Skip to main content

Advertisement

Log in

Melatonin as a mitochondrial protector in neurodegenerative diseases

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Mitochondria are crucial organelles as their role in cellular energy production of eukaryotes. Because the brain cells demand high energy for maintaining their normal activities, disturbances in mitochondrial physiology may lead to neuropathological events underlying neurodegenerative conditions such as Alzheimer’s disease, Parkinson’s disease and Huntington’s disease. Melatonin is an endogenous compound with a variety of physiological roles. In addition, it possesses potent antioxidant properties which effectively play protective roles in several pathological conditions. Several lines of evidence also reveal roles of melatonin in mitochondrial protection, which could prevent development and progression of neurodegeneration. Since the mitochondrial dysfunction is a primary event in neurodegeneration, the neuroprotection afforded by melatonin is thereby more effective in early stages of the diseases. This article reviews mechanisms which melatonin exerts its protective roles on mitochondria as a potential therapeutic strategy against neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wang C, Youle RJ (2009) The role of mitochondria in apoptosis. Annu Rev Genet 43:95–118. doi:10.1146/annurev-genet-102108-134850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rizzuto R, De Stefani D, Raffaello A, Mammucari C (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13(9):566–578. doi:10.1038/nrm3412

    Article  CAS  PubMed  Google Scholar 

  3. Sena LA, Chandel NS (2012) Physiological roles of mitochondrial reactive oxygen species. Mol Cell 48(2):158–167. doi:10.1016/j.molcel.2012.09.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Raichle ME, Gusnard DA (2002) Appraising the brain’s energy budget. Proc Natl Acad Sci USA 99(16):10237–10239. doi:10.1073/pnas.172399499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kann O, Kovács R (2007) Mitochondria and neuronal activity. Am J Physiol Cell Physiol 292(2):C641

    Article  CAS  PubMed  Google Scholar 

  6. Golpich M, Amini E, Mohamed Z, Azman Ali R, Mohamed Ibrahim N, Ahmadiani A (2017) Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: pathogenesis and treatment. CNS Neurosci Ther 23(1):5–22. doi:10.1111/cns.12655

    Article  PubMed  Google Scholar 

  7. Przedborski S, Vila M, Jackson-Lewis V (2003) Series introduction: neurodegeneration: what is it and where are we? J Clin Investig 111(1):3–10. doi:10.1172/JCI200317522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Arun S, Liu L, Donmez G (2016) Mitochondrial biology and neurological diseases. Curr Neuropharmacol 14(2):143–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113):787–795. doi:10.1038/nature05292

    Article  CAS  PubMed  Google Scholar 

  10. Bertram L, Lill CM, Tanzi RE (2010) The genetics of Alzheimer disease: back to the future. Neuron 68(2):270–281. doi:10.1016/j.neuron.2010.10.013

    Article  CAS  PubMed  Google Scholar 

  11. Braak H, Braak E (1991) Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 82(4):239–259

    Article  CAS  PubMed  Google Scholar 

  12. de Lau LML, Breteler MMB (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5(6):525–535. doi:10.1016/S1474-4422(06)70471-9

    Article  PubMed  Google Scholar 

  13. Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79(4):368–376. doi:10.1136/jnnp.2007.131045

    Article  CAS  PubMed  Google Scholar 

  14. Cherubini M, Gines S (2017) Mitochondrial fragmentation in neuronal degeneration: toward an understanding of HD striatal susceptibility. Biochem Biophys Res Commun 483(4):1063–1068. doi:10.1016/j.bbrc.2016.08.042

    Article  CAS  PubMed  Google Scholar 

  15. Hardeland R (2005) Antioxidative protection by melatonin: multiplicity of mechanisms from radical detoxification to radical avoidance. Endocrine 27(2):119–130

    Article  CAS  PubMed  Google Scholar 

  16. Pandi-Perumal SR, BaHammam AS, Brown GM, Spence DW, Bharti VK, Kaur C, Hardeland R, Cardinali DP (2013) Melatonin antioxidative defense: therapeutical implications for aging and neurodegenerative processes. Neurotox Res 23(3):267–300. doi:10.1007/s12640-012-9337-4

    Article  CAS  PubMed  Google Scholar 

  17. Miller E, Morel A, Saso L, Saluk J (2015) Melatonin redox activity. Its potential clinical applications in neurodegenerative disorders. Curr Top Med Chem 15(2):163–169

    Article  CAS  PubMed  Google Scholar 

  18. Menendez-Pelaez A, Reiter RJ (1993) Distribution of melatonin in mammalian tissues: the relative importance of nuclear versus cytosolic localization. J Pineal Res 15(2):59–69

    Article  CAS  PubMed  Google Scholar 

  19. Meisinger C, Sickmann A, Pfanner N (2008) The mitochondrial proteome: from inventory to function. Cell 134(1):22–24. doi:10.1016/j.cell.2008.06.043

    Article  CAS  PubMed  Google Scholar 

  20. Saccone C, Gissi C, Lanave C, Larizza A, Pesole G, Reyes A (2000) Evolution of the mitochondrial genetic system: an overview. Gene 261(1):153–159

    Article  CAS  PubMed  Google Scholar 

  21. Schmidt O, Pfanner N, Meisinger C (2010) Mitochondrial protein import: from proteomics to functional mechanisms. Nat Rev Mol Cell Biol 11(9):655–667. doi:10.1038/nrm2959

    Article  CAS  PubMed  Google Scholar 

  22. Szklarczyk R, Nooteboom M, Osiewacz HD (2014) Control of mitochondrial integrity in ageing and disease. Philos Trans R Soc B Biol Sci 369(1646):20130439. doi:10.1098/rstb.2013.0439

    Article  CAS  Google Scholar 

  23. Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148(6):1145–1159. doi:10.1016/j.cell.2012.02.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407. doi:10.1146/annurev.genet.39.110304.095751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Clay Montier LL, Deng JJ, Bai Y (2009) Number matters: control of mammalian mitochondrial DNA copy number. J Genet Genom 36(3):125–131. doi:10.1016/S1673-8527(08)60099-5

    Article  CAS  Google Scholar 

  26. Rotig A, Poulton J (2009) Genetic causes of mitochondrial DNA depletion in humans. Biochim Biophys Acta 1792(12):1103–1108. doi:10.1016/j.bbadis.2009.06.009

    Article  PubMed  CAS  Google Scholar 

  27. Brown WM, George M Jr, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA 76(4):1967–1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Milligan JR, Aguilera JA, Ward JF (1993) Variation of single-strand break yield with scavenger concentration for the SV40 minichromosome irradiated in aqueous solution. Radiat Res 133(2):158–162

    Article  CAS  PubMed  Google Scholar 

  29. Celeste A, Difilippantonio S, Difilippantonio MJ, Fernandez-Capetillo O, Pilch DR, Sedelnikova OA, Eckhaus M, Ried T, Bonner WM, Nussenzweig A (2003) H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell 114(3):371–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Salazar JJ, Van Houten B (1997) Preferential mitochondrial DNA injury caused by glucose oxidase as a steady generator of hydrogen peroxide in human fibroblasts. Mutat Res DNA Repair 385(2):139–149. doi:10.1016/S0921-8777(97)00047-5

    Article  CAS  PubMed  Google Scholar 

  31. Yakes FM, Van Houten B (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci 94(2):514–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schulze-Osthoff K, Beyaert R, Vandevoorde V, Haegeman G, Fiers W (1993) Depletion of the mitochondrial electron transport abrogates the cytotoxic and gene-inductive effects of TNF. EMBO J 12(8):3095–3104

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Guo C, Sun L, Chen X, Zhang D (2013) Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res 8(21):2003–2014. doi:10.3969/j.issn.1673-5374.2013.21.009

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Paradies G, Petrosillo G, Paradies V, Ruggiero FM (2009) Role of cardiolipin peroxidation and Ca2+ in mitochondrial dysfunction and disease. Cell Calcium 45(6):643–650. doi:10.1016/j.ceca.2009.03.012

    Article  CAS  PubMed  Google Scholar 

  35. Han D, Antunes F, Canali R, Rettori D, Cadenas E (2003) Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J Biol Chem 278(8):5557–5563. doi:10.1074/jbc.M210269200

    Article  CAS  PubMed  Google Scholar 

  36. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552(Pt 2):335–344. doi:10.1113/jphysiol.2003.049478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ghafourifar P, Richter C (1997) Nitric oxide synthase activity in mitochondria. FEBS Lett 418(3):291–296

    Article  CAS  PubMed  Google Scholar 

  38. Giulivi C, Poderoso JJ, Boveris A (1998) Production of nitric oxide by mitochondria. J Biol Chem 273(18):11038–11043

    Article  CAS  PubMed  Google Scholar 

  39. Poderoso JJ, Carreras MC, Lisdero C, Riobo N, Schopfer F, Boveris A (1996) Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys 328(1):85–92

