Cancers 12:1–17

    Article  Google Scholar 

  82. Behm-Ansmant I, Izaurralde E (2006) Quality control of gene expression: a stepwise assembly pathway for the surveillance complex that triggers nonsense-mediated mRNA decay. Genes Dev 20:391–398

    Article  CAS  PubMed  Google Scholar 

  83. Nasif S, Contu L, Mühlemann O (2018) Beyond quality control: The role of nonsense-mediated mRNA decay (NMD) in regulating gene expression. Semin Cell Dev Biol 75:78–87

    Article  CAS  PubMed  Google Scholar 

  84. Lykke-Andersen S, Jensen TH (2015) Nonsense-mediated mRNA decay: an intricate machinery that shapes transcriptomes. Nat Rev Mol Cell Biol 16:665–677

    Article  CAS  PubMed  Google Scholar 

  85. Ramani AK, Nelson AC, Kapranov P, Bell I, Gingeras TR, Fraser AG (2009) High resolution transcriptome maps for wild-type and nonsense-mediated decay-defective Caenorhabditis elegans. Genome Biol 10:R101

    Article  PubMed  PubMed Central  Google Scholar 

  86. Tani H, Mizutani R, Salam KA, Tano K, Ijiri K, Wakamatsu A, Isogai T, Suzuki Y, Akimitsu N (2012) Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals. Genome Res 22:947–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tani H, Akimitsu N (2012) Genome-wide technology for determining RNA stability in mammalian cells: historical perspective and recent advantages based on modified nucleotide labeling. RNA Biol 9:1233–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yepiskoposyan H, Aeschimann F, Nilsson D, Okoniewski M, Mühlemann O (2011) Autoregulation of the nonsense-mediated mRNA decay pathway in human cells. RNA 17:2108–2118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Durand S, Cougot N, Mahuteau-Betzer F, Nguyen C-H, Grierson DS, Bertrand E, Tazi J, Lejeune F (2007) Inhibition of nonsense-mediated mRNA decay (NMD) by a new chemical molecule reveals the dynamic of NMD factors in P-bodies. J Cell Biol 178:1145–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Oliveira CC, McCarthy JE (1995) The relationship between eukaryotic translation and mRNA stability. A short upstream open reading frame strongly inhibits translational initiation and greatly accelerates mRNA degradation in the yeast Saccharomyces cerevisiae. J Biol Chem 270:8936–8943

    Article  CAS  PubMed  Google Scholar 

  91. Eberle AB, Stalder L, Mathys H, Orozco RZ, Mühlemann O (2008) Posttranscriptional gene regulation by spatial rearrangement of the 3′ untranslated region. PLoS Biol 6:e92

    Article  PubMed  PubMed Central  Google Scholar 

  92. Singh G, Rebbapragada I, Lykke-Andersen J (2008) A competition between stimulators and antagonists of Upf complex recruitment governs human nonsense-mediated mRNA decay. PLoS Biol 6:e111

    Article  PubMed  PubMed Central  Google Scholar 

  93. Kishor A, Fritz SE, Hogg JR (2019) Nonsense-mediated mRNA decay: the challenge of telling right from wrong in a complex transcriptome. Wiley Interdiscip Rev RNA 10:e1548

    Article  PubMed  PubMed Central  Google Scholar 

  94. Fernandes R, Nogueira G, da Costa PJ, Pinto F, Romão L (2019) Nonsense-mediated mRNA decay in development, stress and cancer. Adv Exp Med Biol 1157:41–83

    Article  CAS  PubMed  Google Scholar 

  95. Cutting GR, Kasch LM, Rosenstein BJ, Zielenski J, Tsui LC, Antonarakis SE Jr, Kazazian HH (1990) A cluster of cystic fibrosis mutations in the first nucleotide-binding fold of the cystic fibrosis conductance regulator protein. Nature 346:366–369

    Article  CAS  PubMed  Google Scholar 

  96. Kerem BS, Zielenski J, Markiewicz D, Bozon D, Gazit E, Yahav J, Kennedy D, Riordan JR, Collins FS, Rommens JM (1990) Identification of mutations in regions corresponding to the two putative nucleotide (ATP)-binding folds of the cystic fibrosis gene. Proc Natl Acad Sci USA 87:8447–8451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Veit G, Avramescu RG, Chiang AN et al (2016) From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations. Mol Biol Cell 27:424–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Dekkers JF, Berkers G, Kruisselbrink E et al (2016) Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci Transl Med 8:344–384

    Article  Google Scholar 

  99. Borgatti M, Altamura E, Salvatori F, D’Aversa E, Altamura N (2020) Screening readthrough compounds to suppress nonsense mutations: possible application to β-thalassemia. J Clin Med 9:289

    Article  CAS  PubMed Central  Google Scholar 

  100. Karousis ED, Gurzeler L-A, Annibaldis G, Dreos R, Mühlemann O (2020) Human NMD ensues independently of stable ribosome stalling. Nat Commun 11:1–12

    Article  Google Scholar 

  101. Blanchet S, Cornu D, Hatin I, Grosjean H, Bertin P, Namy O (2018) Deciphering the reading of the genetic code by near-cognate tRNA. Proc Natl Acad Sci USA 115:3018–3023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Burke JF, Mogg AE (1985) Suppression of a nonsense mutation in mammalian cells in vivo by the aminoglycoside antibiotics G-418 and paromomycin. Nucleic Acids Res 13:6265–6272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Nikolaus N, Strehlitz B (2014) DNA-aptamers binding aminoglycoside antibiotics. Sensors 14:3737–3755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Davies J, Gilbert W, Gorini L (1964) Streptomycin, suppression, and the code. Proc Natl Acad Sci USA 51:883–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Forge A, Schacht J (2000) Aminoglycoside antibiotics. Audiol Neurootol 5:3–22

    Article  CAS  PubMed  Google Scholar 

  106. Krause KM, Serio AW, Kane TR, Connolly LE (2016) Aminoglycosides: an overview. Cold Spring Harb Perspect Med 6:a027029

    Article  PubMed  PubMed Central  Google Scholar 

  107. Obrecht D, Bernardini F, Dale G, Dembowsky K (2011) Emerging new therapeutics against key gram-negative pathogens. Annu Rep Med 46:245–262

    CAS  Google Scholar 

  108. Fan-Minogue H, Bedwell DM (2008) Eukaryotic ribosomal RNA determinants of aminoglycoside resistance and their role in translational fidelity. RNA 14:148–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Moazed D, Noller HF (1987) Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 327:389–394

    Article  CAS  PubMed  Google Scholar 

  110. François B, Russell RJM, Murray JB, Aboul-ela F, Masquida B, Vicens Q, Westhof E (2005) Crystal structures of complexes between aminoglycosides and decoding A site oligonucleotides: role of the number of rings and positive charges in the specific binding leading to miscoding. Nucleic Acids Res 33:5677–5699

