Skip to main content

Advertisement

Log in

Voltage-gated sodium currents in cerebellar Purkinje neurons: functional and molecular diversity

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Purkinje neurons, the sole output of the cerebellar cortex, deliver GABA-mediated inhibition to the deep cerebellar nuclei. To subserve this critical function, Purkinje neurons fire repetitively, and at high frequencies, features that have been linked to the unique properties of the voltage-gated sodium (Nav) channels expressed. In addition to the rapidly activating and inactivating, or transient, component of the Nav current (INaT) present in many types of central and peripheral neurons, Purkinje neurons, also expresses persistent (INaP) and resurgent (INaR) Nav currents. Considerable progress has been made in detailing the biophysical properties and identifying the molecular determinants of these discrete Nav current components, as well as defining their roles in the regulation of Purkinje neuron excitability. Here, we review this important work and highlight the remaining questions about the molecular mechanisms controlling the expression and the functioning of Nav currents in Purkinje neurons. We also discuss the impact of the dynamic regulation of Nav currents on the functioning of individual Purkinje neurons and cerebellar circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Llinas RR (1988) The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242(4886):1654–1664

    Article  PubMed  CAS  Google Scholar 

  2. Bean BP (2007) The action potential in mammalian central neurons. Nat Rev Neurosci 8(6):451–465. https://doi.org/10.1038/nrn2148

    Article  PubMed  CAS  Google Scholar 

  3. Thach WT (1968) Discharge of Purkinje and cerebellar nuclear neurons during rapidly alternating arm movements in the monkey. J Neurophysiol 31(5):785–797. https://doi.org/10.1152/jn.1968.31.5.785

    Article  PubMed  CAS  Google Scholar 

  4. Hausser M, Clark BA (1997) Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron 19(3):665–678

    Article  PubMed  CAS  Google Scholar 

  5. Raman IM, Bean BP (1997) Resurgent sodium current and action potential formation in dissociated cerebellar Purkinje neurons. J Neurosci 17(12):4517–4526

    Article  PubMed  CAS  Google Scholar 

  6. Llinas R, Sugimori M (1980) Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J Physiol 305:197–213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Raman IM, Bean BP (1999) Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons. J Neurosci 19(5):1663–1674

    Article  PubMed  CAS  Google Scholar 

  8. Khaliq ZM, Gouwens NW, Raman IM (2003) The contribution of resurgent sodium current to high-frequency firing in Purkinje neurons: an experimental and modeling study. J Neurosci 23(12):4899–4912

    Article  PubMed  CAS  Google Scholar 

  9. Raman IM, Sprunger LK, Meisler MH, Bean BP (1997) Altered subthreshold sodium currents and disrupted firing patterns in Purkinje neurons of Scn8a mutant mice. Neuron 19(4):881–891

    Article  PubMed  CAS  Google Scholar 

  10. Meisler MH, Plummer NW, Burgess DL, Buchner DA, Sprunger LK (2004) Allelic mutations of the sodium channel SCN8A reveal multiple cellular and physiological functions. Genetica 122(1):37–45

    Article  PubMed  CAS  Google Scholar 

  11. Levin SI, Khaliq ZM, Aman TK, Grieco TM, Kearney JA, Raman IM, Meisler MH (2006) Impaired motor function in mice with cell-specific knockout of sodium channel Scn8a (NaV1.6) in cerebellar Purkinje neurons and granule cells. J Neurophysiol 96(2):785–793. https://doi.org/10.1152/jn.01193.2005

    Article  PubMed  CAS  Google Scholar 

  12. Kalume F, Yu FH, Westenbroek RE, Scheuer T, Catterall WA (2007) Reduced sodium current in Purkinje neurons from Nav1.1 mutant mice: implications for ataxia in severe myoclonic epilepsy in infancy. J Neurosci 27(41):11065–11074. https://doi.org/10.1523/JNEUROSCI.2162-07.2007

    Article  PubMed  CAS  Google Scholar 

  13. Bosch MK, Carrasquillo Y, Ransdell JL, Kanakamedala A, Ornitz DM, Nerbonne JM (2015) Intracellular FGF14 (iFGF14) is required for spontaneous and evoked firing in cerebellar Purkinje neurons and for motor coordination and balance. J Neurosci 35(17):6752–6769. https://doi.org/10.1523/JNEUROSCI.2663-14.2015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Eccles JC, Llinas R, Sasaki K (1966) The mossy fibre-granule cell relay of the cerebellum and its inhibitory control by Golgi cells. Exp Brain Res 1(1):82–101