    Article  CAS  PubMed  Google Scholar 

  40. Radi R, Cassina A, Hodara R (2002) Nitric oxide and peroxynitrite interactions with mitochondria. Biol Chem 383(3–4):401–409. doi:10.1515/BC.2002.044

    CAS  PubMed  Google Scholar 

  41. Murphy Michael P (2009) How mitochondria produce reactive oxygen species. Biochem J 417(Pt 1):1–13. doi:10.1042/BJ20081386

    Article  CAS  PubMed  Google Scholar 

  42. Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112. doi:10.1146/annurev.bi.64.070195.000525

    Article  CAS  PubMed  Google Scholar 

  43. James AM, Murphy MP (2002) How mitochondrial damage affects cell function. J Biomed Sci 9(6):475–487. doi:10.1007/BF02254975

    Article  CAS  PubMed  Google Scholar 

  44. Curtin JF, Donovan M, Cotter TG (2002) Regulation and measurement of oxidative stress in apoptosis. J Immunol Methods 265(1–2):49–72

    Article  CAS  PubMed  Google Scholar 

  45. Estaquier J, Vallette F, Vayssiere JL, Mignotte B (2012) The mitochondrial pathways of apoptosis. Adv Exp Med Biol 942:157–183. doi:10.1007/978-94-007-2869-1_7

    Article  CAS  PubMed  Google Scholar 

  46. Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2(9):647–656. doi:10.1038/nrc883

    Article  CAS  PubMed  Google Scholar 

  47. Yang L, Long Q, Liu J, Tang H, Li Y, Bao F, Qin D, Pei D, Liu X (2015) Mitochondrial fusion provides an ‘initial metabolic complementation’ controlled by mtDNA. Cell Mol Life Sci 72(13):2585–2598. doi:10.1007/s00018-015-1863-9

    Article  CAS  PubMed  Google Scholar 

  48. Vidoni S, Zanna C, Rugolo M, Sarzi E, Lenaers G (2013) Why mitochondria must fuse to maintain their genome integrity. Antioxid Redox Signal 19(4):379–388. doi:10.1089/ars.2012.4800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ishihara T, Ban-Ishihara R, Maeda M, Matsunaga Y, Ichimura A, Kyogoku S, Aoki H, Katada S, Nakada K, Nomura M, Mizushima N, Mihara K, Ishihara N (2015) Dynamics of mitochondrial DNA nucleoids regulated by mitochondrial fission is essential for maintenance of homogeneously active mitochondria during neonatal heart development. Mol Cell Biol 35(1):211–223. doi:10.1128/MCB.01054-14

    Article  PubMed  CAS  Google Scholar 

  50. Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, Shirihai OS (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27(2):433–446. doi:10.1038/sj.emboj.7601963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Martinou JC, Youle RJ (2011) Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 21(1):92–101. doi:10.1016/j.devcel.2011.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Su B, Wang X, Zheng L, Perry G, Smith MA, Zhu X (2010) Abnormal mitochondrial dynamics and neurodegenerative diseases. Biochim Biophys Acta 1802(1):135–142. doi:10.1016/j.bbadis.2009.09.013

    Article  CAS  PubMed  Google Scholar 

  53. Itoh K, Nakamura K, Iijima M, Sesaki H (2013) Mitochondrial dynamics in neurodegeneration. Trends Cell Biol 23(2):64–71. doi:10.1016/j.tcb.2012.10.006

    Article  CAS  PubMed  Google Scholar 

  54. Manchester LC, Coto-Montes A, Boga JA, Andersen LPH, Zhou Z, Galano A, Vriend J, Tan D-X, Reiter RJ (2015) Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res 59(4):403–419. doi:10.1111/jpi.12267

    Article  CAS  PubMed  Google Scholar 

  55. Reiter RJ, Mayo JC, Tan D-X, Sainz RM, Alatorre-Jimenez M, Qin L (2016) Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 61(3):253–278. doi:10.1111/jpi.12360

    Article  CAS  PubMed  Google Scholar 

  56. Rodriguez C, Mayo JC, Sainz RM, Antolin I, Herrera F, Martin V, Reiter RJ (2004) Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 36(1):1–9

    Article  CAS  PubMed  Google Scholar 

  57. Teixeira A, Morfim MP, de Cordova CA, Charao CC, de Lima VR, Creczynski-Pasa TB (2003) Melatonin protects against pro-oxidant enzymes and reduces lipid peroxidation in distinct membranes induced by the hydroxyl and ascorbyl radicals and by peroxynitrite. J Pineal Res 35(4):262–268

    Article  CAS  PubMed  Google Scholar 

  58. Luchetti F, Canonico B, Betti M, Arcangeletti M, Pilolli F, Piroddi M, Canesi L, Papa S, Galli F (2010) Melatonin signaling and cell protection function. FASEB J 24(10):3603–3624. doi:10.1096/fj.10-154450

    Article  CAS  PubMed  Google Scholar 

  59. Galano A, Tan DX, Reiter RJ (2011) Melatonin as a natural ally against oxidative stress: a physicochemical examination. J Pineal Res 51(1):1–16. doi:10.1111/j.1600-079X.2011.00916.x

    Article  CAS  PubMed  Google Scholar 

  60. Tan D-X, Manchester LC, Liu X, Rosales-Corral SA, Acuna-Castroviejo D, Reiter RJ (2013) Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes. J Pineal Res 54(2):127–138. doi:10.1111/jpi.12026

    Article  CAS  PubMed  Google Scholar 

  61. Bucana CD, Nadakavukaren MJ, Frehn JL (1974) Novel features of hamster pinealocyte ultrastructure. Tissue Cell 6(1):85–93

    Article  CAS  PubMed  Google Scholar 

  62. Calvo J, Boya J (1984) Ultrastructure of the pineal gland in the adult rat. J Anat 138(Pt 3):405–409

    PubMed  PubMed Central  Google Scholar 

  63. Swietoslawski J, Karasek M (1993) Day-night changes in the ultrastructure of pinealocytes in the Syrian hamster: a quantitative study. Endokrynol Pol 44(1):81–87

    CAS  PubMed  Google Scholar 

  64. Salisbury RL, Krieg RJ, Seibel HR (1981) A light and electron microscopic study of the pineal body of the nutria (Myocastor coypus). Acta Anat (Basel) 109(2):137–148

    Article  CAS  Google Scholar 

  65. López A, García JA, Escames G, Venegas C, Ortiz F, López LC, Acuña-Castroviejo D (2009) Melatonin protects the mitochondria from oxidative damage reducing oxygen consumption, membrane potential, and superoxide anion production. J Pineal Res 46(2):188–198. doi:10.1111/j.1600-079X.2008.00647.x

    Article  PubMed  CAS  Google Scholar 

  66. Hardeland R (2009) Melatonin: signaling mechanisms of a pleiotropic agent. Biofactors 35(2):183–192. doi:10.1002/biof.23

    Article  CAS  PubMed  Google Scholar 

  67. Acuna Castroviejo D, Lopez LC, Escames G, Lopez A, Garcia JA, Reiter RJ (2011) Melatonin-mitochondria interplay in health and disease. Curr Top Med Chem 11(2):221–240

    Article  PubMed  Google Scholar 

  68. Garcia JJ, Reiter RJ, Pie J, Ortiz GG, Cabrera J, Sainz RM, Acuna-Castroviejo D (1999) Role of pinoline and melatonin in stabilizing hepatic microsomal membranes against oxidative stress. J Bioenerg Biomembr 31(6):609–616

    Article  CAS  PubMed  Google Scholar 

  69. Karbownik M, Tan D, Manchester LC, Reiter RJ (2000) Renal toxicity of the carcinogen delta-aminolevulinic acid: antioxidant effects of melatonin. Cancer Lett 161(1):1–7

    Article  CAS  PubMed  Google Scholar 

  70. Mansouri A, Gaou I, De Kerguenec C, Amsellem S, Haouzi D, Berson A, Moreau A, Feldmann G, Letteron P, Pessayre D, Fromenty B (1999) An alcoholic binge causes massive degradation of hepatic mitochondrial DNA in mice. Gastroenterology 117(1):181–190

    Article  CAS  PubMed  Google Scholar 

  71. Martín M, Macías M, Escames G, Reiter RJ, Agapito MT, Ortiz GG, Acuña-Castroviejo D (2000) Melatonin-induced increased activity of the respiratory chain complexes I and IV can prevent mitochondrial damage induced by ruthenium red in vivo. J Pineal Res 28(4):242–248. doi:10.1034/j.1600-079X.2000.280407.x

    Article  PubMed  Google Scholar 

  72. Martín M, Macías M, Escames G, León J, Acuña-Castroviejo D (2000) Melatonin but not vitamins C and E maintains glutathione homeostasis in t-butyl hydroperoxide-induced mitochondrial oxidative stress. FASEB J. doi:10.1096/fj.99-0865fje