    Article  PubMed  PubMed Central  Google Scholar 

  111. Recht MI, Douthwaite S, Puglisi JD (1999) Basis for prokaryotic specificity of action of aminoglycoside antibiotics. EMBO J 18:3133–3138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lynch SR, Puglisi JD (2001) Structural origins of aminoglycoside specificity for prokaryotic ribosomes. J Mol Biol 306:1037–1058

    Article  CAS  PubMed  Google Scholar 

  113. Keeling KM, Bedwell DM (2005) Pharmacological suppression of premature stop mutations that cause genetic diseases. Curr Pharmacogenomics 3:259–269

    Article  CAS  Google Scholar 

  114. Pfister P, Hobbie S, Vicens Q, Böttger EC, Westhof E (2011) The molecular basis for A-site mutations conferring aminoglycoside resistance: relationship between ribosomal susceptibility and X-ray crystal structures. ChemBioChem 4:1078–1088

    Article  Google Scholar 

  115. Eustice DC, Wilhelm JM (1984) Fidelity of the eukaryotic codon-anticodon interaction: interference by aminoglycoside antibiotics. Biochemisty 23:1462–1467

    Article  CAS  Google Scholar 

  116. Howard MT, Shirts BH, Petros LM, Flanigan KM, Gesteland RF, Atkins JF (2001) Sequence specificity of aminoglycoside-induced stop codon readthrough: potential implications for treatment of Duchenne muscular dystrophy. Ann Neurol 48:164–116

    Article  Google Scholar 

  117. Keeling KM, Wang D, Conard SE, Bedwell DM (2012) Suppression of premature termination codons as a therapeutic approach. Crit Rev Biochem Mol Biol 47:444–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Keeling KM (2016) Nonsense suppression as an approach to treat lysosomal storage diseases. Diseases 4:32

    Article  PubMed  PubMed Central  Google Scholar 

  119. Martorell L, Cortina V, Parra R, Barquinero J, Vidal F (2020) Variable readthrough responsiveness of nonsense mutations in Hemophilia A. Haematologica 105:508–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Howard M, Frizzell RA, Bedwell DM (1996) Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations. Nat Med 2:467–469

    Article  CAS  PubMed  Google Scholar 

  121. Bedwell DM, Kaenjak A, Benos DJ, Bebok Z, Bubien JK, Hong J, Tousson A, Clancy JP, Sorscher EJ (1997) Suppression of a CFTR premature stop mutation in a bronchial epithelial cell line. Nat Med 3:1280–1284

    Article  CAS  PubMed  Google Scholar 

  122. DrugBank (2005) Geneticin. In: DrugBank. https://www.drugbank.ca/drugs/DB04263. Accessed 15 Aug 2020

  123. Bar-Nun S, Beckmann JS (1983) G-418, an elongation inhibitor of 80 S ribosomes. Biochim Biophys Acta Gene Struct Expr 741:123–127

    Article  CAS  Google Scholar 

  124. Kuschal C, Khan SG, Enk B, DiGiovanna JJ, Kraemer KH (2015) Readthrough of stop codons by use of aminoglycosides in cells from xeroderma pigmentosum group C patients. Exp Dermatol 24:296–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Moosajee M, Gregory-Evans K, Ellis CD, Seabra MC, Gregory-Evans CY (2008) Translational bypass of nonsense mutations in zebrafish rep1, pax2.1 and lamb1 highlights a viable therapeutic option for untreatable genetic eye disease. Hum Mol Genet 17:3987–4000

    Article  CAS  PubMed  Google Scholar 

  126. Popescu AC, Sidorova E, Zhang G, Eubanks JH (2010) Aminoglycoside-mediated partial suppression of MECP2 nonsense mutations responsible for Rett syndrome in vitro. J Neurosci Res 88:2316–2324

    CAS  PubMed  Google Scholar 

  127. Lai C-H, Chun HH, Nahas SA, Mitui M, Gamo KM, Du L, Gatti RA (2004) Correction of ATM gene function by aminoglycoside-induced read-through of premature termination codons. Proc Natl Acad Sci USA 101:15676–15681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Nudelman I, Rebibo-Sabbah A, Cherniavsky M, Belakhov V, Hainrichson M, Chen F, Schacht J, Pilch DS, Ben-Yosef T, Baasov T (2009) Development of novel aminoglycoside (NB54) with reduced toxicity and enhanced suppression of disease-causing premature stop mutations. J Med Chem 52:2836–2845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zilberberg A, Lahav L, Rosin-Arbesfeld R (2010) Restoration of APC gene function in colorectal cancer cells by aminoglycoside- and macrolide-induced read-through of premature termination codons. Gut 59:496–507

    Article  CAS  PubMed  Google Scholar 

  130. Keeling KM, Bedwell DM (2002) Clinically relevant aminoglycosides can suppress disease-associated premature stop mutations in the IDUA and P53 cDNAs in a mammalian translation system. J Mol Med 80:367–376

    Article  CAS  PubMed  Google Scholar 

  131. Floquet C, Deforges J, Rousset J-P, Bidou L (2011) Rescue of non-sense mutated p53 tumor suppressor gene by aminoglycosides. Nucleic Acids Res 39:3350–3362

    Article  CAS  PubMed  Google Scholar 

  132. Du M, Keeling KM, Fan L, Liu X, Kovaçs T, Sorscher E, Bedwell DM (2006) Clinical doses of amikacin provide more effective suppression of the human CFTR-G542X stop mutation than gentamicin in a transgenic CF mouse model. J Mol Med 84:573–582

    Article  CAS  PubMed  Google Scholar 

  133. Wolstencroft EC, Mattis V, Bajer AA, Young PJ, Lorson CL (2005) A non-sequence-specific requirement for SMN protein activity: the role of aminoglycosides in inducing elevated SMN protein levels. Hum Mol Genet 14:1199–1210

    Article  CAS  PubMed  Google Scholar 

  134. Mattis VB, Rai R, Wang J, Chang C-WT, Coady T, Lorson CL (2006) Novel aminoglycosides increase SMN levels in spinal muscular atrophy fibroblasts. Hum Genomics 120:589–601

    CAS  Google Scholar 

  135. Heier CR, DiDonato CJ (2009) Translational readthrough by the aminoglycoside geneticin (G418) modulates SMN stability in vitro and improves motor function in SMA mice in vivo. Hum Mol Genet 18:1310–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zingman LV, Park S, Olson TM, Alekseev AE, Terzic A (2007) Aminoglycoside-induced translational read-through in disease: overcoming nonsense mutations by pharmacogenetic therapy. Clin Pharmacol Ther 81:99–103