    PubMed  CAS  Google Scholar 

  15. Eccles JC, Llinas R, Sasaki K (1966) Parallel fibre stimulation and the responses induced thereby in the Purkinje cells of the cerebellum. Exp Brain Res 1(1):17–39

    PubMed  CAS  Google Scholar 

  16. Eccles J, Llinas R, Sasaki K (1964) Excitation of cerebellar Purkinje cells by the climbing fibres. Nature 203:245–246

    Article  PubMed  CAS  Google Scholar 

  17. Eccles JC, Llinas R, Sasaki K (1966) The inhibitory interneurones within the cerebellar cortex. Exp Brain Res 1(1):1–16

    Article  PubMed  CAS  Google Scholar 

  18. Eccles J, Llinas R, Sasaki K (1964) Golgi cell inhibition in the cerebellar cortex. Nature 204:1265–1266

    Article  PubMed  CAS  Google Scholar 

  19. Eccles JC, Llinas R, Sasaki K (1966) The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. J Physiol 182(2):268–296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Eccles JC, Llinas R, Sasaki K (1966) Intracellularly recorded responses of the cerebellar Purkinje cells. Exp Brain Res 1(2):161–183

    Article  PubMed  CAS  Google Scholar 

  21. Eccles JC, Llinas R, Sasaki K (1966) The action of antidromic impulses on the cerebellar Purkinje cells. J Physiol 182(2):316–345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Itō M (1984) The cerebellum and neural control, 1st edn. Raven Press, New York

    Google Scholar 

  23. Ito M, Yoshida M, Obata K (1964) Monosynaptic inhibition of the intracerebellar nuclei induced rom the cerebellar cortex. Experientia 20(10):575–576

    Article  PubMed  CAS  Google Scholar 

  24. Obata K, Ito M, Ochi R, Sato N (1967) Pharmacological properties of the postsynaptic inhibition by Purkinje cell axons and the action of gamma-aminobutyric acid on deiters neurones. Exp Brain Res 4(1):43–57

    Article  PubMed  CAS  Google Scholar 

  25. Obata K, Takeda K, Shinozaki H (1970) Further study on pharmacological properties of the cerebellar-induced inhibition of deiters neurones. Exp Brain Res 11(4):327–342

    Article  PubMed  CAS  Google Scholar 

  26. Andersen P, Eccles JC, Voorhoeve PE (1964) Postsynaptic inhibition of cerebellar Purkinje cells. J Neurophysiol 27:1138–1153. https://doi.org/10.1152/jn.1964.27.6.1138

    Article  PubMed  CAS  Google Scholar 

  27. McKay BE, Engbers JD, Mehaffey WH, Gordon GR, Molineux ML, Bains JS, Turner RW (2007) Climbing fiber discharge regulates cerebellar functions by controlling the intrinsic characteristics of Purkinje cell output. J Neurophysiol 97(4):2590–2604. https://doi.org/10.1152/jn.00627.2006

    Article  PubMed  CAS  Google Scholar 

  28. Bell CC, Grimm RJ (1969) Discharge properties of Purkinje cells recorded on single and double microelectrodes. J Neurophysiol 32(6):1044–1055

    Article  PubMed  CAS  Google Scholar 

  29. Heck DH, Thach WT, Keating JG (2007) On-beam synchrony in the cerebellum as the mechanism for the timing and coordination of movement. Proc Natl Acad Sci USA 104(18):7658–7663. https://doi.org/10.1073/pnas.0609966104

    Article  PubMed  CAS  Google Scholar 

  30. Person AL, Raman IM (2012) Purkinje neuron synchrony elicits time-locked spiking in the cerebellar nuclei. Nature 481(7382):502–505. https://doi.org/10.1038/nature10732

    Article  CAS  Google Scholar 

  31. Welsh JP, Lang EJ, Suglhara I, Llinas R (1995) Dynamic organization of motor control within the olivocerebellar system. Nature 374(6521):453–457. https://doi.org/10.1038/374453a0

