Skip to main content

Oxidative stress in neurodegeneration: targeting mitochondria as a therapeutic aid

  • Chapter
  • First Online:
Metal Ions in Neurological Systems

Abstract

Increasing evidence links oxidative stress caused by radical overproduction and/or impaired antioxidant defenses with the onset of neurodegenerative diseases. Mitochondria have been shown to play a major role due to their specialized ability in producing free radicals joined with their sensitivity to the toxic effects of free radicals. The present article provides a short review of the sources of free radicals, the sites of their generation, the mitochondrial detoxifying systems and the consequences of oxidative stress. As main examples, the roles played by mitochondria in Alzheimer’s and Parkinson’s diseases are briefly considered. Finally, drugs targeting antioxidant moieties to mitochondria are shortly described and summarized

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taylor JP, Hardy J, Fischbeck KH (2002) Toxic proteins in neurodegenerative disease. Science 296:1991–1995

    Article  PubMed  CAS  Google Scholar 

  2. Patel VP, Chu CT (2011) Nuclear transport, oxidative stress, and neurodegeneration. Int J Clin Exp Pathol 4:215–229

    PubMed  CAS  Google Scholar 

  3. Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20:145–147

    PubMed  CAS  Google Scholar 

  4. Fernández-Checa JC, Fernández A, Morales A, Marí M, García-Ruiz C, Colell A (2010) Oxidative stress and altered mitochondrial function in neurodegenerative diseases: lessons from mouse models. CNS Neurol Disord Drug Targets 9:435–454

    Article  Google Scholar 

  5. Hoye AT, Davoren JE, Wipf P, Fink MP, Kagan VE (2008) Targeting mitochondria. Acc Chem Res 41:87–97

    Article  PubMed  CAS  Google Scholar 

  6. Baffy G (2005) Uncoupling protein-2 and non alcoholic fatty liver disease. Frontiers Biosci 10:2082–2096

    Article  CAS  Google Scholar 

  7. Sheu S-S, Nauduri D, Anders MW (2006) Targeting antioxidants to mitochondria: a new therapeutic direction. Biochim Biophys Acta Mol Basis Dis 1762:256–265

    Article  CAS  Google Scholar 

  8. Wood PM (1988) The potential diagram for oxygen at pH 7. Biochem J 253:287–289

    PubMed  CAS  Google Scholar 

  9. Freinbichler W, Colivicchi MA, Stefanini C, Bianchi L, Ballini C, Misini B, Weinberger P, Linert W, Varešlija D, Tipton KF, Della Corte L (2011) Highly reactive oxygen species: detection, formation, and possible functions. Cell Mol Life Sci 68:2067–2079

    Article  PubMed  CAS  Google Scholar 

  10. D’Autreaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824

    Article  PubMed  CAS  Google Scholar 

  11. Shukla V, Mishra SK, Pant HC (2011) Oxidative stress in neurodegeneration. Adv Pharmacol Sci 2011:572634, published online 2011 September 21. doi: 10.1155/2011/572634

  12. Walling C (1975) Fenton’s reagent revisited. Acc Chem Res 8:125–131

    Article  CAS  Google Scholar 

  13. Lloyd RV, Hanna PM, Mason RP (1997) The origin of the hydroxyl radical oxygen in the Fenton reaction. Free Radic Biol Med 22:885–888

    Article  PubMed  CAS  Google Scholar 

  14. Freinbichler W, Tipton KF, Della Corte L, Linert W (2009) Mechanistic aspects of the Fenton reaction under conditions approximated to the extracellular fluid. J Inorg Biochem 103:28–34

    Article  PubMed  CAS  Google Scholar 

  15. Merkofer M, Kissner R, Hider RC, Brunk UT, Koppenol WH (2006) Fenton chemistry and iron chelation under physiologically relevant conditions: electrochemistry and kinetics. Chem Res Toxicol 19:1263–1269

    Article  PubMed  CAS  Google Scholar 

  16. Kremer ML (2000) Is *OH the active Fenton intermediate in the oxidation of ethanol? J Inorg Biochem 78:255–257

    Article  PubMed  CAS  Google Scholar 

  17. Winterbourn CC (2008) Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 4:278–286

    Article  PubMed  CAS  Google Scholar 

  18. Andreyev AY, Kushnareva YE, Starkov AA (2005) Mitochondrial metabolism of reactive oxygen species. Biochem Mosc 70:200–214