    Article  CAS  PubMed  Google Scholar 

  137. Bidou L, Bugaud O, Belakhov V, Baasov T, Namyb O (2017) Characterization of new-generation aminoglycoside promoting premature termination codon readthrough in cancer cells. RNA Biol 14:378–388

    Article  PubMed  PubMed Central  Google Scholar 

  138. Laurent G, Carlier MB, Rollman B, Van Hoof F, Tulkens P (1982) Mechanism of aminoglycoside-induced lysosomal phospholipidosis: in vitro and in vivo studies with gentamicin and amikacin. Biochem Pharmacol 31:3861–3870

    Article  CAS  PubMed  Google Scholar 

  139. Priuska EM, Schacht J (1995) Formation of free radicals by gentamicin and iron and evidence for an iron/gentamicin complex. Biochem Pharmacol 50:1749–1752

    Article  CAS  PubMed  Google Scholar 

  140. Jiang M, Karasawa T, Steyger PS (2017) Aminoglycoside-induced cochleotoxicity: a review. Front Cell Neurosci 11:308

    Article  PubMed  PubMed Central  Google Scholar 

  141. Hobbie SN, Akshay S, Kalapala SK, Bruell CM, Shcherbakov D, Böttger EC (2008) Genetic analysis of interactions with eukaryotic rRNA identify the mitoribosome as target in aminoglycoside ototoxicity. Proc Natl Acad Sci USA 105:3244–3249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Huth ME, Ricci AJ, Cheng AG (2011) Mechanisms of aminoglycoside ototoxicity and targets of hair cell protection. Int J Otolaryngol 2011:937861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Mingeot-Leclercq MP, Tulkens PM (1999) Aminoglycosides: nephrotoxicity. Antimicrob Agents Chemother 43:1003–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Begg EJ, Barclay ML (1995) Aminoglycosides—50 years on. Br J Clin Pharmacol 39:597–603

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Moestrup SK, Cui S, Vorum H, Bregengård C, Bjørn SE, Norris K, Gliemann J, Christensen EI (1995) Evidence that epithelial glycoprotein 330/megalin mediates uptake of polybasic drugs. J Clin Invest 96:1404–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Selimoglu E (2007) Aminoglycoside-induced ototoxicity. Curr Pharm Des 13:119–126

    Article  CAS  PubMed  Google Scholar 

  147. Schroeder R, Waldsich C, Wank H (2000) Modulation of RNA function by aminoglycoside antibiotics. EMBO J 19:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Clifford RE, Coleman JKM, Balough BJ, Liu J, Kopke RD, Jackson RL (2011) Low-dose d-methionine and N-acetyl-l-cysteine for protection from permanent noise-induced hearing loss in chinchillas. Otolaryngol Head Neck Surg 145:999–1006

    Article  PubMed  Google Scholar 

  149. Trüeb RM (2009) Oxidative stress in ageing of hair. Int J Trichol 1:6–14

    Article  Google Scholar 

  150. Thibault N, Grenier L, Simard M, Bergeron MG, Beauchamp D (1994) Attenuation by daptomycin of gentamicin-induced experimental nephrotoxicity. Antimicrob Agents Chemother 38:1027–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Sha SH, Schacht J (1999) Salicylate attenuates gentamicin-induced ototoxicity. Lab Invest 79:807–813

    CAS  PubMed  Google Scholar 

  152. Li G, Sha S-H, Zotova E, Arezzo J, Water TVD, Schacht J (2002) Salicylate protects hearing and kidney function from cisplatin toxicity without compromising its oncolytic action. Lab Invest 82:585–596

    Article  CAS  PubMed  Google Scholar 

  153. Yukihara M, Ito K, Tanoue O, Goto K, Matsushita T, Matsumoto Y, Masuda M, Kimura S, Ueoka R (2011) Effective drug delivery system for Duchenne muscular dystrophy using hybrid liposomes including gentamicin along with reduced toxicity. Biol Pharm Bull 34:712–716

    Article  CAS  PubMed  Google Scholar 

  154. Schiffelers R, Storm G, Bakker-Woudenberg I (2001) Liposome-encapsulated aminoglycosides in pre-clinical and clinical studies. J Antimicrob Chemother 48:333–344

    Article  CAS  PubMed  Google Scholar 

  155. Gilbert DN, Wood CA, Kohlhepp SJ, Kohnen PW, Houghton DC, Finkbeiner HC, Lindsley J, Bennett WM (1989) Polyaspartic acid prevents experimental aminoglycoside nephrotoxicity. J Infect Dis 159:945–953

    Article  CAS  PubMed  Google Scholar 

  156. Du M, Keeling KM, Fan L, Liu X, Bedwell DM (2009) Poly-l-aspartic acid enhances and prolongs gentamicin-mediated suppression of the CFTR-G542X mutation in a cystic fibrosis mouse model. J Biol Chem 284:6885–6892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Nudelman I, Rebibo-Sabbah A, Shallom-Shezifi D, Hainrichson M, Stahl I, Ben-Yosef T, Baasov T (2006) Redesign of aminoglycosides for treatment of human genetic diseases caused by premature stop mutations. Bioorg Med Chem Lett 16:6310–6315

    Article  CAS  PubMed  Google Scholar 

  158. Goldmann T, Rebibo-Sabbah A, Overlack N, Nudelman I, Belakhov V, Baasov T, Ben-Yosef T, Wolfrum U, Nagel-Wolfrum K (2010) Beneficial read-through of a USH1C nonsense mutation by designed aminoglycoside NB30 in the retina. Physiol Pharmacol 51:6671–6680

    Google Scholar 

  159. Goldmann T, Overlack N, Möller F, Belakhov V, Wyk MV, Baasov T, Wolfrum U, Nagel-Wolfrum K (2012) A comparative evaluation of NB30, NB54 and PTC124 in translational read-through efficacy for treatment of an USH1C nonsense mutation. EMBO Mol Med 4:1186–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Rowe SM, Bedwell DM (2011) Suppression of CFTR premature termination codons and rescue of CFTR protein and function by the synthetic aminoglycoside NB54. J Mol Med 89:1149–1161

    Article  CAS  PubMed  Google Scholar 

  161. Nudelman I, Glikin D, Smolkin B, Hainrichson M, Belakhov V, Baasov T (2010) Repairing faulty genes by aminoglycosides: development of new derivatives of geneticin (G418) with enhanced suppression of diseases-causing nonsense mutations. Bioorgan Med Chem 18:3735–3746

    Article  CAS  Google Scholar 

  162. Brendel C, Belakhov V, Werner H, Wegener E, Gärtner J, Nudelman I, Baasov T, Huppke P (2011) Readthrough of nonsense mutations in Rett syndrome: evaluation of novel aminoglycosides and generation of a new mouse model. J Mol Med 89:389–398