    Article  PubMed  CAS  Google Scholar 

  32. Lang EJ, Apps R, Bengtsson F, Cerminara NL, De Zeeuw CI, Ebner TJ, Heck DH, Jaeger D, Jorntell H, Kawato M, Otis TS, Ozyildirim O, Popa LS, Reeves AM, Schweighofer N, Sugihara I, Xiao J (2017) The roles of the olivocerebellar pathway in motor learning and motor control. A consensus paper. Cerebellum 16(1):230–252. https://doi.org/10.1007/s12311-016-0787-8

    Article  PubMed  PubMed Central  Google Scholar 

  33. Llinas R, Sugimori M (1980) Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J Physiol 305:171–195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Raman IM, Bean BP (2001) Inactivation and recovery of sodium currents in cerebellar Purkinje neurons: evidence for two mechanisms. Biophys J 80(2):729–737. https://doi.org/10.1016/S0006-3495(01)76052-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Jahnsen H, Llinas R (1984) Ionic basis for the electro-responsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J Physiol 349:227–247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Huguenard JR (1996) Low-threshold calcium currents in central nervous system neurons. Annu Rev Physiol 58:329–348. https://doi.org/10.1146/annurev.ph.58.030196.001553

    Article  PubMed  CAS  Google Scholar 

  37. Pape HC (1996) Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annu Rev Physiol 58:299–327. https://doi.org/10.1146/annurev.ph.58.030196.001503

    Article  PubMed  CAS  Google Scholar 

  38. Carter BC, Bean BP (2011) Incomplete inactivation and rapid recovery of voltage-dependent sodium channels during high-frequency firing in cerebellar Purkinje neurons. J Neurophysiol 105(2):860–871. https://doi.org/10.1152/jn.01056.2010

    Article  PubMed  CAS  Google Scholar 

  39. Gahwiler BH, Llano I (1989) Sodium and potassium conductances in somatic membranes of rat Purkinje cells from organotypic cerebellar cultures. J Physiol 417:105–122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Carter BC, Giessel AJ, Sabatini BL, Bean BP (2012) Transient sodium current at subthreshold voltages: activation by EPSP waveforms. Neuron 75(6):1081–1093. https://doi.org/10.1016/j.neuron.2012.08.033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Ransdell JL, Dranoff E, Lau B, Lo WL, Donermeyer DL, Allen PM, Nerbonne JM (2017) Loss of Navbeta4-mediated regulation of sodium currents in adult Purkinje neurons disrupts firing and impairs motor coordination and balance. Cell Rep 19(3):532–544. https://doi.org/10.1016/j.celrep.2017.03.068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Kuo CC, Bean BP (1994) Na+ channels must deactivate to recover from inactivation. Neuron 12(4):819–829

    Article  PubMed  CAS  Google Scholar 

  43. Lewis AH, Raman IM (2014) Resurgent current of voltage-gated Na(+) channels. J Physiol 592(22):4825–4838. https://doi.org/10.1113/jphysiol.2014.277582

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Raman IM, Bean BP (1999) Properties of sodium currents and action potential firing in isolated cerebellar Purkinje neurons. Ann N Y Acad Sci 868:93–96

    Article  PubMed  CAS  Google Scholar 

  45. Carter BC, Bean BP (2009) Sodium entry during action potentials of mammalian neurons: incomplete inactivation and reduced metabolic efficiency in fast-spiking neurons. Neuron 64(6):898–909. https://doi.org/10.1016/j.neuron.2009.12.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Prinz AA, Abbott LF, Marder E (2004) The dynamic clamp comes of age. Trends Neurosci 27(4):218–224. https://doi.org/10.1016/j.tins.2004.02.004

    Article  PubMed  CAS  Google Scholar 

  47. Sharp AA, O’Neil MB, Abbott LF, Marder E (1993) The dynamic clamp: artificial conductances in biological neurons. Trends Neurosci 16(10):389–394

    Article  PubMed  CAS  Google Scholar 

  48. Noda M, Shimizu S, Tanabe T, Takai T, Kayano T, Ikeda T, Takahashi H, Nakayama H, Kanaoka Y, Minamino N et al (1984) Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312(5990):121–127

    Article  PubMed  CAS  Google Scholar 

  49. Catterall WA (2010) Ion channel voltage sensors: structure, function, and pathophysiology. Neuron 67(6):915–928. https://doi.org/10.1016/j.neuron.2010.08.021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Bezanilla F (2000) The voltage sensor in voltage-dependent ion channels. Physiol Rev 80(2):555–592. https://doi.org/10.1152/physrev.2000.80.2.555

