Skip to main content

Advertisement

Log in

Promising Role of Melatonin as Neuroprotectant in Neurodegenerative Pathology

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Melatonin treatment showed a potent neuroprotective action in experimental models and in clinical studies. However, the entire disease prevention is not observed with melatonin treatment. Therefore, findings have suggested its future use in combination therapies for neurological diseases. Several studies have showed its free radical scavenging, antioxidant property, antiapoptotic activity, and its action towards enhanced mitochondrial function. It has direct and indirect effects on mitochondrial functions. Neurodegenerative disease pathology includes the impaired mitochondrial functions and apoptotic death of neurons due to energy crisis which could be prevented with antiapoptotic activity of melatonin. However, for the therapeutic use of melatonin, researchers also need to pay attention towards the various intermediary events taking place in apoptotic death of neurons during disease pathology. Age-related neurological diseases include the decreased level of melatonin in neuronal death. Therefore, it is worthwhile to discuss about the different functions of melatonin in aspect of its antioxidative property, its role in the enhancement of mitochondrial function, and its antiapoptotic attributes. This review summarizes the reports to date showing the potent role of melatonin in experimental models and clinical trials and discussing the employment of melatonin as future potent neuroprotective agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Claustrat B, Brun J, Chazot G (2005) The basic physiology and pathophysiology of melatonin. Sleep Med Rev 9:11–24

    Article  PubMed  Google Scholar 

  2. Reiter RJ (1991) Melatonin: the chemical expression of darkness. Mol Cell Endocrinol 79:C153–158

    Article  CAS  PubMed  Google Scholar 

  3. Liu T, Borjigin J (2005) N-acetyltransferase is not the rate-limiting enzyme of melatonin synthesis at night. J Pineal Res 39:91–96

    Article  CAS  PubMed  Google Scholar 

  4. Conti A, Conconi S, Hertens E, Skwarlo-Sonta K, Markowska M, Maestroni JM (2000) Evidence for melatonin synthesis in mouse and human bone marrow cells. J Pineal Res 28:193–202

    Article  CAS  PubMed  Google Scholar 

  5. Maestroni GJ (2001) The immunotherapeutic potential of melatonin. Expert Opin Investig Drugs 10:467–476

    Article  CAS  PubMed  Google Scholar 

  6. Venegas C, García JA, Escames G, Ortiz F, López A, Doerrier C, García-Corzo L, López LC, Reiter RJ, Acuña-Castroviejo D (2012) Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations. J Pineal Res 52:217–27

    Article  CAS  PubMed  Google Scholar 

  7. Gonzalez S, Moreno-Delgado D, Moreno E, Perez-Capote K, Franco R, Mallol J, Cortés A, Casadó V, Lluís C, Ortiz J, Ferré S, Canela E, McCormick PJ (2012) Circadian-related heteromerization of adrenergic and dopamine D4 receptors modulates melatonin synthesis and release in the pineal gland. PLoS Biol 10(6):e1001347. doi:10.1371/journal.pbio.1001347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Waldhauser F, Dietzel M (1985) Daily and annual rhythms in human melatonin secretion: role in puberty control. Ann N Y Acad Sci 453:205–214

    Article  CAS  PubMed  Google Scholar 

  9. Reiter RJ (2003) Melatonin: clinical relevance. Best Pract Res Clin Endocrinol Metab 17:273–285

    Article  CAS  PubMed  Google Scholar 

  10. Hardeland R, Cardinali DP, Srinivasan V, Spence DW, Brown GM, Pandi-Perumal SR (2011) Melatonin—a pleiotropic, orchestrating regulator molecule. Prog Neurobiol 93:350–384

    Article  CAS  PubMed  Google Scholar 

  11. Dubocovich ML, Markowska M (2005) Functional MT1 and MT2 melatonin receptors in mammals. Endocrine 27:101–110

    Article  CAS  PubMed  Google Scholar 

  12. Morgan PJ, Barrett P, Howell HE, Helliwell R (1994) Melatonin receptors: localization, molecular pharmacology and physiological significance. Neurochem Int 24:101–146

    Article  CAS  PubMed  Google Scholar 

  13. Reppert SM, Godson C, Mahle CD, Weaver DR, Slaugenhaupt SA, Gusella JF (1995) Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel1b melatonin receptor. Proc Natl Acad Sci U S A 92:8734–8738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Al-Ghoul WM, Herman MD, Dubocovich ML (1998) Melatonin receptor subtype expression in human cerebellum. Neuroreport 18:4063–4068

    Article  Google Scholar 

  15. Savaskan E, Olivieri G, Meier F, Brydon L, Jockers R, Ravid R, Wirz-Justice A, Muller-Spahn F (2002) Increased melatonin 1a-receptor immunoreactivity in the hippocampus of Alzheimer’s disease patients. J Pineal Res 32:59–62

    Article  PubMed  Google Scholar 

  16. Sugden D, Davidson K, Hough KA, The MT (2004) Melatonin, melatonin receptors and melanophores: a moving story. Pigment Cell Res 17:454–460

    Article  CAS  PubMed  Google Scholar 

  17. Kilic U, Yilmaz B, Ugur M, Yüksel A, Reiter RJ, Hermann DM, Kilic E (2012) Evidence that membrane-bound G protein-coupled melatonin receptors MT1 and MT2 are not involved in the neuroprotective effects of melatonin in focal cerebral ischemia. J Pineal Res 52:228–235

    Article  PubMed  CAS  Google Scholar 

  18. Witt-Enderby PA, Bennett J, Jarzynka MJ, Firestine S, Melan MA (2003) Melatonin receptors and their regulation: biochemical and structural mechanisms. Life Sci 72:2183–2198