    Google Scholar 

  73. Martin M, Macias M, Leon J, Escames G, Khaldy H, Acuna-Castroviejo D (2002) Melatonin increases the activity of the oxidative phosphorylation enzymes and the production of ATP in rat brain and liver mitochondria. Int J Biochem Cell Biol 34(4):348–357

    Article  CAS  PubMed  Google Scholar 

  74. Reiter RJ, Tan DX, Galano A (2014) Melatonin reduces lipid peroxidation and membrane viscosity. Front Physiol 5:377. doi:10.3389/fphys.2014.00377

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wang X (2009) The antiapoptotic activity of melatonin in neurodegenerative diseases. CNS Neurosci Ther 15(4):345–357. doi:10.1111/j.1755-5949.2009.00105.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Andrabi SA, Sayeed I, Siemen D, Wolf G, Horn TF (2004) Direct inhibition of the mitochondrial permeability transition pore: a possible mechanism responsible for anti-apoptotic effects of melatonin. FASEB J 18(7):869–871. doi:10.1096/fj.03-1031fje

    CAS  PubMed  Google Scholar 

  77. Paradies G, Petrosillo G, Paradies V, Reiter RJ, Ruggiero FM (2010) Melatonin, cardiolipin and mitochondrial bioenergetics in health and disease. J Pineal Res 48(4):297–310. doi:10.1111/j.1600-079X.2010.00759.x

    Article  CAS  PubMed  Google Scholar 

  78. Zhang M, Mileykovskaya E, Dowhan W (2002) Gluing the respiratory chain together: cardiolipin is required for supercomplex formation in the inner mitochondrial membrane. J Biol Chem 277(46):43553–43556. doi:10.1074/jbc.C200551200

    Article  CAS  PubMed  Google Scholar 

  79. Sharpley MS, Shannon RJ, Draghi F, Hirst J (2006) Interactions between phospholipids and NADH: ubiquinone oxidoreductase (complex I) from bovine mitochondria. Biochemistry 45(1):241–248. doi:10.1021/bi051809x

    Article  CAS  PubMed  Google Scholar 

  80. Fry M, Green DE (1981) Cardiolipin requirement for electron transfer in complex I and III of the mitochondrial respiratory chain. J Biol Chem 256(4):1874–1880

    CAS  PubMed  Google Scholar 

  81. Robinson NC, Zborowski J, Talbert LH (1990) Cardiolipin-depleted bovine heart cytochrome c oxidase: binding stoichiometry and affinity for cardiolipin derivatives. Biochemistry 29(38):8962–8969

    Article  CAS  PubMed  Google Scholar 

  82. Eble KS, Coleman WB, Hantgan RR, Cunningham CC (1990) Tightly associated cardiolipin in the bovine heart mitochondrial ATP synthase as analyzed by 31P nuclear magnetic resonance spectroscopy. J Biol Chem 265(32):19434–19440

    CAS  PubMed  Google Scholar 

  83. Petrosillo G, Moro N, Ruggiero FM, Paradies G (2009) Melatonin inhibits cardiolipin peroxidation in mitochondria and prevents the mitochondrial permeability transition and cytochrome c release. Free Radic Biol Med 47(7):969–974. doi:10.1016/j.freeradbiomed.2009.06.032

    Article  CAS  PubMed  Google Scholar 

  84. Kagan VE, Tyurin VA, Jiang J, Tyurina YY, Ritov VB, Amoscato AA, Osipov AN, Belikova NA, Kapralov AA, Kini V, Vlasova II, Zhao Q, Zou M, Di P, Svistunenko DA, Kurnikov IV, Borisenko GG (2005) Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat Chem Biol 1(4):223–232. doi:http://www.nature.com/nchembio/journal/v1/n4/suppinfo/nchembio727_S1.html

  85. Petrosillo G, Ruggiero FM, Pistolese M, Paradies G (2001) Reactive oxygen species generated from the mitochondrial electron transport chain induce cytochrome c dissociation from beef-heart submitochondrial particles via cardiolipin peroxidation. Possible role in the apoptosis. FEBS Lett 509(3):435–438. doi:10.1016/S0014-5793(01)03206-9

    Article  CAS  PubMed  Google Scholar 

  86. Mohseni M, Mihandoost E, Shirazi A, Sepehrizadeh Z, Bazzaz JT, Ghazi-khansari M (2012) Melatonin may play a role in modulation of Bax and Bcl-2 expression levels to protect rat peripheral blood lymphocytes from gamma irradiation-induced apoptosis. Mutat Res Fundam Mol Mech Mutagen 738–739:19–27. doi:10.1016/j.mrfmmm.2012.08.006

    Article  CAS  Google Scholar 

  87. Radogna F, Cristofanon S, Paternoster L, D’Alessio M, De Nicola M, Cerella C, Dicato M, Diederich M, Ghibelli L (2008) Melatonin antagonizes the intrinsic pathway of apoptosis via mitochondrial targeting of Bcl-2. J Pineal Res 44(3):316–325. doi:10.1111/j.1600-079X.2007.00532.x

    Article  CAS  PubMed  Google Scholar 

  88. Radogna F, Albertini MC, De Nicola M, Diederich M, Bejarano I, Ghibelli L (2015) Melatonin promotes Bax sequestration to mitochondria reducing cell susceptibility to apoptosis via the lipoxygenase metabolite 5-hydroxyeicosatetraenoic acid. Mitochondrion 21:113–121. doi:10.1016/j.mito.2015.02.003

    Article  CAS  PubMed  Google Scholar 

  89. Xu S, Pi H, Zhang L, Zhang N, Li Y, Zhang H, Tang J, Li H, Feng M, Deng P, Guo P, Tian L, Xie J, He M, Lu Y, Zhong M, Zhang Y, Wang W, Reiter RJ, Yu Z, Zhou Z (2016) Melatonin prevents abnormal mitochondrial dynamics resulting from the neurotoxicity of cadmium by blocking calcium-dependent translocation of Drp1 to the mitochondria. J Pineal Res 60(3):291–302. doi:10.1111/jpi.12310

    Article  CAS  PubMed  Google Scholar 

  90. Parameyong A, Charngkaew K, Govitrapong P, Chetsawang B (2013) Melatonin attenuates methamphetamine-induced disturbances in mitochondrial dynamics and degeneration in neuroblastoma SH-SY5Y cells. J Pineal Res 55(3):313–323. doi:10.1111/jpi.12078

    Article  CAS  PubMed  Google Scholar 

  91. Parameyong A, Govitrapong P, Chetsawang B (2015) Melatonin attenuates the mitochondrial translocation of mitochondrial fission proteins and Bax, cytosolic calcium overload and cell death in methamphetamine-induced toxicity in neuroblastoma SH-SY5Y cells. Mitochondrion 24:1–8. doi:10.1016/j.mito.2015.07.004

    Article  CAS  PubMed  Google Scholar 

  92. Stacchiotti A, Favero G, Giugno L, Lavazza A, Reiter RJ, Rodella LF, Rezzani R (2014) Mitochondrial and metabolic dysfunction in renal convoluted tubules of obese mice: protective role of melatonin. PLoS One 9(10):e111141. doi:10.1371/journal.pone.0111141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Pei H, Du J, Song X, He L, Zhang Y, Li X, Qiu C, Zhang Y, Hou J, Feng J, Gao E, Li D, Yang Y (2016) Melatonin prevents adverse myocardial infarction remodeling via Notch1/Mfn2 pathway. Free Radic Biol Med 97:408–417. doi:10.1016/j.freeradbiomed.2016.06.015

    Article  CAS  PubMed  Google Scholar 

  94. Kang JW, Hong JM, Lee SM (2016) Melatonin enhances mitophagy and mitochondrial biogenesis in rats with carbon tetrachloride-induced liver fibrosis. J Pineal Res 60(4):383–393. doi:10.1111/jpi.12319

    Article  CAS  PubMed  Google Scholar 

  95. Lin C, Chao H, Li Z, Xu X, Liu Y, Hou L, Liu N, Ji J (2016) Melatonin attenuates traumatic brain injury-induced inflammation: a possible role for mitophagy. J Pineal Res 61(2):177–186. doi:10.1111/jpi.12337

    Article  CAS  PubMed  Google Scholar 

  96. Prieto-Domínguez N, Ordóñez R, Fernández A, Méndez-Blanco C, Baulies A, Garcia-Ruiz C, Fernández-Checa JC, Mauriz JL, González-Gallego J (2016) Melatonin-induced increase in sensitivity of human hepatocellular carcinoma cells to sorafenib is associated with reactive oxygen species production and mitophagy. J Pineal Res 61(3):396–407. doi:10.1111/jpi.12358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Blennow K, de Leon MJ, Zetterberg H (2011) Alzheimer’s disease. Lancet 368(9533):387–403. doi:10.1016/S0140-6736(06)69113-7

    Article  CAS  Google Scholar 

  98. Scheltens P, Blennow K, Breteler MMB, de Strooper B, Frisoni GB, Salloway S, Van der Flier WM (2016) Alzheimer’s disease. Lancet 388(10043):505–517. doi:10.1016/S0140-6736(15)01124-1