    Article  CAS  PubMed  Google Scholar 

  163. Mattis VB, Ebert AD, Fosso MY, Chang C-W, Lorson CL (2009) Delivery of a read-through inducing compound, TC007, lessens the severity of a spinal muscular atrophy animal model. Hum Mol Genet 18:3906–3913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Chang C-WT, Hui Y, Elchert B, Wang J, Li J, Rai R (2004) Pyranmycins, a novel class of aminoglycosides with improved acid stability: the SAR of d-pyranoses on ring III of pyranmycin. Org Lett 4:4603–4606

    Article  Google Scholar 

  165. Mattis VB, Fosso MY, Chang CW, Lorson CL (2009) Subcutaneous administration of TC007 reduces disease severity in an animal model of SMA. BMC Neurosci 10:142

    Article  PubMed  PubMed Central  Google Scholar 

  166. Bezzerri V, Api M, Allegri M, Fabrizzi B, Corey SJ, Cipolli M (2020) Nonsense suppression therapy: new hypothesis for the treatment of inherited bone marrow failure syndromes. Int J Mol Sci 21:4672

    Article  CAS  PubMed Central  Google Scholar 

  167. Leubitz A, Frydman-Marom A, Sharpe N, Duzer JV, Campbell KCM, Vanhoutte F (2019) Safety, tolerability, and pharmacokinetics of single ascending doses of ELX-02, a potential treatment for genetic disorders caused by nonsense mutations, in healthy volunteers. Clin Pharmacol Drug Dev 8:984–994

    Article  CAS  PubMed  Google Scholar 

  168. Xue X, Mutyam V, Tang L, Rowe SM (2014) Synthetic aminoglycosides efficiently suppress cystic fibrosis transmembrane conductance regulator nonsense mutations and are enhanced by ivacaftor. Am J Respir Cell Mol Biol 50:805–816

    Article  PubMed  PubMed Central  Google Scholar 

  169. Brasell EJ, Chu LL, Akpa MM, Eshkar-Oren I, Alroy I, Corsini R, Gilfix BM, Yamanaka Y, Huertas P, Goodyer P (2019) The novel aminoglycoside, ELX-02, permits CTNSW138X translational read-through and restores lysosomal cystine efflux in cystinosis. PLoS ONE 14:e0223954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Welch EM, Barton ER, Zhuo J et al (2007) PTC124 targets genetic disorders caused by nonsense mutations. Nature 447:87–91

    Article  CAS  PubMed  Google Scholar 

  171. Hirawat S, Welch EM, Elfring GL et al (2007) Safety, tolerability, and pharmacokinetics of PTC124, a nonaminoglycoside nonsense mutation suppressor, following single- and multiple-dose administration to healthy male and female adult volunteers. J Clin Pharmacol 47:430–444

    Article  CAS  PubMed  Google Scholar 

  172. Krall M, Htun S, Slavotinek A (2019) Use of PTC124 for nonsense suppression therapy targeting BMP4 nonsense variants in vitro and the bmp4st72 allele in zebrafish. PLoS ONE 14:e0212121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ruggiero L, Iodice R, Esposito M, Dubbioso R, Tozza S, Vitale F, Santoro L, Manganelli F (2018) One-year follow up of three Italian patients with Duchenne muscular dystrophy treated with Ataluren: is earlier better? Ther Adv Neurol Disord 11:1756286418809588

    Article  PubMed  Google Scholar 

  174. Ebrahimi-Fakhari D, Dillmann U, Flotats-Bastardas M, Poryo M, Abdul-Khaliq H, Shamdeen MG, Mischo B, Zemlin M, Meyer S (2018) Off-label use of Ataluren in four non-ambulatory patients with Duchenne muscular dystrophy: effects on cardiac and pulmonary function and muscle strength. Front Pediatr 6:316

    Article  PubMed  PubMed Central  Google Scholar 

  175. Peltz SW, Morsy M, Welch EM, Jacobson A (2013) Ataluren as an agent for therapeutic nonsense suppression. Annu Rev Med 64:407–425

    Article  CAS  PubMed  Google Scholar 

  176. Roy B, Friesen WJ, Tomizawa Y, Jacobson A (2016) Ataluren stimulates ribosomal selection of near-cognate tRNAs to promote nonsense suppression. Proc Natl Acad Sci USA 113:12508–12513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Allamand V, Pascale G (2008) Drug-induced readthrough of premature stop codons leads to the stabilization of laminin alpha2 chain mRNA in CMD myotubes. J Gene Med 10:217–224

    Article  PubMed  Google Scholar 

  178. Tutone M, Pibiri I, Lentini L, Pace A (2019) Deciphering the nonsense readthrough mechanism of action of Ataluren: an insilico compared study. ACS Med Chem Lett 10:522–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Auld DS, Thorne N, Maguire WF, Inglese J (2009) Mechanism of PTC124 activity in cell-based luciferase assays of nonsense codon suppression. Proc Natl Acad Sci USA 106:3585–3590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Auld DS, Lovell S, Thorne N, Lea WA, Maloney DJ, Shen M, Rai G, Battaile KP, Thomas CJ, Simeonov A, Hanzlik RP, Inglese J (2010) Molecular basis for the high-affinity binding and stabilization of firefly luciferase by PTC124. Proc Natl Acad Sci USA 107:4878–4883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Bolze F, Mocek S, Zimmermann A, Klingenspor M (2017) Aminoglycosides, but not PTC124 (Ataluren), rescue nonsense mutations in the leptin receptor and in luciferase reporter genes. Sci Rep 7:1020

    Article  PubMed  PubMed Central  Google Scholar 

  182. Torriano S, Erkilic N, Baux D, Cereso N, De Luca V, Meunier I, Moosajee M, Roux AF, Hamel CP, Kalatzis V (2018) The effect of PTC124 on choroideremia fibroblasts and iPSC-derived RPE raises considerations for therapy. Sci Rep 8:1–15

    Article  CAS  Google Scholar 

  183. Harmer SC, Mohal JS, Kemp D, Tinker A (2012) Readthrough of long-QT syndrome type 1 nonsense mutations rescues function but alters the biophysical properties of the channel. Biochem J 443:635–642

    Article  CAS  PubMed  Google Scholar 

  184. Kosmidis G, Veerman CC, Casini S, Verkerk AO, Pas SVD, Bellin M, Wilde AAM, Mummery CL, Bezzina CR (2016) SCN5A, Readthrough-promoting drugs gentamicin and PTC124 fail to rescue Nav1.5 function of human-induced pluripotent stem cell-derived cardiomyocytes carrying nonsense mutations in the sodium channel gene. Circ Arrhythmia Electrophysiol 9:e004227

    Article  CAS  Google Scholar 

  185. Hamada M, Takeuchi T, Kondo S, Ikeda Y, Naganawa H, Maeda K, Okami Y, Umezawa H (1970) A new antibiotic, negamycin. J Antibiot 23:170–171