    Article  CAS  PubMed  Google Scholar 

  19. Chan AS, Lai FP, Lo RK, Voyno-Yasenetskaya TA, Stanbridge EJ, Wong YH (2002) Melatonin MT1 and MT2 receptors stimulate c-Jun N-terminal kinase via pertussis toxin-sensitive and -insensitive G proteins. Cell Signal 14:249–257

    Article  CAS  PubMed  Google Scholar 

  20. Hogan MV, El-Sherif Y, Wieraszko A (2001) The modulation of neuronal activity by melatonin: in vitro studies on mouse hippocampal slices. J Pineal Res 30:87–96

    Article  CAS  PubMed  Google Scholar 

  21. Musshoff U, Riewenherm D, Berger E, Fauteck JD, Speckmann EJ (2002) Melatonin receptors in rat hippocampus: molecular and functional investigations. Hippocampus 12:165–173

    Article  CAS  PubMed  Google Scholar 

  22. Wang XC, Zhang J, Yu X, Han L, Zhou ZT, Zhang Y, Wang JZ (2005) Prevention of isoproterenol-induced tau hyperphosphorylation by melatonin in the rat. Sheng li xue bao : [Acta physiologica Sinica] 57:7–12

    CAS  Google Scholar 

  23. Savaskan E, Ayoub MA, Ravid R, Angeloni D, Fraschini F, Meier F, Eckert A, Muller-Spahn F, Jockers R (2005) Reduced hippocampal MT2 melatonin receptor expression in Alzheimer’s disease. J Pineal Res 38:10–16

    Article  CAS  PubMed  Google Scholar 

  24. Lee CH, Choi JH, Yoo KY, Park OK, Hwang IK, You SG, Lee BY, Kang IJ, Won MH (2010) MT2 melatonin receptor immunoreactivity in neurons is very high in the aged hippocampal formation in gerbils. Cell Mol Neurobiol 30:255–263

    Article  CAS  PubMed  Google Scholar 

  25. Lee CH, Yoo KY, Choi JH, Park OK, Hwang IK, Kwon YG, Kim YM, Won MH (2010) Melatonin’s protective action against ischemic neuronal damage is associated with up-regulation of the MT2 melatonin receptor. J Neurosci Res 88:2630–2640

    Article  CAS  PubMed  Google Scholar 

  26. Sánchez-Hidalgo M, Guerrero Montávez JM, Carrascosa-Salmoral Mdel P, Naranjo Gutierrez Mdel C, Lardone PJ, de la Lastra Romero CA (2009) Decreased MT1 and MT2 melatonin receptor expression in extrapineal tissues of the rat during physiological aging. J Pineal Res 46:29–35

    Article  PubMed  CAS  Google Scholar 

  27. Brunner P, Sözer-Topcular N, Jockers R, Ravid R, Angeloni D, Fraschini F, Eckert A, Müller-pahn F, Savaskan E (2006) Pineal and cortical melatonin receptors MT1 and MT2 are decreased in Alzheimer’s disease. Eur J Histochem 50:311–316

    CAS  PubMed  Google Scholar 

  28. Savaskan E, Jockers R, Ayoub M, Angeloni D, Fraschini F, Flammer J, Eckert A, Müller-Spahn F, Meyer P (2007) The MT2 melatonin receptor subtype is present in human retina and decreases in Alzheimer’s disease. Curr Alzheimer Res 4:47–51

    Article  CAS  PubMed  Google Scholar 

  29. Adi N, Mash DC, Ali Y, Singer C, Shehadeh L, Papapetropoulos S (2010) Melatonin MT1 and MT2 receptor expression in Parkinson’s disease. Med Sci Monit 16:61–67

    Google Scholar 

  30. Wang X, Sirianni A, Pei Z, Cormier K, Smith K, Jiang J, Zhou S, Wang H, Zhao R, Yano H, Kim JE, Li W, Kristal BS, Ferrante RJ, Friedlander RM (2011) The melatonin MT1 receptor axis modulates mutant Huntingtin-mediated toxicity. J Neurosci 31:14496–14507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang Y, Cook A, Kim J, Baranov SV, Jiang J, Smith K, Cormier K, Bennett E, Browser RP, Day AL, Carlisle DL, Ferrante RJ, Wang X, Friedlander RM (2013) Melatonin inhibits the caspase-1/cytochrome c/caspase-3 cell death pathway, inhibits MT1 receptor loss and delays disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 55:26–35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Gloire G, Legrand-Poels S, Piette J (2006) NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 72:1493–1505

    Article  CAS  PubMed  Google Scholar 

  33. Bai XC, Lu D, Liu AL, Zhang ZM, Li XM, Zou ZP, Zeng WS, Cheng BL, Luo SQ (2005) Reactive oxygen species stimulates receptor activator of NF-kappaB ligand expression in osteoblast. J Biol Chem 280:17497–17506

    Article  CAS  PubMed  Google Scholar 

  34. Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ianas O, Olinescu R, Badescu I (1991) Melatonin involvement in oxidative processes. Endocrinologie 29:147–153

    CAS  PubMed  Google Scholar 

  36. Poeggeler B, Reiter RJ, Tan DX, Chen LD, Manchester LC (1993) Melatonin, hydroxyl radical-mediated oxidative damage, and aging: a hypothesis. J Pineal Res 14:151–168

    Article  CAS  PubMed  Google Scholar 

  37. Beyer CE, Steketee JD, Saphier D (1998) Antioxidant properties of melatonin—an emerging mystery. Biochem Pharmacol 56:1265–1272