    Article  CAS  PubMed  Google Scholar 

  99. LaFerla FM, Green KN, Oddo S (2007) Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci 8(7):499–509. doi:10.1038/nrn2168

    Article  CAS  PubMed  Google Scholar 

  100. De Strooper B, Iwatsubo T, Wolfe MS (2012) Presenilins and γ-secretase: structure, function, and role in alzheimer disease. Cold Spring Harbor Perspect Med 2(1):a006304. doi:10.1101/cshperspect.a006304

    Article  Google Scholar 

  101. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356. doi:10.1126/science.1072994

    Article  CAS  PubMed  Google Scholar 

  102. Karran E, Mercken M, De Strooper B (2011) The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 10(9):698–712. doi:10.1038/nrd3505

    Article  CAS  PubMed  Google Scholar 

  103. Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416(6880):535–539. doi:10.1038/416535a

    Article  CAS  PubMed  Google Scholar 

  104. Parihar MS, Hemnani T (2004) Alzheimer’s disease pathogenesis and therapeutic interventions. J Clin Neurosci 11(5):456–467. doi:10.1016/j.jocn.2003.12.007

    Article  CAS  PubMed  Google Scholar 

  105. Ittner LM, Gotz J (2011) Amyloid-beta and tau—a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci 12(2):65–72. doi:10.1038/nrn2967

    Article  CAS  PubMed  Google Scholar 

  106. Small SA, Duff K (2008) Linking Abeta and tau in late-onset Alzheimer’s disease: a dual pathway hypothesis. Neuron 60(4):534–542. doi:10.1016/j.neuron.2008.11.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Swerdlow RH, Khan SM (2009) The Alzheimer’s disease mitochondrial cascade hypothesis: an update. Exp Neurol 218(2):308–315. doi:10.1016/j.expneurol.2009.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Schmitt K, Grimm A, Kazmierczak A, Strosznajder JB, Götz J, Eckert A (2011) Insights into mitochondrial dysfunction: aging, amyloid-β, and Tau—a deleterious trio. Antioxid Redox Signal 16(12):1456–1466. doi:10.1089/ars.2011.4400

    Article  CAS  Google Scholar 

  109. Rhein V, Baysang G, Rao S, Meier F, Bonert A, Muller-Spahn F, Eckert A (2009) Amyloid-beta leads to impaired cellular respiration, energy production and mitochondrial electron chain complex activities in human neuroblastoma cells. Cell Mol Neurobiol 29(6–7):1063–1071. doi:10.1007/s10571-009-9398-y

    Article  CAS  PubMed  Google Scholar 

  110. Stockburger C, Gold VA, Pallas T, Kolesova N, Miano D, Leuner K, Muller WE (2014) A cell model for the initial phase of sporadic Alzheimer’s disease. J Alzheimers Dis 42(2):395–411. doi:10.3233/JAD-140381

    CAS  PubMed  Google Scholar 

  111. Eckert A, Hauptmann S, Scherping I, Rhein V, Muller-Spahn F, Gotz J, Muller WE (2008) Soluble beta-amyloid leads to mitochondrial defects in amyloid precursor protein and tau transgenic mice. Neurodegener Dis 5(3–4):157–159. doi:10.1159/000113689

    Article  CAS  PubMed  Google Scholar 

  112. Hauptmann S, Scherping I, Dröse S, Brandt U, Schulz KL, Jendrach M, Leuner K, Eckert A, Müller WE (2009) Mitochondrial dysfunction: an early event in Alzheimer pathology accumulates with age in AD transgenic mice. Neurobiol Aging 30(10):1574–1586. doi:10.1016/j.neurobiolaging.2007.12.005

    Article  CAS  PubMed  Google Scholar 

  113. Rhein V, Song X, Wiesner A, Ittner LM, Baysang G, Meier F, Ozmen L, Bluethmann H, Drose S, Brandt U, Savaskan E, Czech C, Gotz J, Eckert A (2009) Amyloid-beta and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer’s disease mice. Proc Natl Acad Sci USA 106(47):20057–20062. doi:10.1073/pnas.0905529106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kim HS, Lee JH, Lee JP, Kim EM, Chang KA, Park CH, Jeong SJ, Wittendorp MC, Seo JH, Choi SH, Suh YH (2002) Amyloid beta peptide induces cytochrome c release from isolated mitochondria. Neuroreport 13(15):1989–1993

    Article  CAS  PubMed  Google Scholar 

  115. Pinho CM, Teixeira PF, Glaser E (2014) Mitochondrial import and degradation of amyloid-beta peptide. Biochim Biophys Acta 1837(7):1069–1074. doi:10.1016/j.bbabio.2014.02.007

    Article  CAS  PubMed  Google Scholar 

  116. Grimm A, Friedland K, Eckert A (2016) Mitochondrial dysfunction: the missing link between aging and sporadic Alzheimer’s disease. Biogerontology 17(2):281–296. doi:10.1007/s10522-015-9618-4

    Article  CAS  PubMed  Google Scholar 

  117. Leuner K, Schutt T, Kurz C, Eckert SH, Schiller C, Occhipinti A, Mai S, Jendrach M, Eckert GP, Kruse SE, Palmiter RD, Brandt U, Drose S, Wittig I, Willem M, Haass C, Reichert AS, Muller WE (2012) Mitochondrion-derived reactive oxygen species lead to enhanced amyloid beta formation. Antioxid Redox Signal 16(12):1421–1433. doi:10.1089/ars.2011.4173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Swerdlow RH, Parks JK, Cassarino DS, Maguire DJ, Maguire RS, Bennett JP Jr, Davis RE, Parker WD Jr (1997) Cybrids in Alzheimer’s disease: a cellular model of the disease? Neurology 49(4):918–925

    Article  CAS  PubMed  Google Scholar 

  119. Parker WD Jr, Parks J, Filley CM, Kleinschmidt-DeMasters BK (1994) Electron transport chain defects in Alzheimer’s disease brain. Neurology 44(6):1090–1096

    Article  PubMed  Google Scholar 

  120. Corral-Debrinski M, Horton T, Lott MT, Shoffner JM, Beal MF, Wallace DC (1992) Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat Genet 2(4):324–329. doi:10.1038/ng1292-324

    Article  CAS  PubMed  Google Scholar 

  121. Mecocci P, MacGarvey U, Beal MF (1994) Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann Neurol 36(5):747–751. doi:10.1002/ana.410360510

    Article  CAS  PubMed  Google Scholar 

  122. Santos RX, Correia SC, Wang X, Perry G, Smith MA, Moreira PI, Zhu X (2010) A synergistic dysfunction of mitochondrial fission/fusion dynamics and mitophagy in Alzheimer’s disease. J Alzheimers Dis 20(Suppl 2):S401–S412. doi:10.3233/JAD-2010-100666

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Wang X, Su B, Fujioka H, Zhu X (2008) Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer’s disease patients. Am J Pathol 173(2):470–482. doi:10.2353/ajpath.2008.071208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wang X, Su B, Siedlak SL, Moreira PI, Fujioka H, Wang Y, Casadesus G, Zhu X (2008) Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc Natl Acad Sci USA 105(49):19318–19323. doi:10.1073/pnas.0804871105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gong B, Pan Y, Vempati P, Zhao W, Knable L, Ho L, Wang J, Sastre M, Ono K, Sauve AA, Pasinetti GM (2013) Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-γ coactivator 1α regulated β-secretase 1 degradation and mitochondrial gene expression in Alzheimer’s mouse models. Neurobiol Aging 34(6):1581–1588. doi:10.1016/j.neurobiolaging.2012.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Camacho IE, Serneels L, Spittaels K, Merchiers P, Dominguez D, De Strooper B (2004) Peroxisome-proliferator-activated receptor gamma induces a clearance mechanism for the amyloid-beta peptide. J Neurosci 24(48):10908–10917. doi:10.1523/JNEUROSCI.3987-04.2004

    Article  CAS  PubMed  Google Scholar 

  127. Cardinali DP, Pagano ES, Scacchi Bernasconi PA, Reynoso R, Scacchi P (2013) Melatonin and mitochondrial dysfunction in the central nervous system. Horm Behav 63(2):322–330. doi:10.1016/j.yhbeh.2012.02.020

    Article  CAS  PubMed  Google Scholar 

  128. Maurizi CP (2001) Alzheimer’s disease: roles for mitochondrial damage, the hydroxyl radical, and cerebrospinal fluid deficiency of melatonin. Med Hypotheses 57(2):156–160. doi:10.1054/mehy.2001.1324

    Article  CAS  PubMed  Google Scholar 

  129. Ionov M, Burchell V, Klajnert B, Bryszewska M, Abramov AY (2011) Mechanism of neuroprotection of melatonin against beta-amyloid neurotoxicity. Neuroscience 180:229–237. doi:10.1016/j.neuroscience.2011.02.045