    Article  CAS  Google Scholar 

  19. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    Article  PubMed  CAS  Google Scholar 

  20. Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495

    Article  PubMed  CAS  Google Scholar 

  21. Cadenas E, Davies KJ (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radical Biol Med 29:222–230

    Article  CAS  Google Scholar 

  22. Raha S, Robinson BH (2000) Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem 25:502–508

    Article  CAS  Google Scholar 

  23. Adam-Vizi V, Chinopoulos C (2006) Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci 27:639–645

    Article  PubMed  CAS  Google Scholar 

  24. Saugstad OD (1998) Chronic lung disease: the role of oxidative stress. Biol Neonate 74(suppl 1):21–28

    Article  PubMed  CAS  Google Scholar 

  25. Kennedy G, Spence VA, McLaren M, Hill A, Underwood C, Belch JJ (2005) Oxidative stress levels are raised in chronic fatigue syndrome and are associated with clinical symptoms. Free Radic Biol Med 39:584–589

    Article  PubMed  CAS  Google Scholar 

  26. Baynes JW (1991) Role of oxidative stress in development of complications in diabetes. Diabetes 40:405–412

    Article  PubMed  CAS  Google Scholar 

  27. Giugliano D, Ceriello A, Paolisso G (1996) Oxidative stress and diabetic vascular complications. Diabetes Care 19:257–267

    Article  PubMed  CAS  Google Scholar 

  28. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  PubMed  CAS  Google Scholar 

  29. Jensen PK (1966) Antimycin-insensitive oxidation of succinate and reduced nicotinamide-adenine dinucleotide in electron-transport particles. I. pH dependency and hydrogen peroxide formation. Biochim Biophys Acta 122:157–166

    Article  PubMed  CAS  Google Scholar 

  30. Loschen G, Flohe L, Chance B (1971) Respiratory chain linked H2O2 production in pigeon heart mitochondria. FEBS Lett 18:261–264

    Article  PubMed  CAS  Google Scholar 

  31. Loschen G, Azzi A, Richter C, Flohe L (1974) Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Lett 42:68–72

    Article  PubMed  CAS  Google Scholar 

  32. Forman HJ, Kennedy JA (1974) Role of superoxide radical in mitochondrial dehydrogenase reactions. Biochem Biophys Res Commun 60:1044–1050

    Article  PubMed  CAS  Google Scholar 

  33. Weisiger RA, Fridovich I (1973) Superoxide dismutase: organelle specificity. J Biol Chem 248:3582–3592

    PubMed  CAS  Google Scholar 

  34. Szeto HH (2006) Mitochondria-targeted peptide antioxidants: novel neuroprotective agents. AAPS J 8:E521–E531

    Article  PubMed  CAS  Google Scholar 

  35. Muller FL, Liu Y, Van RH (2004) Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem 279:49064–49073

    Article  PubMed  CAS  Google Scholar 

  36. Szeto HH (2006) Cell-permeable, mitochondrial-targeted, peptide antioxidants. AAPS J 8:E277–E283

    PubMed  CAS  Google Scholar 

  37. Alvarez B, Radi R (2003) Peroxynitrite reactivity with amino acids and proteins. Amino Acids 25:295–311

    Article  PubMed  CAS  Google Scholar 

  38. Greenacre SA, Ischiropoulos H (2001) Tyrosine nitration: localisation, quantification, consequences for protein function and signal transduction. Free Radic Res 34:541–581

    Article  PubMed  CAS  Google Scholar 

  39. Skulachev VP (1996) Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants. Q Rev Biophys 29:169–202

    Article  PubMed  CAS  Google Scholar 

  40. Sawyer DT, Valentine JS (1981) How super is superoxide? Acc Chem Res 14:393–400

    Article  CAS  Google Scholar 

  41. Nishino H, Ito A (1986) Subcellular distribution of OM cytochrome b-mediated NADH-semidehydroascorbate reductase activity in rat liver. J Biochem (Tokyo) 100:1523–1531

    CAS  Google Scholar 

  42. Whatley SA, Curti D, Das Gupta F, Ferrier IN, Jones S, Taylor C, Marchbanks RM (1998) Superoxide, neuroleptics and the ubiquinone and cytochrome b5 reductases in brain and lymphocytes from normals and schizophrenic patients. Mol Psychiatry 3:227–237