    Article  CAS  PubMed  Google Scholar 

  38. Tan DX, Reiter RJ, Manchester LC, Yan MT, El-Sawi M, Sainz RM, Mayo JC, Kohen R, Allegra M, Hardeland R (2002) Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr Top Med Chem 2:181–197

    Article  CAS  PubMed  Google Scholar 

  39. Reiter RJ, Tan DX, Cabrera J, D’Arpa D (1999) Melatonin and tryptophan derivatives as free radical scavengers and antioxidants. Adv Exp Med Biol 467:379–387

    Article  CAS  PubMed  Google Scholar 

  40. Susa N, Ueno S, Furukawa Y, Ueda J, Sugiyama M (1997) Potent protective effect of melatonin on chromium(VI)-induced DNA single-strand breaks, cytotoxicity, and lipid peroxidation in primary cultures of rat hepatocytes. Toxicol Appl Pharmacol 144:377–384

    Article  CAS  PubMed  Google Scholar 

  41. Bromme HJ, Ebelt H, Peschke D, Peschke E (1999) Alloxan acts as a prooxidant only under reducing conditions: influence of melatonin. Cell Mol Life Sci: CMLS 55:487–493

    Article  CAS  PubMed  Google Scholar 

  42. Pieri C, Marra M, Moroni F, Recchioni R, Marcheselli F (1994) Melatonin: a peroxyl radical scavenger more effective than vitamin E. Life Sci 55:271–276

    Article  Google Scholar 

  43. Yu ZH, Chow PH, Pang SF (1994) Identification and characterization of 2[125I]-iodomelatonin binding sites in the rat epididymis. J Pineal Res 17:195–201

    Article  CAS  PubMed  Google Scholar 

  44. Pieri C, Moroni F, Marra M, Marcheselli F, Recchioni R (1995) Melatonin is an efficient antioxidant. Arch Gerontol Geriatr 20:159–165

    Article  CAS  PubMed  Google Scholar 

  45. Lahiri DK, Chen D, Ge YW, Bondy SC, Sharman EH (2004) Dietary supplementation with melatonin reduces levels of amyloid beta-peptides in the murine cerebral cortex. J Pineal Res 36:224–231

    Article  CAS  PubMed  Google Scholar 

  46. Sanchez-Barcelo EJ, Mediavilla MD, Tan DX, Reiter RJ (2010) Clinical uses of melatonin: evaluation of human trials. Curr Med Chem 17:2070–2095

    Article  CAS  PubMed  Google Scholar 

  47. Rousseau A, Petren S, Plannthin J, Eklundh T, Nordin C (1999) Serum and cerebrospinal fluid concentrations of melatonin: a pilot study in healthy male volunteers. J Neural Transm 106:883–888

    Article  CAS  PubMed  Google Scholar 

  48. Debus OM, Lerchl A, Bothe HW, Bremer J, Fiedler B, Franssen M, Koehring J, Steils M, Kurlemann G (2002) Spontaneous central melatonin secretion and resorption kinetics of exogenous melatonin: a ventricular CSF study. J Pineal Res 33:213–217

    Article  CAS  PubMed  Google Scholar 

  49. Marshall KA, Reiter RJ, Poeggeler B, Aruoma OI, Halliwell B (1996) Evaluation of the antioxidant activity of melatonin in vitro. Free Radic Biol Med 21:307–315

    Article  CAS  PubMed  Google Scholar 

  50. Cagnoli CM, Atabay C, Kharlamova E, Manev H (1995) Melatonin protects neurons from singlet oxygen-induced apoptosis. J Pineal Res 18:222–226

    Article  CAS  PubMed  Google Scholar 

  51. Zang LY, Cosma G, Gardner H, Vallyathan V (1998) Scavenging of reactive oxygen species by melatonin. Biochim Biophys Acta 1425:469–477

    Article  CAS  PubMed  Google Scholar 

  52. Scaiano JC (1995) Exploratory laser flash photolysis study of free radical reactions and magnetic field effects in melatonin chemistry. J Pineal Res 19:189–195

    Article  CAS  PubMed  Google Scholar 

  53. Bondy SC, Yang YE, Walsh TJ, Gie YW, Lahiri DK (2002) Dietary modulation of age-related changes in cerebral pro-oxidant status. Neurochem Int 40:123–130

    Article  CAS  PubMed  Google Scholar 

  54. Buyukavci M, Ozdemir O, Buck S, Stout M, Ravindranath Y, Savasan S (2006) Melatonin cytotoxicity in human leukemia cells: relation with its pro-oxidant effect. Fundam Clin Pharmacol 20:73–79

    Article  CAS  PubMed  Google Scholar 

  55. Osseni RA, Rat P, Bogdan A, Warnet JM, Touitou Y (2000) Evidence of prooxidant and antioxidant action of melatonin on human liver cell line HepG2. Life Sci 15:387–399

    Article  Google Scholar 

  56. Cristofanon S, Uguccioni F, Cerella C, Radogna F, Dicato M, Ghibelli L, Diederich M (2009) Intracellular prooxidant activity of melatonin induces a survival pathway involving NF-kappaB activation. Ann N Y Acad Sci 1171:472–478

    Article  CAS  PubMed  Google Scholar 

  57. Bejarano I, Espino J, Marchena AM, Barriga C, Paredes SD, Rodríguez AB, Pariente JA (2011) Melatonin enhances hydrogen peroxide-induced apoptosis in human promyelocytic leukaemia HL-60 cells. Mol Cell Biochem 353:167–176