    Article  CAS  PubMed  Google Scholar 

  130. Gerenu G, Liu K, Chojnacki JE, Saathoff JM, Martinez-Martin P, Perry G, Zhu X, Lee HG, Zhang S (2015) Curcumin/melatonin hybrid 5-(4-hydroxy-phenyl)-3-oxo-pentanoic acid [2-(5-methoxy-1H-indol-3-yl)-ethyl]-amide ameliorates AD-like pathology in the APP/PS1 mouse model. ACS Chem Neurosci 6(8):1393–1399. doi:10.1021/acschemneuro.5b00082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. McLaurin J, Chakrabartty A (1997) Characterization of the interactions of Alzheimer beta-amyloid peptides with phospholipid membranes. Eur J Biochem 245(2):355–363

    Article  CAS  PubMed  Google Scholar 

  132. Rosales-Corral SA, Lopez-Armas G, Cruz-Ramos J, Melnikov VG, Tan DX, Manchester LC, Munoz R, Reiter RJ (2012) Alterations in lipid levels of mitochondrial membranes induced by amyloid-beta: a protective role of melatonin. Int J Alzheimers Dis 2012:459806. doi:10.1155/2012/459806

    PubMed  PubMed Central  Google Scholar 

  133. Dong W, Huang F, Fan W, Cheng S, Chen Y, Zhang W, Shi H, He H (2010) Differential effects of melatonin on amyloid-beta peptide 25–35-induced mitochondrial dysfunction in hippocampal neurons at different stages of culture. J Pineal Res 48(2):117–125. doi:10.1111/j.1600-079X.2009.00734.x

    Article  CAS  PubMed  Google Scholar 

  134. Dragicevic N, Copes N, O’Neal-Moffitt G, Jin J, Buzzeo R, Mamcarz M, Tan J, Cao C, Olcese JM, Arendash GW, Bradshaw PC (2011) Melatonin treatment restores mitochondrial function in Alzheimer’s mice: a mitochondrial protective role of melatonin membrane receptor signaling. J Pineal Res 51(1):75–86. doi:10.1111/j.1600-079X.2011.00864.x

    Article  CAS  PubMed  Google Scholar 

  135. O’Neal-Moffitt G, Delic V, Bradshaw PC, Olcese J (2015) Prophylactic melatonin significantly reduces Alzheimer’s neuropathology and associated cognitive deficits independent of antioxidant pathways in AβPPswe/PS1 mice. Mol Neurodegener 10(1):1–21. doi:10.1186/s13024-015-0027-6

    Article  CAS  Google Scholar 

  136. Hsiao CW, Peng TI, Peng AC, Reiter RJ, Tanaka M, Lai YK, Jou MJ (2013) Long-term Abeta exposure augments mCa2+-independent mROS-mediated depletion of cardiolipin for the shift of a lethal transient mitochondrial permeability transition to its permanent mode in NARP cybrids: a protective targeting of melatonin. J Pineal Res 54(1):107–125. doi:10.1111/jpi.12004

    Article  CAS  PubMed  Google Scholar 

  137. Feng Z, Zhang JT (2004) Melatonin reduces amyloid beta-induced apoptosis in pheochromocytoma (PC12) cells. J Pineal Res 37(4):257–266. doi:10.1111/j.1600-079X.2004.00164.x

    Article  CAS  PubMed  Google Scholar 

  138. Shen YX, Xu SY, Wei W, Wang XL, Wang H, Sun X (2002) Melatonin blocks rat hippocampal neuronal apoptosis induced by amyloid beta-peptide 25–35. J Pineal Res 32(3):163–167

    Article  CAS  PubMed  Google Scholar 

  139. Feng Z, Zhang JT (2004) Protective effect of melatonin on beta-amyloid-induced apoptosis in rat astroglioma C6 cells and its mechanism. Free Radic Biol Med 37(11):1790–1801. doi:10.1016/j.freeradbiomed.2004.08.023

    Article  CAS  PubMed  Google Scholar 

  140. Jang MH, Jung SB, Lee MH, Kim CJ, Oh YT, Kang I, Kim J, Kim EH (2005) Melatonin attenuates amyloid beta25–35-induced apoptosis in mouse microglial BV2 cells. Neurosci Lett 380(1–2):26–31. doi:10.1016/j.neulet.2005.01.003

    Article  CAS  PubMed  Google Scholar 

  141. Tajes Orduna M, Pelegri Gabalda C, Vilaplana Hortensi J, Pallas Lliberia M, Camins Espuny A (2009) An evaluation of the neuroprotective effects of melatonin in an in vitro experimental model of age-induced neuronal apoptosis. J Pineal Res 46(3):262–267. doi:10.1111/j.1600-079X.2008.00656.x

    Article  PubMed  CAS  Google Scholar 

  142. Buendia I, Egea J, Parada E, Navarro E, Leon R, Rodriguez-Franco MI, Lopez MG (2015) The melatonin-N, N-dibenzyl(N-methyl)amine hybrid ITH91/IQM157 affords neuroprotection in an in vitro Alzheimer’s model via hemo-oxygenase-1 induction. ACS Chem Neurosci 6(2):288–296. doi:10.1021/cn5002073

    Article  CAS  PubMed  Google Scholar 

  143. Feng Z, Chang Y, Cheng Y, Zhang BL, Qu ZW, Qin C, Zhang JT (2004) Melatonin alleviates behavioral deficits associated with apoptosis and cholinergic system dysfunction in the APP 695 transgenic mouse model of Alzheimer’s disease. J Pineal Res 37(2):129–136. doi:10.1111/j.1600-079X.2004.00144.x

    Article  CAS  PubMed  Google Scholar 

  144. Feng Z, Qin C, Chang Y, Zhang JT (2006) Early melatonin supplementation alleviates oxidative stress in a transgenic mouse model of Alzheimer’s disease. Free Radic Biol Med 40(1):101–109. doi:10.1016/j.freeradbiomed.2005.08.014

    Article  CAS  PubMed  Google Scholar 

  145. Ali T, Kim MO (2015) Melatonin ameliorates amyloid beta-induced memory deficits, tau hyperphosphorylation and neurodegeneration via PI3/Akt/GSk3beta pathway in the mouse hippocampus. J Pineal Res 59(1):47–59. doi:10.1111/jpi.12238

    Article  CAS  PubMed  Google Scholar 

  146. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909

    Article  CAS  PubMed  Google Scholar 

  147. Cookson MR (2005) The biochemistry of Parkinson’s disease. Annu Rev Biochem 74:29–52. doi:10.1146/annurev.biochem.74.082803.133400

    Article  CAS  PubMed  Google Scholar 

  148. Sidhu A, Wersinger C, Moussa CEH, Vernier P (2004) The role of α-synuclein in both neuroprotection and neurodegeneration. Ann N Y Acad Sci 1035(1):250–270. doi:10.1196/annals.1332.016

    Article  CAS  PubMed  Google Scholar 

  149. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388(6645):839–840. doi:10.1038/42166

    Article  CAS  PubMed  Google Scholar 

  150. Schiesling C, Kieper N, Seidel K, Kruger R (2008) Review: familial Parkinson’s disease–genetics, clinical phenotype and neuropathology in relation to the common sporadic form of the disease. Neuropathol Appl Neurobiol 34(3):255–271. doi:10.1111/j.1365-2990.2008.00952.x

    Article  CAS  PubMed  Google Scholar 

  151. Subramaniam SR, Chesselet M-F (2013) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol 0:17–32. doi:10.1016/j.pneurobio.2013.04.004

    Article  CAS  PubMed Central  Google Scholar 

  152. Klein C, Westenberger A (2012) Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med 2(1):a008888. doi:10.1101/cshperspect.a008888

    Article  PubMed  PubMed Central  Google Scholar 

  153. Henchcliffe C, Beal MF (2008) Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol 4(11):600–609. doi:10.1038/ncpneuro0924

    Article  CAS  PubMed  Google Scholar 

  154. Savitt JM, Dawson VL, Dawson TM (2006) Diagnosis and treatment of Parkinson disease: molecules to medicine. J Clin Invest 116(7):1744–1754. doi:10.1172/JCI29178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Chai C, Lim K-L (2013) Genetic insights into sporadic Parkinson’s disease pathogenesis. Curr Genom 14(8):486–501. doi:10.2174/1389202914666131210195808

    Article  CAS  Google Scholar 

  156. Wood-Kaczmar A, Gandhi S, Wood NW (2006) Understanding the molecular causes of Parkinson’s disease. Trends Mol Med 12(11):521–528. doi:10.1016/j.molmed.2006.09.007

    Article  CAS  PubMed  Google Scholar 

  157. Greggio E, Bisaglia M, Civiero L, Bubacco L (2011) Leucine-rich repeat kinase 2 and alpha-synuclein: intersecting pathways in the pathogenesis of Parkinson’s disease? Mol Neurodegener 6(1):6. doi:10.1186/1750-1326-6-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wooten GF, Currie LJ, Bennett JP, Harrison MB, Trugman JM, Parker WD Jr (1997) Maternal inheritance in Parkinson’s disease. Ann Neurol 41(2):265–268. doi:10.1002/ana.410410218