    Article  PubMed  CAS  Google Scholar 

  43. Hauptmann N, Grimsby J, Shih JC, Cadenas E (1996) The metabolism of tyramine by monoamine oxidase A/B causes oxidative damage to mitochondrial DNA. Arch Biochem Biophys 335:295–304

    Article  PubMed  CAS  Google Scholar 

  44. Kunduzova OR, Bianchi P, Parini A, Cambon C (2002) Hydrogen peroxide production by monoamine oxidase during ischemia/reperfusion. Eur J Pharmacol 448:225–230

    Article  PubMed  CAS  Google Scholar 

  45. Maurel A, Hernandez C, Kunduzova O, Bompart G, Cambon C, Parini A, Frances B (2003) Age-dependent increase in hydrogen peroxide production by cardiac monoamine oxidase A in rats. Am J Physiol Heart Circ Physiol 284:H1460–H1467

    PubMed  CAS  Google Scholar 

  46. Kumar MJ, Nicholls DG, Andersen JK (2003) Oxidative a-ketoglutarate dehydrogenase inhibition via subtle elevations in monoamine oxidase B levels results in loss of spare respiratory capacity: implications for Parkinson’s disease. J Biol Chem 278:46432–46439

    Article  PubMed  CAS  Google Scholar 

  47. Loffler M, Becker C, Wegerle E, Schuster G (1996) Catalytic enzyme histochemistry and biochemical analysis of dihydroorotate dehydrogenase/oxidase and succinate dehydrogenase in mammalian tissues, cells and mitochondria. Histochem Cell Biol 105:119–128

    Article  PubMed  CAS  Google Scholar 

  48. Koza RA, Kozak UC, Brown LJ, Leiter EH, MacDonald MJ, Kozak LP (1996) Sequence and tissue-dependent RNA expression of mouse FAD-linked glycerol-3-phosphate dehydrogenase. Arch Biochem Biophys 336:97–104

    Article  PubMed  CAS  Google Scholar 

  49. Kwong LK, Sohal RS (1998) Substrate and site specificity of hydrogen peroxide generation in mouse mitochondria. Arch Biochem Biophys 350:118–126

    Article  PubMed  CAS  Google Scholar 

  50. Zhang L, Yu L, Yu CA (1998) Generation of superoxide anion by succinate-cytochrome c reductase from bovine heart mitochondria. J Biol Chem 273:33972–33976

    Article  PubMed  CAS  Google Scholar 

  51. Gardner PR (2002) Aconitase: sensitive target and measure of superoxide. Methods Enzymol 349:9–23

    Article  PubMed  CAS  Google Scholar 

  52. Vasquez-Vivar J, Kalyanaraman B, Kennedy MC (2000) Mitochondrial aconitase is a source of hydroxyl radical. An electron spin resonance investigation. J Biol Chem 275:14064–14069

    Article  PubMed  CAS  Google Scholar 

  53. Tretter L, Adam-Vizi V (2004) Generation of reactive oxygen species in the reaction catalyzed by α-ketoglutarate dehydrogenase. J Neurosci 24:7771–7778

    Article  PubMed  CAS  Google Scholar 

  54. Starkov AA, Fiskum G, Chinopoulos C, Lorenzo BJ, Browne SE, Patel MS, Beal MF (2004) Mitochondrial α-ketoglutarate dehydrogenase complex generates reactive oxygen species. J Neurosci 24:7779–7788

    Article  PubMed  CAS  Google Scholar 

  55. Skulachev VP (1988) Membrane bioenergetics. Springer, New York

    Book  Google Scholar 

  56. Cadenas E, Boveris A, Ragan CI, Stoppani AO (1977) Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch Biochem Biophys 180:248–257

    Article  PubMed  CAS  Google Scholar 

  57. Genova ML, Ventura B, Giuliano G, Bovina C, Formiggini G, Parenti Castelli G, Lenaz G (2001) The site of production of superoxide radical in mitochondrial Complex I is not a bound ubisemiquinone but presumably iron-sulfur cluster N2. FEBS Lett 505:364–368

    Article  PubMed  CAS  Google Scholar 

  58. Kang D, Narabayashi H, Sata T, Takeshige K (1983) Kinetics of superoxide formation by respiratory chain NADH-dehydrogenase of bovine heart mitochondria. J Biochem (Tokyo) 94:1301–1306