    Article  CAS  PubMed  Google Scholar 

  58. Jung B, Ahmad N (2006) Melatonin in cancer management: progress and promise. Cancer Res 66:9789–9793

    Article  CAS  PubMed  Google Scholar 

  59. García-Santos G, Martin V, Rodríguez-Blanco J, Herrera F, Casado-Zapico S, Sánchez-Sánchez AM, Antolín I, Rodríguez C (2012) Fas/Fas ligand regulation mediates cell death in human Ewing’s sarcoma cells treated with melatonin. Br J Cancer 106:1288–96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Rodriguez C, Martín V, Herrera F, García-Santos G, Rodriguez-Blanco J, Casado-Zapico S, Sánchez-Sánchez AM, Suárez S, Puente-Moncada N, Anítua MJ, Antolín I (2013) Mechanisms involved in the pro-apoptotic effect of melatonin in cancer cells. Int J Mol Sci 14:6597–6613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gilad E, Cuzzocrea S, Zingarelli B, Salzman AL, Szabo C (1997) Melatonin is a scavenger of peroxynitrite. Life Sci 60:PL169–174

    Article  CAS  PubMed  Google Scholar 

  62. El-Sokkary GH, Reiter RJ, Cuzzocrea S, Caputi AP, Hassanein AF, Tan DX (1999) Role of melatonin in reduction of lipid peroxidation and peroxynitrite formation in non-septic shock induced by zymosan. Shock 12:402–408

    Article  CAS  PubMed  Google Scholar 

  63. Zhang H, Squadrito GL, Uppu R, Pryor WA (1999) Reaction of peroxynitrite with melatonin: a mechanistic study. Chem Res Toxicol 12:526–534

    Article  CAS  PubMed  Google Scholar 

  64. Galano A, Tan DX, Reiter RJ (2013) On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK. J Pineal Res 54:245–57

    Article  CAS  PubMed  Google Scholar 

  65. Sewerynek E, Melchiorri D, Ortiz GG, Poeggeler B, Reiter RJ (1995) Melatonin reduces H2O2-induced lipid peroxidation in homogenates of different rat brain regions. J Pineal Res 19:51–56

    Article  CAS  PubMed  Google Scholar 

  66. Rodriguez C, Mayo JC, Sainz RM, Antolin I, Herrera F, Martin V, Reiter RJ (2004) Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 36:1–9

    Article  CAS  PubMed  Google Scholar 

  67. Hung MW, Kravtsov GM, Lau CF, Poon AM, Tipoe GL, & Fung ML (2013) Melatonin ameliorates endothelial dysfunction, vascular inflammation, and systemic hypertension in rats with chronic intermittent hypoxia. Journal of pineal research doi:10.1111/jpi.12067

  68. Tengattini S, Reiter RJ, Tan DX, Terron MP, Rodella LF, Rezzani R (2008) Cardiovascular diseases: protective effects of melatonin. J Pineal Res 44:16–25

    CAS  PubMed  Google Scholar 

  69. Ma Y, Feng Q, Ma J, Feng Z, Zhan M, Ouyang L, Mu S, Liu B, Jiang Z, Jia Y, Li Y, Lei W (2013) Melatonin ameliorates injury and specific responses of ischemic striatal neurons in rats. J Histochem Cytochem: Off J Histochem Soc 61:591–605

    Article  CAS  Google Scholar 

  70. Santos CM (2012) New agents promote neuroprotection in Parkinson’s disease models. CNS Neurol Disord Drug Targets 11:410–418

    Article  CAS  PubMed  Google Scholar 

  71. Zhang L, Zhang HQ, Liang XY, Zhang HF, Zhang T, Liu FE (2013) Melatonin ameliorates cognitive impairment induced by sleep deprivation in rats: role of oxidative stress, BDNF and CaMKII. Behav Brain Res 256:72–81

    Article  CAS  PubMed  Google Scholar 

  72. Assaf N, Shalby AB, Khalil WK, Ahmed HH (2012) Biochemical and genetic alterations of oxidant/antioxidant status of the brain in rats treated with dexamethasone: protective roles of melatonin and acetyl-L-carnitine. J Physiol Biochem 68:77–90

    Article  CAS  PubMed  Google Scholar 

  73. Ortiz GG, Pacheco-Moises FP, Gomez-Rodriguez VM, Gonzalez-Renovato ED, Torres-Sanchez ED, Ramirez-Anguiano AC (2013) Fish oil, melatonin and vitamin E attenuates midbrain cyclooxygenase-2 activity and oxidative stress after the administration of 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine. Metab Brain Dis 28:705–709

    Article  CAS  PubMed  Google Scholar 

  74. Suwanjang W, Abramov AY, Govitrapong P, Chetsawang B (2013) Melatonin attenuates dexamethasone toxicity-induced oxidative stress, calpain and caspase activation in human neuroblastoma SH-SY5Y cells. J Steroid Biochem Mol Biol 138:116–122

    Article  CAS  PubMed  Google Scholar 

  75. Singh S, Dikshit M (2007) Apoptotic neuronal death in Parkinson’s disease: involvement of nitric oxide. Brain Res Rev 54:233–250

    Article  CAS  PubMed  Google Scholar 

  76. Feng Z, Qin C, Chang Y, Zhang JT (2006) Early melatonin supplementation alleviates oxidative stress in a transgenic mouse model of Alzheimer’s disease. Free Radic Biol Med 40:101–109

    Article  CAS  PubMed  Google Scholar 

  77. Jang MH, Jung SB, Lee MH, Kim CJ, Oh YT, Kang I, Kim J, Kim EH (2005) Melatonin attenuates amyloid beta25-35-induced apoptosis in mouse microglial BV2 cells. Neurosci Lett 380:26–31