    Article  CAS  PubMed  Google Scholar 

  159. Swerdlow RH, Parks JK, Davis JN 2nd, Cassarino DS, Trimmer PA, Currie LJ, Dougherty J, Bridges WS, Bennett JP Jr, Wooten GF, Parker WD (1998) Matrilineal inheritance of complex I dysfunction in a multigenerational Parkinson’s disease family. Ann Neurol 44(6):873–881. doi:10.1002/ana.410440605

    Article  CAS  PubMed  Google Scholar 

  160. Luoma P, Melberg A, Rinne JO, Kaukonen JA, Nupponen NN, Chalmers RM, Oldfors A, Rautakorpi I, Peltonen L, Majamaa K, Somer H, Suomalainen A (2004) Parkinsonism, premature menopause, and mitochondrial DNA polymerase gamma mutations: clinical and molecular genetic study. Lancet 364(9437):875–882. doi:10.1016/S0140-6736(04)16983-3

    Article  CAS  PubMed  Google Scholar 

  161. Bove J, Prou D, Perier C, Przedborski S (2005) Toxin-induced models of Parkinson’s disease. NeuroRx 2(3):484–494. doi:10.1602/neurorx.2.3.484

    Article  PubMed  PubMed Central  Google Scholar 

  162. Zhu J, Chu CT (2010) Mitochondrial dysfunction in Parkinson’s disease. J Alzheimers Dis 20(Suppl 2):S325–S334. doi:10.3233/JAD-2010-100363

    Article  CAS  PubMed  Google Scholar 

  163. Woodgate A, MacGibbon G, Walton M, Dragunow M (1999) The toxicity of 6-hydroxydopamine on PC12 and P19 cells. Mol Brain Res 69(1):84–92. doi:10.1016/S0169-328X(99)00103-5

    Article  CAS  PubMed  Google Scholar 

  164. Dabbeni-Sala F, Di Santo S, Franceschini D, Skaper SD, Giusti P (2001) Melatonin protects against 6-OHDA-induced neurotoxicity in rats: a role for mitochondrial complex I activity. FASEB J 15(1):164–170. doi:10.1096/fj.00-0129com

    Article  CAS  PubMed  Google Scholar 

  165. Kim YS, Joo WS, Jin BK, Cho YH, Baik HH, Park CW (1998) Melatonin protects 6-OHDA-induced neuronal death of nigrostriatal dopaminergic system. Neuroreport 9(10):2387–2390

    Article  CAS  PubMed  Google Scholar 

  166. Mayo JC, Sainz RM, Uria H, Antolin I, Esteban MM, Rodriguez C (1998) Melatonin prevents apoptosis induced by 6-hydroxydopamine in neuronal cells: implications for Parkinson’s disease. J Pineal Res 24(3):179–192

    Article  CAS  PubMed  Google Scholar 

  167. Mayo JC, Sainz RM, Antolin I, Rodriguez C (1999) Ultrastructural confirmation of neuronal protection by melatonin against the neurotoxin 6-hydroxydopamine cell damage. Brain Res 818(2):221–227

    Article  CAS  PubMed  Google Scholar 

  168. Chetsawang B, Govitrapong P, Ebadi M (2004) The neuroprotective effect of melatonin against the induction of c-Jun phosphorylation by 6-hydroxydopamine on SK-N-SH cells. Neurosci Lett 371(2–3):205–208. doi:10.1016/j.neulet.2004.08.068

    Article  CAS  PubMed  Google Scholar 

  169. Saravanan KS, Sindhu KM, Mohanakumar KP (2007) Melatonin protects against rotenone-induced oxidative stress in a hemiparkinsonian rat model. J Pineal Res 42(3):247–253. doi:10.1111/j.1600-079X.2006.00412.x

    Article  CAS  PubMed  Google Scholar 

  170. Lin C-H, Huang J-Y, Ching C-H, Chuang J-I (2008) Melatonin reduces the neuronal loss, downregulation of dopamine transporter, and upregulation of D2 receptor in rotenone-induced parkinsonian rats. J Pineal Res 44(2):205–213. doi:10.1111/j.1600-079X.2007.00510.x

    Article  CAS  PubMed  Google Scholar 

  171. Carriere CH, Kang NH, Niles LP (2016) Chronic low-dose melatonin treatment maintains nigrostriatal integrity in an intrastriatal rotenone model of Parkinson’s disease. Brain Res 1633:115–125. doi:10.1016/j.brainres.2015.12.036

    Article  CAS  PubMed  Google Scholar 

  172. Coulom H, Birman S (2004) Chronic exposure to rotenone models sporadic Parkinson’s disease in Drosophila melanogaster. J Neurosci 24(48):10993–10998. doi:10.1523/JNEUROSCI.2993-04.2004

    Article  CAS  PubMed  Google Scholar 

  173. Kopin IJ (1987) MPTP: an industrial chemical and contaminant of illicit narcotics stimulates a new era in research on Parkinson’s disease. Environ Health Perspect 75:45–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Acuña-Castroviejo D, Coto-Montes A, Monti MG, Ortiz GG, Reiter RJ (1996) Melatonin is protective against MPTP-induced striatal and hippocampal lesions. Life Sci 60(2):PL23–PL29. doi:10.1016/S0024-3205(96)00606-6

    Article  Google Scholar 

  175. Antolin I, Mayo JC, Sainz RM, del Brio Mde L, Herrera F, Martin V, Rodriguez C (2002) Protective effect of melatonin in a chronic experimental model of Parkinson’s disease. Brain Res 943(2):163–173

    Article  CAS  PubMed  Google Scholar 

  176. Ortiz GG, Crespo-Lopez ME, Moran-Moguel C, Garcia JJ, Reiter RJ, Acuna-Castroviejo D (2001) Protective role of melatonin against MPTP-induced mouse brain cell DNA fragmentation and apoptosis in vivo. Neuro Endocrinol Lett 22(2):101–108

    CAS  PubMed  Google Scholar 

  177. Naskar A, Prabhakar V, Singh R, Dutta D, Mohanakumar KP (2015) Melatonin enhances L-DOPA therapeutic effects, helps to reduce its dose, and protects dopaminergic neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice. J Pineal Res 58(3):262–274. doi:10.1111/jpi.12212

    Article  CAS  PubMed  Google Scholar 

  178. Capitelli C, Sereniki A, Lima MM, Reksidler AB, Tufik S, Vital MA (2008) Melatonin attenuates tyrosine hydroxylase loss and hypolocomotion in MPTP-lesioned rats. Eur J Pharmacol 594(1–3):101–108. doi:10.1016/j.ejphar.2008.07.022

    Article  CAS  PubMed  Google Scholar 

  179. Patki G, Lau YS (2011) Melatonin protects against neurobehavioral and mitochondrial deficits in a chronic mouse model of Parkinson’s disease. Pharmacol Biochem Behav 99(4):704–711. doi:10.1016/j.pbb.2011.06.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Chen LJ, Gao YQ, Li XJ, Shen DH, Sun FY (2005) Melatonin protects against MPTP/MPP+-induced mitochondrial DNA oxidative damage in vivo and in vitro. J Pineal Res 39(1):34–42. doi:10.1111/j.1600-079X.2005.00209.x

    Article  PubMed  CAS  Google Scholar 

  181. Thomas B, Mohanakumar KP (2004) Melatonin protects against oxidative stress caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in the mouse nigrostriatum. J Pineal Res 36(1):25–32

    Article  CAS  PubMed  Google Scholar 

  182. Diaz-Casado ME, Lima E, Garcia JA, Doerrier C, Aranda P, Sayed RK, Guerra-Librero A, Escames G, Lopez LC, Acuna-Castroviejo D (2016) Melatonin rescues zebrafish embryos from the parkinsonian phenotype restoring the parkin/PINK1/DJ-1/MUL1 network. J Pineal Res 61(1):96–107. doi:10.1111/jpi.12332

    Article  CAS  PubMed  Google Scholar 

  183. Chetsawang J, Govitrapong P, Chetsawang B (2007) Melatonin inhibits MPP+-induced caspase-mediated death pathway and DNA fragmentation factor-45 cleavage in SK-N-SH cultured cells. J Pineal Res 43(2):115–120. doi:10.1111/j.1600-079X.2007.00449.x

    Article  CAS  PubMed  Google Scholar 

  184. Chuang JI, Chen TH (2004) Effect of melatonin on temporal changes of reactive oxygen species and glutathione after MPP(+) treatment in human astrocytoma U373MG cells. J Pineal Res 36(2):117–125