    Article  CAS  Google Scholar 

  186. Taguchi A, Hamada K, Hayashi Y (2018) Chemotherapeutics overcoming nonsense mutation-associated genetic diseases: medicinal chemistry of negamycin. J Antibiot 71:205–214

    Article  CAS  Google Scholar 

  187. Polikanov YS, Szal T, Jiang F, Gupta P, Matsuda R, Shiozuka M, Steitz TA, Vázquez-Laslop N, Mankin AS (2015) Negamycin interferes with decoding and translocation by simultaneous interaction with rRNA and tRNA. Mol Cell 56:541–550

    Article  Google Scholar 

  188. Schroeder SJ, Blaha G, Moore PB (2007) Negamycin binds to the wall of the nascent chain exit tunnel of the 50S ribosomal subunit. Antimicrob Agents Chemother 51:4462–4465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Uehara Y, Hori M, Kondo S, Hamada M, Umezawa H (1976) Structure-activity relationships among negamycin analogs. J Antibiot 29:937–943

    Article  CAS  Google Scholar 

  190. Arakawa M, Shiozuka M, Nakayama Y, Hara T, Matsuda R (2003) Negamycin restores dystrophin expression in skeletal and cardiac muscles of mdx mice. J Biochem 134:751–758

    Article  CAS  PubMed  Google Scholar 

  191. Pranke I, Bidou L, Martin N et al (2018) Factors influencing readthrough therapy for frequent cystic fibrosis premature termination codons. ERJ Open Res 4:00080–02017

    Article  PubMed  PubMed Central  Google Scholar 

  192. Floquet C, RoussetJ-P BL (2011) Readthrough of premature termination codons in the adenomatous polyposis coli gene restores its biological activity in human cancer cells. PLoS ONE 6:e24125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Taguchi A, Nishiguchi S, Shiozuka M (2012) Negamycin analogue with readthrough-promoting activity as a potential drug candidate for Duchenne muscular dystrophy. ACS Med Chem Lett 3:2736–2740

    Article  Google Scholar 

  194. Hamada K, Omura N, Taguchi A, Baradaran-Heravi A, Kotake M, Arai M, Takayama K, Taniguchi A, Roberge M, Hayashi Y (2019) New negamycin-based potent readthrough derivative effective against TGA-type nonsense mutations. ACS Med Chem Lett 10:1450–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Baltz RH, Seno ET (1988) Genetics of Streptomyces fradiae and tylosin biosynthesis. Annu Rev Microbiol 42:547–574

    Article  CAS  PubMed  Google Scholar 

  196. Garza-Ramos G, Xiong L, Zhong P, Mankin A (2001) Binding site of macrolide antibiotics on the ribosome: new resistance mutation identifies a specific interaction of ketolides with rRNA. J Bacteriol 183:6898–6907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Novotny GW, Jakobsen L, Andersen NM, Poehlsgaard J, Douthwaite S (2004) Ketolide antimicrobial activity persists after disruption of interactions with domain II of 23S rRNA. Antimicrob Agents Chemother 48:3677–3683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Brisson-Noël A, Trieu-Cuot P, Courvalin P (1988) Mechanism of action of spiramycin and other macrolides. J Antimicrob Chemother 22:13–23

    Article  PubMed  Google Scholar 

  199. Du L, Jung ME, Damoiseaux R, Completo G, Fike F, Ku J-M, Nahas S, Piao C, Hu H, Gatti RA (2013) A new series of small molecular weight compounds induce read through of all three types of nonsense mutations in the ATM gene. Mol Ther 21:1653–1660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Kayali R, Ku J-M, Bertoni C (2012) Read-through compound 13 restores dystrophin expression and improves muscle function in the mdx mouse model for Duchenne muscular dystrophy. Hum Mol Genet 21:4007–4020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Du L, Gatti RA (2009) Non-aminoglycoside compounds induce readthrough of nonsense mutations. J Exp Med 206:2285–2297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Tutone M, Pibiri I, Perriera R, Campofelice A, Culletta G, Melfi R, Pace A, Almerico AM, Lentini L (2020) Pharmacophore-based design of new chemical scaffolds as translational readthrough-inducing drugs (TRIDs). ACS Med Chem Lett 11:747–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Friesen WJ, Trotta CR, Tomizawa Y, Zhuo J, Welch EM (2017) The nucleoside analog clitocine is a potent and efficacious readthrough agent. RNA 23:567–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Trzaska C, Amand S, Bailly C, Leroy C, Marchand V (2020) 2,6-Diaminopurine as a highly potent corrector of UGA nonsense mutations. Nat Commun 11:1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Mutyam V, Du M, Xue X, Keeling KM, White LE, Rowe SM (2016) Discovery of clinically approved agents that promote suppression of cystic fibrosis transmembrane conductance regulator nonsense mutations. Am J Respir Crit Care Med 194:1092–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Gonzalez-Hilarion S, Beghyn T, Jia J, Debreuck N, Berte G, Mamchaoui K, Mouly V, Gruenert DC, Déprez B, Lejeune F (2012) Rescue of nonsense mutations by amlexanox in human cells. Orphanet J Rare Dis 7:58

    Article  PubMed  PubMed Central  Google Scholar 

  207. Atanasova VS, Jiang Q, Prisco M, Gruber C, South AP (2017) Amlexanox enhances premature termination codon read-through in COL7A1 and expression of full length type VII collagen: potential therapy for recessive dystrophic epidermolysis bullosa. J Invest Dermatol 137:1842–1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Banning A, Schiff M, Tikkanen R (2018) Amlexanox provides a potential therapy for nonsense mutations in the lysosomal storage disorder aspartylglucosaminuria. Biochim Biophys Acta Mol Basis Dis 1864:668–675

    Article  CAS  PubMed  Google Scholar 

  209. Tarrasó G, Real-Martinez A, Parés M et al (2020) Absence of p.R50X Pygm read-through in McArdle disease cellular models. Dis Model Mech 13:d043281

    Google Scholar 

  210. Rijal K, Maraia RJ, Arimbasseri AG (2015) A methods review on use of nonsense suppression to study 3′ end formation and other aspects of tRNA biogenesis. Gene 556:35–50

    Article  CAS  PubMed  Google Scholar 

  211. Temple GF, Dozy AM, Roy KL, Kan YW (1982) Construction of a functional human suppressor tRNA gene: an approach to gene therapy for beta-thalassaemia. Nature 296:5857

    Article  Google Scholar 

  212. Sako Y, Usuki F, Suga H (2006) A novel therapeutic approach for genetic diseases by introduction of suppressor tRNA. Nucleic Acids Symp Ser 50:239–240