    CAS  Google Scholar 

  59. Kudin AP, Bimpong-Buta NY, Vielhaber S, Elger CE, Kunz WS (2004) Characterization of superoxide-producing sites in isolated brain mitochondria. J Biol Chem 279:4127–4135

    Article  PubMed  CAS  Google Scholar 

  60. Krishnamoorthy G, Hinkle PC (1988) Studies on the electron transfer pathway, topography of iron-sulfur centers, and site of coupling in NADH-Q oxidoreductase. J Biol Chem 263:17566–17575

    PubMed  CAS  Google Scholar 

  61. Hinkle PC, Butow RA, Racker E, Chance B (1967) Partial resolution of the enzymes catalyzing oxidative phosphorylation. XV. Reverse electron transfer in the flavin-cytochrome beta region of the respiratory chain of beef heart submitochondrial particles. J Biol Chem 242:5169–5173

    PubMed  CAS  Google Scholar 

  62. Starkov AA, Fiskum G (2003) Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state. J Neurochem 86:1101–1107

    Article  PubMed  CAS  Google Scholar 

  63. Herrero A, Barja G (2000) Localization of the site of oxygen radical generation inside the complex I of heart and nonsynaptic brain mammalian mitochondria. J Bioenerg Biomembr 32:609–615

    Article  PubMed  CAS  Google Scholar 

  64. Sipos I, Tretter L, Adam-Vizi V (2003) Quantitative relationship between inhibition of respiratory complexes and formation of reactive oxygen species in isolated nerve terminals. J Neurochem 84:112–118

    Article  PubMed  CAS  Google Scholar 

  65. Trumpower BL (1990) The protonmotive Q cycle. Energy transduction by coupling of proton translocation to electron transfer by the cytochrome bc1 complex. J Biol Chem 265:11409–11412

    PubMed  CAS  Google Scholar 

  66. Dionisi O, Galeotti T, Terranova T, Azzi A (1975) Superoxide radicals and hydrogen peroxide formation in mitochondria from normal and neoplastic tissues. Biochim Biophys Acta 403:292–300

    Article  PubMed  CAS  Google Scholar 

  67. Boveris A, Cadenas E, Stoppani AO (1976) Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem J 156:435–444

    PubMed  CAS  Google Scholar 

  68. Crofts AR, Barquera B, Gennis RB, Kuras R, Guergova-Kuras M, Berry EA (1999) Mechanism of ubiquinol oxidation by the bc1 complex: different domains of the quinol binding pocket and their role in the mechanism and binding of inhibitors. Biochemistry 38:15807–15826

    Article  PubMed  CAS  Google Scholar 

  69. Zhang Z, Huang L, Shulmeister VM, Chi YI, Kim KK, Hung LW, Crofts AR, Berry EA, Kim SH (1998) Electron transfer by domain movement in cytochrome bc1. Nature 392:677–684

    Article  PubMed  CAS  Google Scholar 

  70. Turrens JF (1997) Superoxide production by the mitochondrial respiratory chain. Biosci Rep 17:3–8

    Article  PubMed  CAS  Google Scholar 

  71. Lass A, Forster MJ, Sohal RS (1999) Effects of coenzyme Q10 and a-tocopherol administration on their tissue levels in the mouse: elevation of mitochondrial a-tocopherol by coenzyme Q10. Free Radic Biol Med 26:1375–1382

    Article  PubMed  CAS  Google Scholar 

  72. Packer L, Weber SU, Rimbach G (2001) Molecular aspects of α-tocotrienol antioxidant action and cell signalling. J Nutr 131:369S–373S

    PubMed  CAS  Google Scholar 

  73. Imai H, Nakagawa Y (2003) Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Rad Biol Med 34:145–169

    Article  PubMed  CAS  Google Scholar 

  74. Gardner PR, Raineri I, Epstein LB, White CW (1995) Superoxide radical and iron modulate aconitase activity in mammalian cells. J Biol Chem 270:13399–13405

    Article  PubMed  CAS  Google Scholar 

  75. Hackenbrock CR, Chazotte B, Gupte SS (1986) The random collision model and a critical assessment of diffusion and collision in mitochondrial electron transport. J Bioenerg Biomembr 18:331–368

    Article  PubMed  CAS  Google Scholar 

  76. McCord JM, Fridovich I (1970) The utility of superoxide dismutase in studying free radical reactions. II. The mechanism of the mediation of cytochrome c reduction by a variety of electron carriers. J Biol Chem 245:1374–1377