    Article  PubMed  CAS  Google Scholar 

  51. West JW, Patton DE, Scheuer T, Wang Y, Goldin AL, Catterall WA (1992) A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation. Proc Natl Acad Sci USA 89(22):10910–10914

    Article  PubMed  CAS  Google Scholar 

  52. Armstrong CM, Bezanilla F (1977) Inactivation of the sodium channel. II. Gating current experiments. J Gen Physiol 70(5):567–590

    Article  PubMed  CAS  Google Scholar 

  53. Bosmans F, Martin-Eauclaire MF, Swartz KJ (2008) Deconstructing voltage sensor function and pharmacology in sodium channels. Nature 456(7219):202–208. https://doi.org/10.1038/nature07473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Capes DL, Goldschen-Ohm MP, Arcisio-Miranda M, Bezanilla F, Chanda B (2013) Domain IV voltage-sensor movement is both sufficient and rate limiting for fast inactivation in sodium channels. J Gen Physiol 142(2):101–112. https://doi.org/10.1085/jgp.201310998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Yu FH, Catterall WA (2003) Overview of the voltage-gated sodium channel family. Genome Biol 4(3):207

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bezanilla F, Armstrong CM (1977) Inactivation of the sodium channel. I. Sodium current experiments. J Gen Physiol 70(5):549–566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Chanda B, Bezanilla F (2002) Tracking voltage-dependent conformational changes in skeletal muscle sodium channel during activation. J Gen Physiol 120(5):629–645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Horn R, Ding S, Gruber HJ (2000) Immobilizing the moving parts of voltage-gated ion channels. J Gen Physiol 116(3):461–476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Grieco TM, Afshari FS, Raman IM (2002) A role for phosphorylation in the maintenance of resurgent sodium current in cerebellar Purkinje neurons. J Neurosci 22(8):3100–3107

    Article  PubMed  CAS  Google Scholar 

  60. Chen C, Calhoun JD, Zhang Y, Lopez-Santiago L, Zhou N, Davis TH, Salzer JL, Isom LL (2012) Identification of the cysteine residue responsible for disulfide linkage of Na+ channel alpha and beta2 subunits. J Biol Chem 287(46):39061–39069. https://doi.org/10.1074/jbc.M112.397646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Yu FH, Westenbroek RE, Silos-Santiago I, McCormick KA, Lawson D, Ge P, Ferriera H, Lilly J, DiStefano PS, Catterall WA, Scheuer T, Curtis R (2003) Sodium channel beta4, a new disulfide-linked auxiliary subunit with similarity to beta2. J Neurosci 23(20):7577–7585

    Article  PubMed  CAS  Google Scholar 

  62. Lewis AH, Raman IM (2011) Cross-species conservation of open-channel block by Na channel beta4 peptides reveals structural features required for resurgent Na current. J Neurosci 31(32):11527–11536. https://doi.org/10.1523/JNEUROSCI.1428-11.2011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Grieco TM, Malhotra JD, Chen C, Isom LL, Raman IM (2005) Open-channel block by the cytoplasmic tail of sodium channel beta4 as a mechanism for resurgent sodium current. Neuron 45(2):233–244. https://doi.org/10.1016/j.neuron.2004.12.035

    Article  PubMed  CAS  Google Scholar 

  64. Chen Y, Yu FH, Sharp EM, Beacham D, Scheuer T, Catterall WA (2008) Functional properties and differential neuromodulation of Na(v)1.6 channels. Mol Cell Neurosci 38(4):607–615. https://doi.org/10.1016/j.mcn.2008.05.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Aman TK, Grieco-Calub TM, Chen C, Rusconi R, Slat EA, Isom LL, Raman IM (2009) Regulation of persistent Na current by interactions between beta subunits of voltage-gated Na channels. J Neurosci 29(7):2027–2042. https://doi.org/10.1523/JNEUROSCI.4531-08.2009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Theile JW, Jarecki BW, Piekarz AD, Cummins TR (2011) Nav1.7 mutations associated with paroxysmal extreme pain disorder, but not erythromelalgia, enhance Navbeta4 peptide-mediated resurgent sodium currents. J Physiol 589(Pt 3):597–608. https://doi.org/10.1113/jphysiol.2010.200915