    Article  CAS  PubMed  Google Scholar 

  78. Feng Z, Chang Y, Cheng Y, Zhang BL, Qu ZW, Qin C, Zhang JT (2004) Melatonin alleviates behavioral deficits associated with apoptosis and cholinergic system dysfunction in the APP 695 transgenic mouse model of Alzheimer’s disease. J Pineal Res 37:129–136

    Article  CAS  PubMed  Google Scholar 

  79. Deng YQ, Xu GG, Duan P, Zhang Q, Wang JZ (2005) Effects of melatonin on wortmannin-induced tau hyperphosphorylation. Acta Pharmacol Sin 26:519–526

    Article  CAS  PubMed  Google Scholar 

  80. Swarnkar S, Singh S, Goswami P, Mathur R, Patro IK, Nath C (2012) Astrocyte activation: a key step in rotenone induced cytotoxicity and DNA damage. Neurochem Res 37:2178–2189

    Article  CAS  PubMed  Google Scholar 

  81. Swarnkar S, Singh S, Mathur R, Patro IK, Nath C (2010) A study to correlate rotenone induced biochemical changes and cerebral damage in brain areas with neuromuscular coordination in rats. Toxicology 272:17–22

    Article  CAS  PubMed  Google Scholar 

  82. Tan X, Guo X, Liu H (2013) Melatonin attenuates hippocampal neuron apoptosis and oxidative stress during chronic intermittent hypoxia via up-regulating B-cell lymphoma-2 and down-regulating B-cell lymphoma-2-associated X protein. Saudi Med J 34:701–708

    PubMed  Google Scholar 

  83. Chen J, Wang L, Wu C, Hu Q, Gu C, Yan F, Li J, Yan W, Chen G (2013) Melatonin-enhanced autophagy protects against neural apoptosis via a mitochondrial pathway in early brain injury following a subarachnoid hemorrhage. Journal of pineal research doi:10.1111/jpi.12086

  84. Caballero B, Vega-Naredo I, Sierra V, Huidobro-Fernandez C, Soria-Valles C, De Gonzalo-Calvo D, Tolivia D, Pallas M, Camins A, Rodriguez-Colunga MJ, Coto-Montes A (2009) Melatonin alters cell death processes in response to age-related oxidative stress in the brain of senescence-accelerated mice. J Pineal Res 46:106–114

    Article  CAS  PubMed  Google Scholar 

  85. Sheth DS, Tajuddin NF, Druse MJ (2009) Antioxidant neuroprotection against ethanol-induced apoptosis in HN2-5 cells. Brain Res 1285:14–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kong PJ, Byun JS, Lim SY, Lee JJ, Hong SJ, Kwon KJ, Kim SS (2008) Melatonin induces Akt phosphorylation through melatonin receptor- and PI3K-dependent pathways in primary astrocytes. Korean J Physiol Pharmacol 12:37–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lee SH, Chun W, Kong PJ, Han JA, Cho BP, Kwon OY, Lee HJ, Kim SS (2006) Sustained activation of Akt by melatonin contributes to the protection against kainic acid-induced neuronal death in hippocampus. J Pineal Res 40:79–85

    Article  CAS  PubMed  Google Scholar 

  88. Laothong U, Pinlaor P, Boonsiri P, Pairojkul C, Priprem A, Johns NP, Charoensuk L, Intuyod K, Pinlaor S (2013) Melatonin inhibits cholangiocarcinoma and reduces liver injury in Opisthorchis viverrini-infected and N-nitrosodimethylamine-treated hamsters. J Pineal Res 55:257–266

    Article  CAS  PubMed  Google Scholar 

  89. Taziki S, Sattari MR, Eghbal MA (2013) Mechanisms of trazodone-induced cytotoxicity and the protective effects of melatonin and/or taurine toward freshly isolated rat hepatocytes. J Biochem Mol Toxicol 27:457–462

    CAS  PubMed  Google Scholar 

  90. Wang FW, Wang Z, Zhang YM, Du ZX, Zhang XL, Liu Q, Guo YJ, Li XG, Hao AJ (2013) Protective effect of melatonin on bone marrow mesenchymal stem cells against hydrogen peroxide-induced apoptosis in vitro. J Cell Biochem 114:2346–2355

    Article  CAS  PubMed  Google Scholar 

  91. Chetsawang B, Govitrapong P, Ebadi M (2004) The neuroprotective effect of melatonin against the induction of c-Jun phosphorylation by 6-hydroxydopamine on SK-N-SH cells. Neurosci Lett 371:205–208

    Article  CAS  PubMed  Google Scholar 

  92. Chetsawang J, Govitrapong P, Chetsawang B (2007) Melatonin inhibits MPP+−induced caspase-mediated death pathway and DNA fragmentation factor-45 cleavage in SK-N-SH cultured cells. J Pineal Res 43:115–120

    Article  CAS  PubMed  Google Scholar 

  93. Kireev RA, Vara E, Tresguerres JA (2013) Growth hormone and melatonin prevent age-related alteration in apoptosis processes in the dentate gyrus of male rats. Biogerontology 14:431–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ni C, Tan G, Luo A, Qian M, Tang Y, Zhou Y, Wang J, Li M, Zhang Y, Jia D, Wu C, Guo X (2013) Melatonin premedication attenuates isoflurane anesthesia-induced beta-amyloid generation and cholinergic dysfunction in the hippocampus of aged rats. Int J Neurosci 123:213–220

    Article  CAS  PubMed  Google Scholar 

  95. Bavithra S, Selvakumar K, Krishnamoorthy G, Venkataraman P, Arunakaran J (2013) Melatonin attenuates polychlorinated biphenyls induced apoptosis in the neuronal cells of cerebral cortex and cerebellum of adult male rats—in vivo. Environ Toxicol Pharmacol 36:152–163