    PubMed  CAS  Google Scholar 

  77. Mailer K (1990) Superoxide radical as electron donor for oxidative phosphorylation of ADP. Biochem Biophys Res Commun 170:59–64

    Article  PubMed  CAS  Google Scholar 

  78. Pereverzev MO, Vygodina TV, Konstantinov AA, Skulachev VP (2003) Cytochrome c, an ideal antioxidant. Biochem Soc Trans 31:1312–1315

    Article  PubMed  CAS  Google Scholar 

  79. Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci 61:192–208

    Article  PubMed  CAS  Google Scholar 

  80. Wahllander A, Soboll S, Sies H, Linke I, Muller M (1979) Hepatic mitochondrial and cytosolic glutathione content and the subcellular distribution of GSH-S-transferases. FEBS Lett 97:138–140

    Article  PubMed  CAS  Google Scholar 

  81. Mårtensson J, Lai JC, Meister A (1990) High-affinity transport of glutathione is part of a multicomponent system essential for mitochondrial function. Proc Natl Acad Sci USA 87:7185–7189

    Article  PubMed  Google Scholar 

  82. Griffith OW, Meister A (1985) Origin and turnover of mitochondrial glutathione. Proc Natl Acad Sci USA 82:4668–4672

    Article  PubMed  CAS  Google Scholar 

  83. Chen Z, Lash LH (1998) Evidence for mitochondrial uptake of glutathione by dicarboxylate and 2-oxoglutarate carriers. J Pharmacol Exp Ther 285:608–618

    PubMed  CAS  Google Scholar 

  84. Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62:649–671

    Article  PubMed  CAS  Google Scholar 

  85. Raza H, Robin MA, Fang JK, Avadhani NG (2002) Multiple isoforms of mitochondrial glutathione S-transferases and their differential induction under oxidative stress. Biochem J 366:45–55

    PubMed  CAS  Google Scholar 

  86. Olafsdottir K, Reed DJ (1988) Retention of oxidized glutathione by isolated rat liver mitochondria during hydroperoxide treatment. Biochim Biophys Acta 964:377–382

    Article  PubMed  CAS  Google Scholar 

  87. Zoccarato F, Cavallini L, Alexandre A (2004) Respiration-dependent removal of exogenous H2O2 in brain mitochondria: inhibition by Ca2+. J Biol Chem 279:4166–4174

    Article  PubMed  CAS  Google Scholar 

  88. Wood ZA, Schroder E, Robin Harris J, Poole LB (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28:32–40

    Article  PubMed  CAS  Google Scholar 

  89. Petrosillo G, Ruggiero FM, Pistolese M, Paradies G (2001) Reactive oxygen species generated from the mitochondrial electron transport chain induce cytochrome c dissociation from beef-heart submitochondrial particles via cardiolipin peroxidation: possible role in the apoptosis. FEBS Lett 509:435–438

    Article  PubMed  CAS  Google Scholar 

  90. Petrosillo G, Ruggiero FM, Paradies G (2003) Role of reactive oxygen species and cardiolipin in the release of cytochrome c from mitochondria. FASEB J 17:2202–2208

    Article  PubMed  CAS  Google Scholar 

  91. Shidoji Y, Hayashi K, Komura S, Ohishi N, Yagi K (1999) Loss of molecular interaction between cytochrome c and cardiolipin due to lipid peroxidation. Biochem Biophys Res Commun 264:343–347

    Article  PubMed  CAS  Google Scholar 

  92. Vieira HL, Belzacq AS, Haouzi D, Bernassola F, Cohen I, Jacotot E, Ferri KF, El Hamel C, Bartle LM, Melino G, Brenner C, Goldmacher V, Kroemer G (2001) The adenine nucleotide translocator: a target of nitric oxide, peroxynitrite, and 4-hydroxynonenal. Oncogene 20:4305–4316

    Article  PubMed  CAS  Google Scholar 

  93. Ott M, Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S (2002) Cytochrome c release from mitochondria proceeds by a two-step process. Proc Natl Acad Sci USA 99:1259–1263

    Article  PubMed  CAS  Google Scholar 

  94. Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157

    Article  PubMed  CAS  Google Scholar 

  95. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  PubMed  CAS  Google Scholar 

  96. Cecconi F, Piacentini M, Fimia GM (2008) The involvement of cell death and survival in neural tube defects: a distinct role for apoptosis and autophagy. Cell Death Differ 15:1170–1177