    Article  Google Scholar 

  213. Kiselev AV, Ostapenko OV, Rogozhkina EV, Kholod NS, Seit-Nebi AS, Baranov AN (2002) Suppression of nonsense mutations in the dystrophin gene by a suppressor tRNA gene. Mol Biol 36:30–33

    Article  CAS  Google Scholar 

  214. Lueck JD, Infield DT, Mackey AL, Pope MR, McCray PB, Ahern CA (2016) Engineered tRNA suppression of a CFTR nonsense mutation. In: bioRxiv. https://www.biorxiv.org/content/https://doi.org/10.1101/088690v1. Accessed 24 Aug 2020

  215. Panchal RG, Wang S, McDermott J Jr, Link CJ (1999) Partial functional correction of xeroderma pigmentosum group A cells by suppressor tRNA. Hum Gene Ther 10:2209–2219

    Article  CAS  PubMed  Google Scholar 

  216. Bordeira-Carriço R, Ferreira D, Oliveira C (2014) Rescue of wild-type E-cadherin expression from nonsense-mutated cancer cells by a suppressor-tRNA. Eur J Hum Genet 22:1085–1092

    Article  PubMed  PubMed Central  Google Scholar 

  217. Lueck JD, Yoon JS, Perales-Puchalt A, Mackey AL, Infield DT, Ahern CA (2019) Engineered transfer RNAs for suppression of premature termination codons. Nat Commun 10:822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Hagemeijer MC, Siegwart DJ, Strug LJ, Cebotaru L, Torres MJ, Sofoluwe A, Beekman JM (2018) Translational research to enable personalized treatment of cystic fibrosis. J Cyst Fibros 17:S46–S51

    Article  CAS  PubMed  Google Scholar 

  219. Herring CD, Blattner FR (2004) Global transcriptional effects of a suppressor tRNA and the inactivation of the regulator frmR. J Bacteriol 186:6714–6720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Ganot P, Bortolin ML, Kiss T (1997) Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell 89:799–809

    Article  CAS  PubMed  Google Scholar 

  221. Kiss T, Jády BE (2010) Box H/ACA small ribonucleoproteins. Mol Cell 37:597–606

    Article  PubMed  Google Scholar 

  222. De Zoysa MD, Yu YT (2017) Posttranscriptional RNA pseudouridylation. Enzymes 41:151–167

    Article  PubMed  PubMed Central  Google Scholar 

  223. Junhui G, Yi-Tao Y (2014) RNA pseudouridylation: new insights into an old modification. Trends Biochem Sci 38:210–218

    Google Scholar 

  224. De Zoysa MD, Wu G, Katz R, Yu Y-T (2018) Guide-substrate base-pairing requirement for box H/ACA RNA-guided RNA pseudouridylation. RNA 24:1106–1117

    Article  PubMed  PubMed Central  Google Scholar 

  225. Huang C, Wu G, Yu YT (2012) Inducing nonsense suppression by targeted pseudouridylation. Nat Protoc 7:789–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Adachi H, Yu Y-T (2020) Pseudouridine-mediated stop codon read-through in S. cerevisiae is sequence context-independent. RNA 26:1247–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Benne R, Van den Burg J, Brakenhoff JP, Sloof P, Van Boom JH, Tromp MC (1986) Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 46:819–826

    Article  CAS  PubMed  Google Scholar 

  228. Ohman M, Kallman AM, Bass BL (2000) In vitro analysis of the binding of ADAR2 to the pre-mRNA encoding the GluR-B R/G site. RNA 6:687–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Kung C-P, Leonard BM Jr, Weber JD (2018) The role of RNA editing in cancer development and metabolic disorders. Front Endocrinol 9:762

    Article  Google Scholar 

  230. Montiel-Gonzalez MF, Quiroz JFD, Rosenthal JJC (2020) Current strategies for site-directed RNA editing using ADARs. Methods 1:16–24

    Google Scholar 

  231. Wettengel J, Reautschnig P, Geisler S, Kahle PJ, Stafforst T (2017) Harnessing human ADAR2 for RNA repair—recoding a PINK1 mutation rescues mitophagy. Nucleic Acids Res 45:2797–2808

    CAS  PubMed  Google Scholar 

  232. Montiel-González MF, Vallecillo-Viejo IC, Rosenthal JJC (2016) An efficient system for selectively altering genetic information within mRNAs. Nucleic Acids Res 44:e157

    PubMed  PubMed Central  Google Scholar 

  233. Vogel P, Moschref M, Li Q, Merkle T, Selvasaravanan KD, Li JB, Stafforst T (2018) Efficient and precise editing of endogenous transcripts with SNAP-tagged ADARs. Nat Med 15:535–538

    CAS  Google Scholar 

  234. Basilio C, Wahba AJ, Lengyel P, Speyer JF, Ochoa S (1962) Synthetic polynucleotides and the amino acid code. Proc Natl Acad Sci USA 48:613–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Bhakta S, Azad TA, Tsukahara T (2018) Genetic code restoration by artificial RNA editing of Ochre stop codon with ADAR1 deaminase. Protein Eng Des Sel 31:471–478

    Article  CAS  PubMed  Google Scholar 

  236. Montiel-Gonzalez MF, Vallecillo-Viejo I, Yudowski GA, Rosenthal JJC (2013) Correction of mutations within the cystic fibrosis transmembrane conductance regulator by site-directed RNA editing. Proc Natl Acad Sci USA 110:18285–18290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Cox DBT (2017) RNA editing with CRISPR-Cas13. Science 358:1019–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Zhang C, Konermann S (2018) Structural basis for the RNA-guided ribonuclease activity of CRISPR-Cas13d. Cell 175:212–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X (2020) Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther 5:1–23

    Article  PubMed  PubMed Central  Google Scholar 

  240. Rudin N, Sugarman E, Haber JE (1989) Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. Genetics 122:519–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Capecchi MR (1989) Altering the genome by homologous recombination. Science 244:1288–1292

    Article  CAS  PubMed  Google Scholar 

  242. Urnov FD, Miller JC, Lee Y-L (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–651

    Article  CAS  PubMed  Google Scholar 

  243. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    Article  CAS  PubMed  Google Scholar 

  244. Carroll D (2014) Genome engineering with targetable nucleases. Annu Rev Biochem 83:409–439

    Article  CAS  PubMed  Google Scholar 

  245. Cong L, Ran AF, Cox D, Lin S, Barretto R, Habib N, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Kim S, Kim D, Cho SW, Kim J, Kim J-S (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24:1012–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Koonin EV, Makarova KS, Zhang F (2017) Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37:67–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Mali P, Esvelt KM, Church GM (2013) Cas9 as a versatile tool for engineering biology. Nat Methods 10:957–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Cohen J (2020) A cut above: pair that developed CRISPR earns historic award. Science 370:271–272