    Article  CAS  PubMed  Google Scholar 

  96. Thorburn A (2008) Apoptosis and autophagy: regulatory connections between two supposedly different processes. Apoptosis 13:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Su M, Mei Y, Sinha S (2013) Role of the crosstalk between autophagy and apoptosis in cancer. J Oncol doi: 10.1155/2013/102735

  98. Chang CF, Huang HJ, Lee HC, Hung KC, Wu RT, Lin AM (2012) Melatonin attenuates kainic acid-induced neurotoxicity in mouse hippocampus via inhibition of autophagy and α-synuclein aggregation. J Pineal Res 52:312–321

    Article  CAS  PubMed  Google Scholar 

  99. Zheng Y, Hou J, Liu J, Yao M, Li L, Zhang B, Zhu H, Wang Z (2014) Inhibition of autophagy contributes to melatonin-mediated neuroprotection against transient focal cerebral ischemia in rats. J Pharmacol Sci 124:354–364

    Article  CAS  PubMed  Google Scholar 

  100. Morera AL, Henry M, de La Varga M (2001) Safety in melatonin use. Actas Esp Psiquiatr 29:334–337

    CAS  PubMed  Google Scholar 

  101. Zhdanova IV, Wurtman RJ, Regan MM, Taylor JA, Shi JP, Leclair OU (2001) Melatonin treatment for age-related insomnia. J Clin Endocrinol Metab 86:4727–4730

    Article  CAS  PubMed  Google Scholar 

  102. Fallah R, Shoroki FF, Ferdosian F (2014) Safety and efficacy of melatonin in pediatric migraine prophylaxis. Curr Drug Saf

  103. Buscemi N, Vandermeer B, Hooton N, Pandya R, Tjosvold L, Hartling L, Baker G, Klassen TP, Vohra S (2005) The efficacy and safety of exogenous melatonin for primary sleep disorders. A meta-analysis J Gen Intern Med 20:1151–1158

    Article  PubMed  Google Scholar 

  104. Maitra S, Baidya DK, Khanna P (2013) Melatonin in perioperative medicine. Curr Perspect Saudi J Anaesth 7:315–321

    Article  Google Scholar 

  105. Liu RY, Zhou JN, van Heerikhuize J, Hofman MA, Swaab DF (1999) Decreased melatonin levels in postmortem cerebrospinal fluid in relation to aging, Alzheimer’s disease, and apolipoprotein E-epsilon4/4 genotype. J Clin Endocrinol Metab 84:323–327

    CAS  PubMed  Google Scholar 

  106. Ozcankaya R, Delibas N (2002) Malondialdehyde, superoxide dismutase, melatonin, iron, copper, and zinc blood concentrations in patients with Alzheimer disease: cross-sectional study. Croatian Med J 43:28–32

    Google Scholar 

  107. Mahlberg R, Walther S, Kalus P, Bohner G, Haedel S, Reischies FM, Kuhl KP, Hellweg R, Kunz D (2008) Pineal calcification in Alzheimer’s disease: an in vivo study using computed tomography. Neurobiol Aging 29:203–209

    Article  CAS  PubMed  Google Scholar 

  108. Feng Z, Chang Y, Cheng Y, Zhang BL, Qu ZW, Qin C, Zhang JT (2004) Melatonin alleviates behavioral deficits associated with apoptosis and cholinergic system dysfunction in the APP 695 transgenic mouse model of Alzheimer’s disease. J Pineal Res 37:129–136

    Article  CAS  PubMed  Google Scholar 

  109. Zhou J, Zhang S, Zhao X, Wei T (2008) Melatonin impairs NADPH oxidase assembly and decreases superoxide anion production in microglia exposed to amyloid-beta1-42. J Pineal Res 45:157–165

    Article  CAS  PubMed  Google Scholar 

  110. Kostrzewa RM, Segura-Aguilar J (2003) Novel mechanisms and approaches in the study of neurodegeneration and neuroprotection. A review. Neurotox Res 5:375–383

    Article  PubMed  Google Scholar 

  111. Li XC, Wang ZF, Zhang JX, Wang Q, Wang JZ (2005) Effect of melatonin on calyculin A-induced tau hyperphosphorylation. Eur J Pharmacol 510:25–30

    Article  CAS  PubMed  Google Scholar 

  112. Deng WG, Tang ST, Tseng HP, Wu KK (2006) Melatonin suppresses macrophage cyclooxygenase-2 and inducible nitric oxide synthase expression by inhibiting p52 acetylation and binding. Blood 108:518–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Pappolla MA, Chyan YJ, Poeggeler B, Frangione B, Wilson G, Ghiso J, Reiter RJ (2000) An assessment of the antioxidant and the antiamyloidogenic properties of melatonin: implications for Alzheimer’s disease. J Neural Transm 107:203–231

    Article  CAS  PubMed  Google Scholar 

  114. Pappolla MA, Sos M, Omar RA, Bick RJ, Hickson-Bick DL, Reiter RJ, Efthimiopoulos S, Robakis NK (1997) Melatonin prevents death of neuroblastoma cells exposed to the Alzheimer amyloid peptide. J Neurosci:Off J Soc Neurosci 17:1683–1690

    CAS  Google Scholar 

  115. Jesudason EP, Baben B, Ashok BS, Masilamoni JG, Kirubagaran R, Jebaraj WC, Jayakumar R (2007) Anti-inflammatory effect of melatonin on A beta vaccination in mice. Mol Cell Biochem 298:69–81

    Article  CAS  PubMed  Google Scholar 

  116. García-Mesa Y, Giménez-Llort L, López LC, Venegas C, Cristòfol R, Escames G, Acuña-Castroviejo D, Sanfeliu C (2012) Melatonin plus physical exercise are highly neuroprotective in the 3xTg-AD mouse. Neurobiol Aging 33:13–29