    Article  PubMed  CAS  Google Scholar 

  67. Wang GK, Edrich T, Wang SY (2006) Time-dependent block and resurgent tail currents induced by mouse beta4(154–167) peptide in cardiac Na+ channels. J Gen Physiol 127(3):277–289. https://doi.org/10.1085/jgp.200509399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Lewis AH, Raman IM (2013) Interactions among DIV voltage-sensor movement, fast inactivation, and resurgent Na current induced by the NaVbeta4 open-channel blocking peptide. J Gen Physiol 142(3):191–206. https://doi.org/10.1085/jgp.201310984

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Bant JS, Raman IM (2010) Control of transient, resurgent, and persistent current by open-channel block by Na channel beta4 in cultured cerebellar granule neurons. Proc Natl Acad Sci USA 107(27):12357–12362. https://doi.org/10.1073/pnas.1005633107

    Article  PubMed  Google Scholar 

  70. Barbosa C, Tan ZY, Wang R, Xie W, Strong JA, Patel RR, Vasko MR, Zhang JM, Cummins TR (2015) Navbeta4 regulates fast resurgent sodium currents and excitability in sensory neurons. Mol Pain 11:60. https://doi.org/10.1186/s12990-015-0063-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Miyazaki H, Oyama F, Inoue R, Aosaki T, Abe T, Kiyonari H, Kino Y, Kurosawa M, Shimizu J, Ogiwara I, Yamakawa K, Koshimizu Y, Fujiyama F, Kaneko T, Shimizu H, Nagatomo K, Yamada K, Shimogori T, Hattori N, Miura M, Nukina N (2014) Singular localization of sodium channel beta4 subunit in unmyelinated fibres and its role in the striatum. Nat Commun 5:5525. https://doi.org/10.1038/ncomms6525

    Article  PubMed  CAS  Google Scholar 

  72. Cahalan MD (1975) Modification of sodium channel gating in frog myelinated nerve fibres by Centruroides sculpturatus scorpion venom. J Physiol 244(2):511–534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Schiavon E, Sacco T, Cassulini RR, Gurrola G, Tempia F, Possani LD, Wanke E (2006) Resurgent current and voltage sensor trapping enhanced activation by a beta-scorpion toxin solely in Nav1.6 channel. Significance in mice Purkinje neurons. J Biol Chem 281(29):20326–20337. https://doi.org/10.1074/jbc.M600565200

    Article  PubMed  CAS  Google Scholar 

  74. Schiavon E, Pedraza-Escalona M, Gurrola GB, Olamendi-Portugal T, Corzo G, Wanke E, Possani LD (2012) Negative-shift activation, current reduction and resurgent currents induced by beta-toxins from Centruroides scorpions in sodium channels. Toxicon 59(2):283–293. https://doi.org/10.1016/j.toxicon.2011.12.003

    Article  PubMed  CAS  Google Scholar 

  75. Vega-Saenz de Miera EC, Rudy B, Sugimori M, Llinas R (1997) Molecular characterization of the sodium channel subunits expressed in mammalian cerebellar Purkinje cells. Proc Natl Acad Sci USA 94(13):7059–7064

    Article  PubMed  CAS  Google Scholar 

  76. Schaller KL, Caldwell JH (2003) Expression and distribution of voltage-gated sodium channels in the cerebellum. Cerebellum 2(1):2–9. https://doi.org/10.1080/14734220309424

    Article  PubMed  CAS  Google Scholar 

  77. Jarnot M, Corbett AM (2006) Immunolocalization of NaV1.2 channel subtypes in rat and cat brain and spinal cord with high affinity antibodies. Brain Res 1107(1):1–12. https://doi.org/10.1016/j.brainres.2006.05.090

    Article  PubMed  CAS  Google Scholar 

  78. Felts PA, Yokoyama S, Dib-Hajj S, Black JA, Waxman SG (1997) Sodium channel alpha-subunit mRNAs I, II, III, NaG, Na6 and hNE (PN1): different expression patterns in developing rat nervous system. Brain Res Mol Brain Res 45(1):71–82

    Article  PubMed  CAS  Google Scholar 

  79. Vacher H, Mohapatra DP, Trimmer JS (2008) Localization and targeting of voltage-dependent ion channels in mammalian central neurons. Physiol Rev 88(4):1407–1447. https://doi.org/10.1152/physrev.00002.2008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Lorincz A, Nusser Z (2008) Cell-type-dependent molecular composition of the axon initial segment. J Neurosci 28(53):14329–14340. https://doi.org/10.1523/JNEUROSCI.4833-08.2008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Xiao M, Bosch MK, Nerbonne JM, Ornitz DM (2013) FGF14 localization and organization of the axon initial segment. Mol Cell Neurosci 56:393–403. https://doi.org/10.1016/j.mcn.2013.07.008