    Article  CAS  PubMed  Google Scholar 

  252. Adli M (2018) The CRISPR tool kit for genome editing and beyond. Nat Commun 9:1911

    Article  PubMed  PubMed Central  Google Scholar 

  253. Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN (2015) Prevention of muscular dystrophy in mice by CRISPR/Cas9–mediated editing of germline DNA. Science 345:1184–1188

    Article  Google Scholar 

  254. Jo DH, Song DW, Cho CS et al (2019) CRISPR-Cas9-mediated therapeutic editing of Rpe65 ameliorates the disease phenotypes in a mouse model of Leber congenital amaurosis. Sci Adv 5:eaax1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Erwood S, Laselva O, Bily TMI, Brewer RA, Rutherford AH, Bear CE, Ivakine EA (2020) Allele-specific prevention of nonsense-mediated decay in cystic fibrosis using homology-independent genome editing. Mol Ther Methods Clin Dev 17:1118–1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Zhang F (2015) CRISPR/Cas9: prospects and challenges. Hum Gene Ther 26:409–410

    Article  PubMed  PubMed Central  Google Scholar 

  257. Islam A (2017) Therapeutic suppression of nonsense mutation: an emerging target in multiple diseases and thrombotic disorders. Curr Pharm Des 23:1598–1609

    Article  CAS  Google Scholar 

  258. Linde L, Boelz S, Nissim-Rafinia M, Kerem B (2007) Nonsense-mediated mRNA decay affects nonsense transcript levels and governs response of cystic fibrosis patients to gentamicin. J Clin Invest 117:683–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Turner KA, Choy FYM (2015) Treatment of nonsense mutations using stop codon read-through therapeutics and creation of animal models using CRISPR-Cas9. J Mol Genet Med 9:1000172

    Google Scholar 

  260. Pérez B, Rodríguez-Pombo P, Ugarte M, Desviat LR (2012) Readthrough strategies for therapeutic suppression of nonsense mutations in inherited metabolic disease. Mol Syndr 3:230–236

    Article  Google Scholar 

  261. Usuki F, Yamashita A, Higuchi I, Ohnishi T, Shiraishi T, Osame M, Ohno S (2004) Inhibition of nonsense-mediated mRNA decay rescues the phenotype in Ullrich’s disease. Ann Neurol 55:740–744

    Article  CAS  PubMed  Google Scholar 

  262. Lentini L, Melfi R, Cancemi P, Pibiri I, Leonardo AD (2019) Caffeine boosts Ataluren’s readthrough activity. Heliyon 5:e01963

    Article  PubMed  PubMed Central  Google Scholar 

  263. Usuki F, Yamashita A, Kashima I, Higuchi I, Osame M, Ohno S (2006) Specific inhibition of nonsense-mediated mRNA decay components, SMG-1 or Upf1, rescues the phenotype of Ullrich disease fibroblasts. Mol Ther 14:351–360

    Article  CAS  PubMed  Google Scholar 

  264. Usuki F, Yamashita A, Shiraishi T, Shiga A, Onodera O, Higuchi I, Ohno S (2013) Inhibition of SMG-8, a subunit of SMG-1 kinase, ameliorates nonsense-mediated mRNA decay-exacerbated mutant phenotypes without cytotoxicity. Proc Natl Acad Sci USA 110:15037–15042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Gong Q, Stump MR, Zhou Z (2011) Inhibition of nonsense-mediated mRNA decay by antisense morpholino oligonucleotides restores functional expression of hERG nonsense and frameshift mutations in long QT syndrome. J Mol Cell Cardiol 50:223–229

    Article  CAS  PubMed  Google Scholar 

  266. Vicente-Crespo M, Palacios IM (2012) Nonsense-mediated mRNA decay and development: shoot the messenger to survive? Biochem Soc Trans 38:1500–1505

    Article  Google Scholar 

  267. Keeling KM, Wang D, Dai Y, Murugesan S, Chenna B, Clark J, Bedwell DM (2013) Attenuation of nonsense-mediated mRNA decay enhances in vivo nonsense suppression. PLoS ONE 8:e60478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Baradaran-Heravi A, Balgi AD (2016) Novel small molecules potentiate premature termination codon readthrough by aminoglycosides. Nucleic Acids Res 44:6583–6598

    Article  PubMed  PubMed Central  Google Scholar 

  269. Rabea SM, Baradaran-Heravi A, Balgi AD, Krause A, Farahabadi SH, Roberge M, Grierson DS (2019) 2-Aminothiazole-4-carboxamides enhance readthrough of premature termination codons by aminoglycosides. ACS Med Chem Lett 10:726–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Teles Siefers AI, Condinho M, Custódio S, Pereira BF, Fernandes R, Gonçalves V, Costa PJ, Lacerda R, Marques AR, Romão L (2018) Genetics of personalized medicine: cancer and rare diseases. Cell Oncol 41:335–341

    Article  Google Scholar 

  271. Barton-Davis ER, Cordier L, Shoturma DI, Leland SE, Sweeney LH (1999) Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. J Clin Invest 104:375–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Yu H, Liu X, Huang J, Zhang Y, Hu R, Pu J (2013) Comparison of read-through effects of aminoglycosides and PTC124 on rescuing nonsense mutations of HERG gene associated with long QT syndrome. Int J Mol Med 33:729–735

    Article  PubMed  Google Scholar 

  273. Yang C, Feng J, Sommer SS (2007) A mouse model for nonsense mutation bypass therapy shows a dramatic multiday response to geneticin. Proc Natl Acad Sci USA 104:15394–15399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Du M, Bedwell DM (2002) Aminoglycoside suppression of a premature stop mutation in a Cftr−/− mouse carrying a human CFTR-G542X transgene. J Mol Med 80:595–604

    Article  CAS  PubMed  Google Scholar 

  275. Kuschal C, DiGiovanna JJ, Khan SG, Gatti RA, Kraemer KH (2013) Repair of UV photolesions in xeroderma pigmentosum group C cells induced by translational readthrough of premature termination codons. Proc Natl Acad Sci USA 110:19483–19488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. James PD, Raut S, Rivard GE, Poon M-C, Warner M, McKenna S, Leggo J, Lillicrap D (2005) Aminoglycoside suppression of nonsense mutations in severe hemophilia. Blood 106:3043–3048

    Article  CAS  PubMed  Google Scholar 

  277. Kellermayer R, Szigeti R, Keeling KM, Bedekovics T, Bedwell DM (2006) Aminoglycosides as potential pharmacogenetic agents in the treatment of Hailey–Hailey disease. J Invest Dermatol 126:229–231

    Article  CAS  PubMed  Google Scholar 

  278. Wilschanski M, Kerem E (2003) Gentamicin-induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations. N Engl J Med 349:1433–1441