    Article  CAS  Google Scholar 

  117. Jean-Louis G, von Gizycki H, Zizi F (1998) Melatonin effects on sleep, mood, and cognition in elderly with mild cognitive impairment. J Pineal Res 25:177–183

    Article  CAS  PubMed  Google Scholar 

  118. Furio AM, Brusco LI, Cardinali DP (2007) Possible therapeutic value of melatonin in mild cognitive impairment: a retrospective study. J Pineal Res 43:404–409

    Article  CAS  PubMed  Google Scholar 

  119. Cardinali DP, Vigo DE, Olivar N, Vidal MF, Furio AM, Brusco LI (2012) Therapeutic application of melatonin in mild cognitive impairment. Am J Neurodegenerative Dis 1:280–291

    Google Scholar 

  120. Lin L, Meng T, Liu T, Zheng Z (2013) Increased melatonin may play dual roles in the striata of a 6-hydroxydopamine model of Parkinson’s disease. Life Sci 92:311–316

    Article  CAS  PubMed  Google Scholar 

  121. Kostoglou-Athanassiou I (2013) Therapeutic applications of melatonin. Ther Adv Endocrinol Metab 4:13–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. de Rijk MC, Launer LJ, Berger K, Breteler MM, Dartigues JF, Baldereschi M, Fratiglioni L, Lobo A, Martinez-Lage J, Trenkwalder C, Hofman A (2000) Prevalence of Parkinson’s disease in Europe: a collaborative study of population-based cohorts. Neurol Dis Elderly Res Group Neurol 54:S21–23

    Google Scholar 

  123. Vila M, Przedborski S (2003) Targeting programmed cell death in neurodegenerative diseases. Nat Rev Neurosci 4:365–375

    Article  CAS  PubMed  Google Scholar 

  124. Singh S, Das T, Ravindran A, Chaturvedi RK, Shukla Y, Agarwal AK, Dikshit M (2005) Involvement of nitric oxide in neurodegeneration: a study on the experimental models of Parkinson’s disease. Redox Report : Commun Free Radic Res 10:103–109

    Article  CAS  Google Scholar 

  125. Singh S, Kumar S, Dikshit M (2010) Involvement of the mitochondrial apoptotic pathway and nitric oxide synthase in dopaminergic neuronal death induced by 6-hydroxydopamine and lipopolysaccharide. Redox Report : Commun Free Radic Res 15:115–122

    Article  CAS  Google Scholar 

  126. Alvira D, Tajes M, Verdaguer E, Acuna-Castroviejo D, Folch J, Camins A, Pallas M (2006) Inhibition of the cdk5/p25 fragment formation may explain the antiapoptotic effects of melatonin in an experimental model of Parkinson’s disease. J Pineal Res 40:251–258

    Article  CAS  PubMed  Google Scholar 

  127. Litvinenko IV, Krasakov IV, Tikhomirova OV (2012) Sleep disorders in Parkinson’s disease without dementia: a comparative randomized controlled study of melatonin and clonazepam. Zhurnal nevrologii i psikhiatrii imeni SS Korsakova 112:26–30

    CAS  Google Scholar 

  128. Santos CM (2012) New agents promote neuroprotection in Parkinson’s disease models. CNS Neurol Disord Drug Targets 11:410–418

    Article  CAS  PubMed  Google Scholar 

  129. Datieva VK, Rosinskaia AV, Levin OS (2013) The use of melatonin in the treatment of chronic fatigue syndrome and circadian rhythm disorders in Parkinson’s disease. Zhurnal nevrologii i psikhiatrii imeni SS Korsakova 113:77–81

    CAS  Google Scholar 

  130. Lin L, Huang QX, Yang SS, Chu J, Wang JZ, Tian Q (2013) Melatonin in Alzheimer’s disease. Int J Mol Sci 14:14575–14593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Brito-Armas JM, Baekelandt V, Castro-Hernández JR, González-Hernández T, Rodríguez M, Castro R (2013) Melatonin prevents dopaminergic cell loss induced by lentiviral vectors expressing A30P mutant alpha-synuclein. Histol Histopathol 28:999–1006

    CAS  PubMed  Google Scholar 

  132. Medeiros CA, Carvalhedo de Bruin PF, Lopes LA, Magalhaes MC, de Lourdes SM, de Bruin VM (2007) Effect of exogenous melatonin on sleep and motor dysfunction in Parkinson’s disease. A randomized, double blind, placebo-controlled study. J Neurol 254:459–464

    Article  CAS  PubMed  Google Scholar 

  133. Kandel ER, Squire LR (2000) Neuroscience: breaking down scientific barriers to the study of brain and mind. Science 290:1113–1120

    Article  CAS  PubMed  Google Scholar 

  134. Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 72:971–983

    Article  Google Scholar 

  135. Browne SE, Beal MF (2006) Oxidative damage in Huntington’s disease pathogenesis. Antioxid redox signal 8:2061–2073

    Article  CAS  PubMed  Google Scholar 

  136. Rigamonti D, Bauer JH, De-Fraja C, Conti L, Sipione S, Sciorati C, Clementi E, Hackam A, Hayden MR, Li Y, Cooper JK, Ross CA, Govoni S, Vincenz C, Cattaneo E (2000) Wild-type huntingtin protects from apoptosis upstream of caspase-3. J Neurosci:Off J Soc Neurosci 20:3705–3713

    CAS  Google Scholar 

  137. Rigamonti D, Sipione S, Goffredo D, Zuccato C, Fossale E, Cattaneo E (2001) Huntingtin’s neuroprotective activity occurs via inhibition of procaspase-9 processing. J Biol Chem 276:14545–14548