    Article  PubMed  CAS  Google Scholar 

  82. Grieco TM, Raman IM (2004) Production of resurgent current in NaV1.6-null Purkinje neurons by slowing sodium channel inactivation with beta-pompilidotoxin. J Neurosci 24(1):35–42. https://doi.org/10.1523/JNEUROSCI.3807-03.2004

    Article  PubMed  CAS  Google Scholar 

  83. Khaliq ZM, Raman IM (2006) Relative contributions of axonal and somatic Na channels to action potential initiation in cerebellar Purkinje neurons. J Neurosci 26(7):1935–1944. https://doi.org/10.1523/JNEUROSCI.4664-05.2006

    Article  PubMed  CAS  Google Scholar 

  84. Palmer LM, Clark BA, Grundemann J, Roth A, Stuart GJ, Hausser M (2010) Initiation of simple and complex spikes in cerebellar Purkinje cells. J Physiol 588(Pt 10):1709–1717. https://doi.org/10.1113/jphysiol.2010.188300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Burgess DL, Kohrman DC, Galt J, Plummer NW, Jones JM, Spear B, Meisler MH (1995) Mutation of a new sodium channel gene, Scn8a, in the mouse mutant ‘motor endplate disease’. Nat Genet 10(4):461–465. https://doi.org/10.1038/ng0895-461

    Article  PubMed  CAS  Google Scholar 

  86. Kohrman DC, Plummer NW, Schuster T, Jones JM, Jang W, Burgess DL, Galt J, Spear BT, Meisler MH (1995) Insertional mutation of the motor endplate disease (med) locus on mouse chromosome 15. Genomics 26(2):171–177

    Article  PubMed  CAS  Google Scholar 

  87. Mantegazza M, Yu FH, Powell AJ, Clare JJ, Catterall WA, Scheuer T (2005) Molecular determinants for modulation of persistent sodium current by G-protein betagamma subunits. J Neurosci 25(13):3341–3349. https://doi.org/10.1523/JNEUROSCI.0104-05.2005

    Article  PubMed  CAS  Google Scholar 

  88. Meadows LS, Isom LL (2005) Sodium channels as macromolecular complexes: implications for inherited arrhythmia syndromes. Cardiovasc Res 67(3):448–458. https://doi.org/10.1016/j.cardiores.2005.04.003

    Article  PubMed  CAS  Google Scholar 

  89. Brackenbury WJ (2012) Voltage-gated sodium channels and metastatic disease. Channels (Austin) 6(5):352–361. https://doi.org/10.4161/chan.21910

    Article  CAS  Google Scholar 

  90. Abriel H, Rougier JS, Jalife J (2015) Ion channel macromolecular complexes in cardiomyocytes: roles in sudden cardiac death. Circ Res 116(12):1971–1988. https://doi.org/10.1161/CIRCRESAHA.116.305017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Goldfarb M (2012) Voltage-gated sodium channel-associated proteins and alternative mechanisms of inactivation and block. Cell Mol Life Sci 69(7):1067–1076. https://doi.org/10.1007/s00018-011-0832-1

    Article  PubMed  CAS  Google Scholar 

  92. Patino GA, Isom LL (2010) Electrophysiology and beyond: multiple roles of Na+ channel beta subunits in development and disease. Neurosci Lett 486(2):53–59. https://doi.org/10.1016/j.neulet.2010.06.050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Brackenbury WJ, Calhoun JD, Chen C, Miyazaki H, Nukina N, Oyama F, Ranscht B, Isom LL (2010) Functional reciprocity between Na+ channel Nav1.6 and beta1 subunits in the coordinated regulation of excitability and neurite outgrowth. Proc Natl Acad Sci USA 107(5):2283–2288. https://doi.org/10.1073/pnas.0909434107