    Article  CAS  PubMed  Google Scholar 

  185. Huang JY, Hong YT, Chuang JI (2009) Fibroblast growth factor 9 prevents MPP+-induced death of dopaminergic neurons and is involved in melatonin neuroprotection in vivo and in vitro. J Neurochem 109(5):1400–1412. doi:10.1111/j.1471-4159.2009.06061.x

    Article  CAS  PubMed  Google Scholar 

  186. Chuang JI, Pan IL, Hsieh CY, Huang CY, Chen PC, Shin JW (2016) Melatonin prevents the dynamin-related protein 1-dependent mitochondrial fission and oxidative insult in the cortical neurons after 1-methyl-4-phenylpyridinium treatment. J Pineal Res 61(2):230–240. doi:10.1111/jpi.12343

    Article  CAS  PubMed  Google Scholar 

  187. Woolverton WL, Ricaurte GA, Forno LS, Seiden LS (1989) Long-term effects of chronic methamphetamine administration in rhesus monkeys. Brain Res 486(1):73–78

    Article  CAS  PubMed  Google Scholar 

  188. Wilson JM, Kalasinsky KS, Levey AI, Bergeron C, Reiber G, Anthony RM, Schmunk GA, Shannak K, Haycock JW, Kish SJ (1996) Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nat Med 2(6):699–703

    Article  CAS  PubMed  Google Scholar 

  189. Volkow ND, Chang L, Wang GJ, Fowler JS, Franceschi D, Sedler M, Gatley SJ, Miller E, Hitzemann R, Ding YS, Logan J (2001) Loss of dopamine transporters in methamphetamine abusers recovers with protracted abstinence. J Neurosci 21(23):9414–9418

    CAS  PubMed  Google Scholar 

  190. Kish SJ, Boileau I, Callaghan RC, Tong J (2017) Brain dopamine neurone ‘damage’: methamphetamine users vs. Parkinson’s disease—a critical assessment of the evidence. Eur J Neurosci 45(1):58–66. doi:10.1111/ejn.13363

    Article  PubMed  Google Scholar 

  191. Mauceli G, Busceti CI, Pellegrini A, Soldani P, Lenzi P, Paparelli A, Fornai F (2006) Overexpression of alpha-synuclein following methamphetamine: is it good or bad? Ann N Y Acad Sci 1074:191–197. doi:10.1196/annals.1369.019

    Article  CAS  PubMed  Google Scholar 

  192. Klongpanichapak S, Phansuwan-Pujito P, Ebadi M, Govitrapong P (2007) Melatonin protects SK-N-SH neuroblastoma cells from amphetamine-induced neurotoxicity. J Pineal Res 43(1):65–73. doi:10.1111/j.1600-079X.2007.00444.x

    Article  CAS  PubMed  Google Scholar 

  193. Klongpanichapak S, Phansuwan-Pujito P, Ebadi M, Govitrapong P (2008) Melatonin inhibits amphetamine-induced increase in alpha-synuclein and decrease in phosphorylated tyrosine hydroxylase in SK-N-SH cells. Neurosci Lett 436(3):309–313. doi:10.1016/j.neulet.2008.03.053

    Article  CAS  PubMed  Google Scholar 

  194. Wisessmith W, Phansuwan-Pujito P, Govitrapong P, Chetsawang B (2009) Melatonin reduces induction of Bax, caspase and cell death in methamphetamine-treated human neuroblastoma SH-SY5Y cultured cells. J Pineal Res 46(4):433–440. doi:10.1111/j.1600-079X.2009.00680.x

    Article  CAS  PubMed  Google Scholar 

  195. Jumnongprakhon P, Govitrapong P, Tocharus C, Tungkum W, Tocharus J (2014) Protective effect of melatonin on methamphetamine-induced apoptosis in glioma cell line. Neurotox Res 25(3):286–294. doi:10.1007/s12640-013-9419-y

    Article  CAS  PubMed  Google Scholar 

  196. Nguyen XK, Lee J, Shin EJ, Dang DK, Jeong JH, Nguyen TT, Nam Y, Cho HJ, Lee JC, Park DH, Jang CG, Hong JS, Nabeshima T, Kim HC (2015) Liposomal melatonin rescues methamphetamine-elicited mitochondrial burdens, pro-apoptosis, and dopaminergic degeneration through the inhibition PKCdelta gene. J Pineal Res 58(1):86–106. doi:10.1111/jpi.12195

    Article  CAS  PubMed  Google Scholar 

  197. Dang D-K, Duong CX, Nam Y, Shin E-J, Lim YK, Jeong JH, Jang C-G, Nah S-Y, Nabeshima T, Kim H-C (2015) Inhibition of protein kinase (PK) Cδ attenuates methamphetamine-induced dopaminergic toxicity via upregulation of phosphorylation of tyrosine hydroxylase at Ser40 by modulation of protein phosphatase 2A and PKA. Clin Exp Pharmacol Physiol 42(2):192–201. doi:10.1111/1440-1681.12341

    Article  CAS  PubMed  Google Scholar 

  198. Shin EJ, Duong CX, Nguyen XK, Li Z, Bing G, Bach JH, Park DH, Nakayama K, Ali SF, Kanthasamy AG, Cadet JL, Nabeshima T, Kim HC (2012) Role of oxidative stress in methamphetamine-induced dopaminergic toxicity mediated by protein kinase Cdelta. Behav Brain Res 232(1):98–113. doi:10.1016/j.bbr.2012.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Zhang D, Kanthasamy A, Yang Y, Anantharam V, Kanthasamy A (2007) Protein kinase C delta negatively regulates tyrosine hydroxylase activity and dopamine synthesis by enhancing protein phosphatase-2A activity in dopaminergic neurons. J Neurosci 27(20):5349–5362. doi:10.1523/JNEUROSCI.4107-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Zhang D, Anantharam V, Kanthasamy A, Kanthasamy AG (2007) Neuroprotective effect of protein kinase C delta inhibitor rottlerin in cell culture and animal models of Parkinson’s disease. J Pharmacol Exp Ther 322(3):913–922. doi:10.1124/jpet.107.124669

    Article  CAS  PubMed  Google Scholar 

  201. Suwanjang W, Phansuwan-Pujito P, Govitrapong P, Chetsawang B (2010) The protective effect of melatonin on methamphetamine-induced calpain-dependent death pathway in human neuroblastoma SH-SY5Y cultured cells. J Pineal Res 48(2):94–101. doi:10.1111/j.1600-079X.2009.00731.x

    Article  CAS  PubMed  Google Scholar 

  202. Momeni HR (2011) Role of calpain in apoptosis. Cell J 13(2):65–72

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Averna M, de Tullio R, Passalacqua M, Salamino F, Pontremoli S, Melloni E (2001) Changes in intracellular calpastatin localization are mediated by reversible phosphorylation. Biochem J 354(Pt 1):25–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Smith MA, Schnellmann RG (2012) Calpains, mitochondria, and apoptosis. Cardiovasc Res 96(1):32–37. doi:10.1093/cvr/cvs163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Vindis C, Elbaz M, Escargueil-Blanc I, Auge N, Heniquez A, Thiers JC, Negre-Salvayre A, Salvayre R (2005) Two distinct calcium-dependent mitochondrial pathways are involved in oxidized LDL-induced apoptosis. Arterioscler Thromb Vasc Biol 25(3):639–645. doi:10.1161/01.ATV.0000154359.60886.33

    Article  CAS  PubMed  Google Scholar 

  206. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4(7):552–565. doi:10.1038/nrm1150

    Article  CAS  PubMed  Google Scholar 

  207. Arrington DD, Van Vleet TR, Schnellmann RG (2006) Calpain 10: a mitochondrial calpain and its role in calcium-induced mitochondrial dysfunction. Am J Physiol Cell Physiol 291(6):C1159–C1171. doi:10.1152/ajpcell.00207.2006

    Article  CAS  PubMed  Google Scholar 

  208. Wasiak S, Zunino R, McBride HM (2007) Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J Cell Biol 177(3):439–450. doi:10.1083/jcb.200610042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Ross CA, Tabrizi SJ (2011) Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 10(1):83–98. doi:10.1016/S1474-4422(10)70245-3

    Article  CAS  PubMed  Google Scholar 

  210. Mitchell IJ, Cooper AJ, Griffiths MR (1999) The selective vulnerability of striatopallidal neurons. Prog Neurobiol 59(6):691–719

    Article  CAS  PubMed  Google Scholar 

  211. Rikani AA, Choudhry Z, Choudhry AM, Rizvi N, Ikram H, Mobassarah NJ, Tulli S (2014) The mechanism of degeneration of striatal neuronal subtypes in Huntington disease. Ann Neurosci 21(3):112–114. doi:10.5214/ans.0972.7531.210308

    Article  PubMed  PubMed Central  Google Scholar 

  212. Coyle JT, Schwarcz R (1976) Lesion of striatal neurons with kainic acid provides a model for Huntington’s chorea. Nature 263(5574):244–246