    Article  CAS  PubMed  Google Scholar 

  279. Clancy JP, Bebök Z, Ruiz F et al (2001) Evidence that systemic gentamicin suppresses premature stop mutations in patients with cystic fibrosis. Am J Respir Crit Care Med 163:1683–1692

    Article  CAS  PubMed  Google Scholar 

  280. Fazzari M, Frasca A, Bifari F, Landsberger N (2019) Aminoglycoside drugs induce efficient read-through of CDKL5 nonsense mutations, slightly restoring its kinase activity. RNA Biol 16:1414–1423

    Article  PubMed  PubMed Central  Google Scholar 

  281. Lincoln V, Cogan J, Hou Y, Hirsch M, Chen M (2018) Gentamicin induces LAMB3 nonsense mutation readthrough and restores functional laminin 332 in junctional epidermolysis bullosa. Proc Natl Acad Sci USA 115:e6536–e6545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Azimov R, Abuladze N, Sassani P, Newman D, Kao L, Liu W, Orozco N, Ruchala P, Pushkin A, Kurtz I (2008) G418-mediated ribosomal read-through of a nonsense mutation causing autosomal recessive proximal renal tubular acidosis. Am J Physiol Renal Physiol 295:F633–F641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Zhang M, Heldin A, Palomar-Siles M, Öhlin S, Bykov VJN, Wiman KG (2018) Synergistic rescue of nonsense mutant tumor suppressor p53 by combination treatment with aminoglycosides and Mdm2 inhibitors. Front Oncol 7:323

    Article  PubMed  PubMed Central  Google Scholar 

  284. Bukowy-Bieryllo Z, Dabrowski M, Witt M, Zietkiewicz E (2016) Aminoglycoside-stimulated readthrough of premature termination codons in selected genes involved in primary ciliary dyskinesia. RNA Biol 13:1041–1050

    Article  PubMed  PubMed Central  Google Scholar 

  285. Finkel RS (2013) Readthrough strategies for suppression of nonsense mutations in Duchenne/Becker muscular dystrophy: aminoglycosides and Ataluren (PTC124). J Child Neurol 25:1158–1164

    Article  Google Scholar 

  286. Du M, Liu X, Welch EM, Hirawat S, Peltz SW, Bedwell DM (2008) PTC124 is an orally bioavailable compound that promotes suppression of the human CFTR-G542X nonsense allele in a CF mouse model. Proc Natl Acad Sci USA 105:2064–2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Drake KM, Dunmore BJ, McNelly LN, Morrell NW, Aldred MA (2013) Correction of nonsense BMPR2 and SMAD9 mutations by ataluren in pulmonary arterial hypertension. Am J Respir Cell Mol Biol 49:403–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Long L, Yang X, Southwood M, Moore S, Crosby A, Upton PD, Dunmore BJ, Morrell NW (2020) Targeting translational read-through of premature termination mutations in BMPR2 with PTC124 for pulmonary arterial hypertension. Pulm Circ 10:1–14

    Article  CAS  Google Scholar 

  289. Liu X, Zhang Y, Zhang B, Gao H, Qiu C (2020) Nonsense suppression induced readthrough of a novel PAX6 mutation in patient-derived cells of congenital aniridia. Mol Genet Genomic Med 8:e1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Bedwell D, Wang D, Welch E, Keeling KM (2015) The nonsense suppression drug PTC124 restored alpha-l-iduronidase activity and reduces glycosaminoglycan accumulation in MPS IH mice carrying the Idua-W402X mutation. Mol Genet Metab 114:S20

    Article  Google Scholar 

  291. Kerem E, Hirawat S, Armoni S, Yaakov Y, Shoseyov D, Wilschanski M (2008) Effectiveness of PTC124 treatment of cystic fibrosis caused by nonsense mutations: a prospective phase II trial. Lancet 372:719–727

    Article  CAS  PubMed  Google Scholar 

  292. Konstan MW, VanDevanter DR, Rowe SM et al (2020) Efficacy and safety of ataluren in patients with nonsense-mutation cystic fibrosis not receiving chronic inhaled aminoglycosides: the international, randomized, double-blind, placebo-controlled Ataluren Confirmatory Trial in cystic fibrosis (ACT CF). J Cyst Fibros 19:595–601

    Article  CAS  PubMed  Google Scholar 

  293. Kerem E, Konstan MW, De Boeck K, Accurso FJ, Sermet-Gaudelus I, Wilschanski M, Elborn JS, Melotti P, Bronsveld I, Fajac I, Malfroot A, Rosenbluth DB, Walker PA, McColley SA, Knoop C, Quattrucci S, Rietschel E, Zeitlin PL, Barth J, Elfring GL, Welch EM, Branstrom A, Spiegel RJ, Peltz SW, Ajayi T, Rowe SM, Cystic Fibrosis Ataluren Study Group (2014) Ataluren for the treatment of nonsense-mutation cystic fibrosis: a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Respir Med 2:539–547

    Article  CAS  PubMed  Google Scholar 

  294. Wilschanski M, Miller LL, Shoseyov D et al (2011) Chronic ataluren (PTC124) treatment of nonsense mutation cystic fibrosis. Eur Respir J 38:59–69

    Article  CAS  PubMed  Google Scholar 

  295. Finkel RS, Flanigan KM, Wong B et al (2013) Phase 2a study of Ataluren-mediated dystrophin production in patients with nonsense mutation Duchenne muscular dystrophy. PLoS ONE 8:e81302

    Article  PubMed  PubMed Central  Google Scholar 

  296. Bushby K (2014) Ataluren treatment of patients with nonsense mutation dystrophinopathy. Muscle Nerve 50:477–487

    Article  CAS  PubMed  Google Scholar 

  297. McDonald CM, Campbell C, Torricelli RE, Finkel RS, Flanigan KM, Goemans N, Mercuri E (2017) Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 390:1489–1498

    Article  CAS  PubMed  Google Scholar 

  298. Caspi M, Firsow A, Rajkumar R, Skalka N, Moshkovitz I, Munitz A, Pasmanik-Chor M, Greif H, Megido D, Kariv R, Rosenberg DW, Rosin-Arbesfeld R (2016) A flow cytometry-based reporter assay identifies macrolide antibiotics as nonsense mutation read-through agents. J Mol Med 94:469–482

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Luka Clarke for critical reading and English editing of the manuscript.

Funding

This work was partially supported by UID/MULTI/04046/2019 Research Unit Grant (to BioISI) and by PTFC/BIM-MEC/3749/2014 research Grant (to LR) from Fundação para a Ciência e a Tecnologia, Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luísa Romão.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins-Dias, P., Romão, L. Nonsense suppression therapies in human genetic diseases. Cell. Mol. Life Sci. 78, 4677–4701 (2021). https://doi.org/10.1007/s00018-021-03809-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03809-7

Keywords

Navigation