    Article  PubMed  Google Scholar 

  94. Yan H, Pablo JL, Wang C, Pitt GS (2014) FGF14 modulates resurgent sodium current in mouse cerebellar Purkinje neurons. Elife 3:e04193. https://doi.org/10.7554/eLife.04193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Shakkottai VG, Xiao M, Xu L, Wong M, Nerbonne JM, Ornitz DM, Yamada KA (2009) FGF14 regulates the intrinsic excitability of cerebellar Purkinje neurons. Neurobiol Dis 33(1):81–88. https://doi.org/10.1016/j.nbd.2008.09.019

    Article  PubMed  CAS  Google Scholar 

  96. van Swieten JC, Brusse E, de Graaf BM, Krieger E, van de Graaf R, de Koning I, Maat-Kievit A, Leegwater P, Dooijes D, Oostra BA, Heutink P (2003) A mutation in the fibroblast growth factor 14 gene is associated with autosomal dominant cerebellar ataxia [corrected]. Am J Hum Genet 72(1):191–199

    Article  PubMed  Google Scholar 

  97. Goldfarb M (2005) Fibroblast growth factor homologous factors: evolution, structure, and function. Cytokine Growth Factor Rev 16(2):215–220. https://doi.org/10.1016/j.cytogfr.2005.02.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Olsen SK, Garbi M, Zampieri N, Eliseenkova AV, Ornitz DM, Goldfarb M, Mohammadi M (2003) Fibroblast growth factor (FGF) homologous factors share structural but not functional homology with FGFs. J Biol Chem 278(36):34226–34236. https://doi.org/10.1074/jbc.M303183200

    Article  PubMed  CAS  Google Scholar 

  99. Liu C, Dib-Hajj SD, Waxman SG (2001) Fibroblast growth factor homologous factor 1B binds to the C terminus of the tetrodotoxin-resistant sodium channel rNav1.9a (NaN). J Biol Chem 276(22):18925–18933. https://doi.org/10.1074/jbc.M101606200

    Article  CAS  Google Scholar 

  100. Liu CJ, Dib-Hajj SD, Renganathan M, Cummins TR, Waxman SG (2003) Modulation of the cardiac sodium channel Nav1.5 by fibroblast growth factor homologous factor 1B. J Biol Chem 278(2):1029–1036. https://doi.org/10.1074/jbc.M207074200

    Article  PubMed  CAS  Google Scholar 

  101. Wittmack EK, Rush AM, Craner MJ, Goldfarb M, Waxman SG, Dib-Hajj SD (2004) Fibroblast growth factor homologous factor 2B: association with Nav1.6 and selective colocalization at nodes of Ranvier of dorsal root axons. J Neurosci 24(30):6765–6775. https://doi.org/10.1523/JNEUROSCI.1628-04.2004

    Article  PubMed  CAS  Google Scholar 

  102. Goldfarb M, Schoorlemmer J, Williams A, Diwakar S, Wang C, Huan X, Giza J, Tchetchik D, Kelley K, Vega A, Matthews G, Rossi P, Ornitz DM, D’Angelo E (2007) Fibroblast growth factor homologous factors control neuronal excitability through modulation of voltage-gated sodium channels. Neuron 55(3):449–463. https://doi.org/10.1016/j.neuron.2007.07.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Wang Q, Bardgett ME, Wong M, Wozniak DF, Lou J, McNeil BD, Chen C, Nardi A, Reid DC, Yamada K, Ornitz DM (2002) Ataxia and paroxysmal dyskinesia in mice lacking axonally transported FGF14. Neuron 35(1):25–38

    Article  PubMed  CAS  Google Scholar 

  104. Kazen-Gillespie KA, Ragsdale DS, D’Andrea MR, Mattei LN, Rogers KE, Isom LL (2000) Cloning, localization, and functional expression of sodium channel beta1A subunits. J Biol Chem 275(2):1079–1088

    Article  PubMed  CAS  Google Scholar 

  105. Shah BS, Stevens EB, Pinnock RD, Dixon AK, Lee K (2001) Developmental expression of the novel voltage-gated sodium channel auxiliary subunit beta3, in rat CNS. J Physiol 534(Pt 3):763–776

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Yan H, Wang C, Marx SO, Pitt GS (2017) Calmodulin limits pathogenic Na+ channel persistent current. J Gen Physiol 149(2):277–293. https://doi.org/10.1085/jgp.201611721