    Article  CAS  PubMed  Google Scholar 

  213. MacDonald ME, Ambrose CM, Duyao MP, Myers RH, Lin C, Srinidhi L, Barnes G, Taylor SA, James M, Groot N, MacFarlane H, Jenkins B, Anderson MA, Wexler NS, Gusella JF, Bates GP, Baxendale S, Hummerich H, Kirby S, North M, Youngman S, Mott R, Zehetner G, Sedlacek Z, Poustka A, Frischauf A-M, Lehrach H, Buckler AJ, Church D, Doucette-Stamm L, O’Donovan MC, Riba-Ramirez L, Shah M, Stanton VP, Strobel SA, Draths KM, Wales JL, Dervan P, Housman DE, Altherr M, Shiang R, Thompson L, Fielder T, Wasmuth JJ, Tagle D, Valdes J, Elmer L, Allard M, Castilla L, Swaroop M, Blanchard K, Collins FS, Snell R, Holloway T, Gillespie K, Datson N, Shaw D, Harper PS (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72(6):971–983. doi:10.1016/0092-8674(93)90585-E

    Article  Google Scholar 

  214. Kremer B, Goldberg P, Andrew SE, Theilmann J, Telenius H, Zeisler J, Squitieri F, Lin B, Bassett A, Almqvist E et al (1994) A worldwide study of the Huntington’s disease mutation. The sensitivity and specificity of measuring CAG repeats. N Engl J Med 330(20):1401–1406. doi:10.1056/NEJM199405193302001

    Article  CAS  PubMed  Google Scholar 

  215. Shao J, Diamond MI (2007) Polyglutamine diseases: emerging concepts in pathogenesis and therapy. Hum Mol Genet 16(2):R115–R123. doi:10.1093/hmg/ddm213

    Article  CAS  PubMed  Google Scholar 

  216. Sawa A, Wiegand GW, Cooper J, Margolis RL, Sharp AH, Lawler JF Jr, Greenamyre JT, Snyder SH, Ross CA (1999) Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization. Nat Med 5(10):1194–1198. doi:10.1038/13518

    Article  CAS  PubMed  Google Scholar 

  217. Damiano M, Diguet E, Malgorn C, D’Aurelio M, Galvan L, Petit F, Benhaim L, Guillermier M, Houitte D, Dufour N, Hantraye P, Canals JM, Alberch J, Delzescaux T, Deglon N, Beal MF, Brouillet E (2013) A role of mitochondrial complex II defects in genetic models of Huntington’s disease expressing N-terminal fragments of mutant huntingtin. Hum Mol Genet 22(19):3869–3882. doi:10.1093/hmg/ddt242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Mochel F, Haller RG (2011) Energy deficit in Huntington disease: why it matters. J Clin Invest 121(2):493–499. doi:10.1172/JCI45691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Bano D, Zanetti F, Mende Y, Nicotera P (2011) Neurodegenerative processes in Huntington’s disease. Cell Death Dis 2:e228. doi:10.1038/cddis.2011.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Estrada Sanchez AM, Mejia-Toiber J, Massieu L (2008) Excitotoxic neuronal death and the pathogenesis of Huntington’s disease. Arch Med Res 39(3):265–276. doi:10.1016/j.arcmed.2007.11.011

    Article  CAS  PubMed  Google Scholar 

  221. Melchiorri D, Reiter RJ, Sewerynek E, Chen LD, Nistico G (1995) Melatonin reduces kainate-induced lipid peroxidation in homogenates of different brain regions. FASEB J 9(12):1205–1210

    CAS  PubMed  Google Scholar 

  222. Melchiorri D, Reiter RJ, Chen LD, Sewerynek E, Nistico G (1996) Melatonin affords protection against kainate-induced in vitro lipid peroxidation in brain. Eur J Pharmacol 305(1–3):239–242

    Article  CAS  PubMed  Google Scholar 

  223. Giusti P, Lipartiti M, Gusella M, Floreani M, Manev H (1997) In vitro and in vivo protective effects of melatonin against glutamate oxidative stress and neurotoxicity. Ann N Y Acad Sci 825:79–84

    Article  CAS  PubMed  Google Scholar 

  224. Lezoualc’h F, Skutella T, Widmann M, Behl C (1996) Melatonin prevents oxidative stress-induced cell death in hippocampal cells. Neuroreport 7(13):2071–2077

    Article  PubMed  Google Scholar 

  225. Manev H, Uz T, Kharlamov A, Cagnoli CM, Franceschini D, Giusti P (1996) In vivo protection against kainate-induced apoptosis by the pineal hormone melatonin: effect of exogenous melatonin and circadian rhythm. Restor Neurol Neurosci 9(4):251–256. doi:10.3233/RNN-1996-9408

    CAS  PubMed  Google Scholar 

  226. Uz T, Giusti P, Franceschini D, Kharlamov A, Manev H (1996) Protective effect of melatonin against hippocampal DNA damage induced by intraperitoneal administration of kainate to rats. Neuroscience 73(3):631–636

    Article  CAS  PubMed  Google Scholar 

  227. Tan DX, Manchester LC, Reiter RJ, Qi W, Kim SJ, El-Sokkary GH (1998) Melatonin protects hippocampal neurons in vivo against kainic acid-induced damage in mice. J Neurosci Res 54(3):382–389. doi:10.1002/(SICI)1097-4547(19981101)54:3<382:AID-JNR9>3.0.CO;2-Y

    Article  CAS  PubMed  Google Scholar 

  228. Manev H, Uz T, Kharlamov A, Joo JY (1996) Increased brain damage after stroke or excitotoxic seizures in melatonin-deficient rats. FASEB J 10(13):1546–1551

    CAS  PubMed  Google Scholar 

  229. Uz T, Longone P, Manev H (1997) Increased hippocampal 5-lipoxygenase mRNA content in melatonin-deficient, pinealectomized rats. J Neurochem 69(5):2220–2223

    Article  CAS  PubMed  Google Scholar 

  230. Tunez I, Montilla P, Del Carmen Munoz M, Feijoo M, Salcedo M (2004) Protective effect of melatonin on 3-nitropropionic acid-induced oxidative stress in synaptosomes in an animal model of Huntington’s disease. J Pineal Res 37(4):252–256. doi:10.1111/j.1600-079X.2004.00163.x

    Article  CAS  PubMed  Google Scholar 

  231. Mu S, OuYang L, Liu B, Zhu Y, Li K, Zhan M, Liu Z, Jia Y, Lei W (2011) Protective effect of melatonin on 3-NP induced striatal interneuron injury in rats. Neurochem Int 59(2):224–234. doi:10.1016/j.neuint.2011.05.009

    Article  CAS  PubMed  Google Scholar 

  232. Nam E, Lee SM, Koh SE, Joo WS, Maeng S, Im HI, Kim YS (2005) Melatonin protects against neuronal damage induced by 3-nitropropionic acid in rat striatum. Brain Res 1046(1–2):90–96. doi:10.1016/j.brainres.2005.03.053

    Article  CAS  PubMed  Google Scholar 

  233. Mu S, Lin E, Liu B, Ma Y, OuYang L, Li Y, Chen S, Zhang J, Lei W (2014) Melatonin reduces projection neuronal injury induced by 3-nitropropionic acid in the rat striatum. Neurodegener Dis 14(3):139–150. doi:10.1159/000365891

    Article  CAS  PubMed  Google Scholar 

  234. Tasset I, Espinola C, Medina FJ, Feijoo M, Ruiz C, Moreno E, Gomez MM, Collado JA, Munoz C, Muntane J, Montilla P, Tunez I (2009) Neuroprotective effect of carvedilol and melatonin on 3-nitropropionic acid-induced neurotoxicity in neuroblastoma. J Physiol Biochem 65(3):291–296. doi:10.1007/BF03180581

    Article  CAS  PubMed  Google Scholar 

  235. Wang X, Zhu S, Pei Z, Drozda M, Stavrovskaya IG, Del Signore SJ, Cormier K, Shimony EM, Wang H, Ferrante RJ, Kristal BS, Friedlander RM (2008) Inhibitors of cytochrome c release with therapeutic potential for Huntington’s disease. J Neurosci 28(38):9473–9485. doi:10.1523/JNEUROSCI.1867-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Wang X, Sirianni A, Pei Z, Cormier K, Smith K, Jiang J, Zhou S, Wang H, Zhao R, Yano H, Kim JE, Li W, Kristal BS, Ferrante RJ, Friedlander RM (2011) The melatonin MT1 receptor axis modulates mutant Huntingtin-mediated toxicity. J Neurosci 31(41):14496–14507. doi:10.1523/JNEUROSCI.3059-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by a TRF research Grant (DPG5780001) and a Mahidol University research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyarat Govitrapong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wongprayoon, P., Govitrapong, P. Melatonin as a mitochondrial protector in neurodegenerative diseases. Cell. Mol. Life Sci. 74, 3999–4014 (2017). https://doi.org/10.1007/s00018-017-2614-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2614-x

Keywords

Navigation