    Article  CAS  PubMed  Google Scholar 

  138. Wang X, Figueroa BE, Stavrovskaya IG, Zhang Y, Sirianni AC, Zhu S, Day AL, Kristal BS, Friedlander RM (2009) Methazolamide and melatonin inhibit mitochondrial cytochrome C release and are neuroprotective in experimental models of ischemic injury. Stroke. J Cerebral Circ 40:1877–1885

    Article  CAS  Google Scholar 

  139. Wang X, Zhu S, Pei Z, Drozda M, Stavrovskaya IG, Del Signore SJ, Cormier K, Shimony EM, Wang H, Ferrante RJ, Kristal BS, Friedlander RM (2008) Inhibitors of cytochrome c release with therapeutic potential for Huntington’s disease. J Neurosci 28:473–9485

    Article  CAS  Google Scholar 

  140. Tunez I, Montilla P, Del Carmen MM, Feijoo M, Salcedo M (2004) Protective effect of melatonin on 3-nitropropionic acid-induced oxidative stress in synaptosomes in an animal model of Huntington’s disease. J Pineal Res 37:252–256

    Article  CAS  PubMed  Google Scholar 

  141. Schulz JB, Beal MF (1994) Mitochondrial dysfunction in movement disorders. Curr Opin Neurol 7:333–339

    Article  CAS  PubMed  Google Scholar 

  142. Southgate G, Daya S (1999) Melatonin reduces quinolinic acid-induced lipid peroxidation in rat brain homogenate. Metab Brain Dis 14:165–171

    Article  CAS  PubMed  Google Scholar 

  143. Christofides J, Bridel M, Egerton M, Mackay GM, Forrest CM, Stoy N, Darlington LG, Stone TW (2006) Blood 5-hydroxytryptamine, 5-hydroxyindoleacetic acid and melatonin levels in patients with either Huntington’s disease or chronic brain injury. J Neurochem 97:1078–1088

    Article  CAS  PubMed  Google Scholar 

  144. Aziz NA, Pijl H, Frolich M, Schroder-van der Elst JP, van der Bent C, Roelfsema F, Roos RA (2009) Delayed onset of the diurnal melatonin rise in patients with Huntington’s disease. J Neurol 256:1961–1965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Friedlander RM (2003) Apoptosis and caspases in neurodegenerative diseases. N Engl J Med 348:1365–1375

    Article  CAS  PubMed  Google Scholar 

  146. Przedborski S (2004) Programmed cell death in amyotrophic lateral sclerosis: a mechanism of pathogenic and therapeutic importance. Neurologist 10:1–7

    Article  PubMed  Google Scholar 

  147. Sathasivam S, Grierson AJ, Shaw PJ (2005) Characterization of the caspase cascade in a cell culture model of SOD1-related familial amyotrophic lateral sclerosis: expression, activation and therapeutic effects of inhibition. Neuropathol Appl Neurobiol 31:467–485

    Article  CAS  PubMed  Google Scholar 

  148. Ryu H, Smith K, Camelo SI, Carreras I, Lee J, Iglesias AH, Dangond F, Cormier KA, Cudkowicz ME, Brown RH Jr, Ferrante RJ (2005) Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice. J Neurochem 93:1087–1098

    Article  CAS  PubMed  Google Scholar 

  149. Weishaupt JH, Bartels C, Polking E, Dietrich J, Rohde G, Poeggeler B, Mertens N, Sperling S, Bohn M, Huther G, Schneider A, Bach A, Siren AL, Hardeland R, Bahr M, Nave KA, Ehrenreich H (2006) Reduced oxidative damage in ALS by high-dose enteral melatonin treatment. J Pineal Res 41:313–323

    Article  CAS  PubMed  Google Scholar 

  150. Rival T, Soustelle L, Strambi C, Besson MT, Iche M, Birman S (2004) Decreasing glutamate buffering capacity triggers oxidative stress and neuropil degeneration in the Drosophila brain. Curr Biol: CB 14:599–605

    Article  CAS  PubMed  Google Scholar 

  151. Jacob S, Poeggeler B, Weishaupt JH, Siren AL, Hardeland R, Bahr M, Ehrenreich H (2002) Melatonin as a candidate compound for neuroprotection in amyotrophic lateral sclerosis (ALS): high tolerability of daily oral melatonin administration in ALS patients. J Pineal Res 33:186–187

    Article  CAS  PubMed  Google Scholar 

  152. Das A, Wallace G 4th, Reiter RJ, Varma AK, Ray SK, Banik NL (2013) Overexpression of melatonin membrane receptors increases calcium-binding proteins and protects VSC4.1 motoneurons from glutamate toxicity through multiple mechanisms. J Pineal Res 54:58–68

    Article  CAS  PubMed  Google Scholar 

  153. Reed JC (2006) Drug insight: cancer therapy strategies based on restoration of endogenous cell death mechanisms. Nat Clin Pract Oncol 3:388–398

    Article  CAS  PubMed  Google Scholar 

  154. Cutando A, López-Valverde A, Arias-Santiago S, DE Vicente J, DE Diego RG (2012) Role of melatonin in cancer treatment. Anticancer Res 32:2747–2753

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors wish to acknowledge the research grant support from the Department of Biotechnology, India and the Council of Science and Industrial Research, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarika Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, N., Biswas, J., Nath, C. et al. Promising Role of Melatonin as Neuroprotectant in Neurodegenerative Pathology. Mol Neurobiol 52, 330–340 (2015). https://doi.org/10.1007/s12035-014-8865-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8865-8

Keywords

Navigation