    Article  PubMed  PubMed Central  Google Scholar 

  107. Ben-Johny M, Yang PS, Niu J, Yang W, Joshi-Mukherjee R, Yue DT (2014) Conservation of Ca2+/calmodulin regulation across Na and Ca2+ channels. Cell 157(7):1657–1670. https://doi.org/10.1016/j.cell.2014.04.035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Shavkunov AS, Wildburger NC, Nenov MN, James TF, Buzhdygan TP, Panova-Elektronova NI, Green TA, Veselenak RL, Bourne N, Laezza F (2013) The fibroblast growth factor 14.voltage-gated sodium channel complex is a new target of glycogen synthase kinase 3 (GSK3). J Biol Chem 288(27):19370–19385. https://doi.org/10.1074/jbc.M112.445924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Shavkunov A, Panova N, Prasai A, Veselenak R, Bourne N, Stoilova-McPhie S, Laezza F (2012) Bioluminescence methodology for the detection of protein–protein interactions within the voltage-gated sodium channel macromolecular complex. Assay Drug Dev Technol 10(2):148–160. https://doi.org/10.1089/adt.2011.413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Hsu WC, Scala F, Nenov MN, Wildburger NC, Elferink H, Singh AK, Chesson CB, Buzhdygan T, Sohail M, Shavkunov AS, Panova NI, Nilsson CL, Rudra JS, Lichti CF, Laezza F (2016) CK2 activity is required for the interaction of FGF14 with voltage-gated sodium channels and neuronal excitability. FASEB J 30(6):2171–2186. https://doi.org/10.1096/fj.201500161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Eom TY, Jope RS (2009) Blocked inhibitory serine-phosphorylation of glycogen synthase kinase-3alpha/beta impairs in vivo neural precursor cell proliferation. Biol Psychiatry 66(5):494–502. https://doi.org/10.1016/j.biopsych.2009.04.015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Doble BW, Patel S, Wood GA, Kockeritz LK, Woodgett JR (2007) Functional redundancy of GSK-3alpha and GSK-3beta in Wnt/beta-catenin signaling shown by using an allelic series of embryonic stem cell lines. Dev Cell 12(6):957–971. https://doi.org/10.1016/j.devcel.2007.04.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Mao Y, Ge X, Frank CL, Madison JM, Koehler AN, Doud MK, Tassa C, Berry EM, Soda T, Singh KK, Biechele T, Petryshen TL, Moon RT, Haggarty SJ, Tsai LH (2009) Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3beta/beta-catenin signaling. Cell 136(6):1017–1031. https://doi.org/10.1016/j.cell.2008.12.044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Cuesto G, Jordan-Alvarez S, Enriquez-Barreto L, Ferrus A, Morales M, Acebes A (2015) GSK3beta inhibition promotes synaptogenesis in Drosophila and mammalian neurons. PLoS One 10(3):e0118475. https://doi.org/10.1371/journal.pone.0118475

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Smillie KJ, Cousin MA (2011) The role of GSK3 in presynaptic function. Int J Alzheimers Dis 2011:263673. https://doi.org/10.4061/2011/263673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Peineau S, Taghibiglou C, Bradley C, Wong TP, Liu L, Lu J, Lo E, Wu D, Saule E, Bouschet T, Matthews P, Isaac JT, Bortolotto ZA, Wang YT, Collingridge GL (2007) LTP inhibits LTD in the hippocampus via regulation of GSK3beta. Neuron 53(5):703–717. https://doi.org/10.1016/j.neuron.2007.01.029

    Article  PubMed  CAS  Google Scholar 

  117. Hooper C, Markevich V, Plattner F, Killick R, Schofield E, Engel T, Hernandez F, Anderton B, Rosenblum K, Bliss T, Cooke SF, Avila J, Lucas JJ, Giese KP, Stephenson J, Lovestone S (2007) Glycogen synthase kinase-3 inhibition is integral to long-term potentiation. Eur J Neurosci 25(1):81–86. https://doi.org/10.1111/j.1460-9568.2006.05245.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Richard Wilson for technical assistance in creating figures. Financial support provided by the National Institutes of Health (R01NS065761 to J.M.N., F32NS090765 to J.L.R.) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeanne M. Nerbonne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ransdell, J.L., Nerbonne, J.M. Voltage-gated sodium currents in cerebellar Purkinje neurons: functional and molecular diversity. Cell. Mol. Life Sci. 75, 3495–3505 (2018). https://doi.org/10.1007/s00018-018-2868-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2868-y

Keywords

Navigation