    Article  PubMed  CAS  Google Scholar 

  97. Reddy PH, Beal MF (2005) Are mitochondria critical in the pathogenesis of Alzheimer’s disease? Brain Res Rev 49:618–632

    Article  PubMed  CAS  Google Scholar 

  98. Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716

    Article  PubMed  CAS  Google Scholar 

  99. McNaught KS, Olanow CW, Halliwell B, Isacson O, Jenner P (2001) Failure of the ubiquitin–proteasome system in Parkinson’s disease. Nat Rev Neurosci 2:589–594

    Article  PubMed  CAS  Google Scholar 

  100. Bence NF, Sampat RM, Kopito RR (2001) Impairment of the ubiquitin–proteasome system by protein aggregation. Science 292:1552–1555

    Article  PubMed  CAS  Google Scholar 

  101. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  PubMed  CAS  Google Scholar 

  102. Li MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  CAS  Google Scholar 

  103. Sun J, Folk D, Bradley TJ, Tower J (2002) Induced overexpression of mitochondrial Mn-superoxide dismutase extends the life span of adult Drosophila melanogaster. Genetics 161:661–672

    PubMed  CAS  Google Scholar 

  104. Ruan H, Thang HD, Chen ML, Joiner ML, Sun G, Brot N, Weissbach H, Heinemann SH, Iverson L, Wu CF, Hoshi T (2002) High-quality life extension by the enzyme peptide methionine sulfoxide reductase. Proc Natl Acad Sci USA 99:2748–2753

    Article  PubMed  CAS  Google Scholar 

  105. Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, Rabinovitch PS (2005) Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308:1909–1911

    Article  PubMed  CAS  Google Scholar 

  106. Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK, Jones PK, Ghanbari H, Wataya T, Shimohama S, Chiba S, Atwood CS, Petersen RB, Smith MA (2001) Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 60:759–767

    PubMed  CAS  Google Scholar 

  107. Pratico D, Uryu K, Leight S, Trojanoswki JQ, Lee VM (2001) Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci 21:4183–4187

    PubMed  CAS  Google Scholar 

  108. Reddy PH, McWeeney S, Park BS, Manczak M, Gutala RV, Partovi D, Jung Y, Yau V, Searles R, Mori M, Quinn J (2004) Gene expression profiles of transcripts in amyloid precursor protein transgenic mice: up-regulation of mitochondrial metabolism and apoptotic genes is an early cellular change in Alzheimer’s disease. Hum Mol Genet 13:1225–1240

    Article  PubMed  CAS  Google Scholar 

  109. Tamagno E, Parola M, Bardini P, Piccini A, Borghi R, Guglielmotto M, Santoro G, Davit A, Danni O, Smith MA, Perry G, Tabaton M (2005) β-Site APP cleaving enzyme up-regulation induced by 4-hydroxynonenal is mediated by stress-activated protein kinases pathways. J Neurochem 92:628–636

    Article  PubMed  CAS  Google Scholar 

  110. Lovell MA, Xiong S, Xie C, Davies P, Markesbery WR (2004) Induction of hyperphosphorylated tau in primary rat cortical neuron cultures mediated by oxidative stress and glycogen synthase kinase-3. J Alzheimers Dis 6:659–671

    PubMed  CAS  Google Scholar 

  111. Anandatheerthavarada HK, Biswas G, Robin MA, Avadhani NG (2003) Mitochondrial targeting and a novel transmembrane arrest of Alzheimer’s amyloid precursor protein impairs mitochondrial function in neuronal cells. J Cell Biol 161:41–54

    Article  PubMed  CAS  Google Scholar 

  112. Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, Caspersen C, Chen X, Pollak S, Chaney M, Trinchese F, Liu S, Gunn-Moore F, Lue L-F, Walker DG, Kuppusamy P, Zewier ZL, Arancio O, Stern D, Yan SS, Wu H (2004) ABAD directly links Aβ to mitochondrial toxicity in Alzheimer’s disease. Science 304:448–452

    Article  PubMed  CAS  Google Scholar 

  113. Casley CS, Canevari L, Land JM, Clark JB, Sharpe MA (2002) β-amyloid inhibits integrated mitochondrial respiration and key enzyme activities. J Neurochem 80:91–100

    Article  PubMed  CAS  Google Scholar 

  114. Park HJ, Seong YM, Choi JY, Kang S, Rhim H (2004) Alzheimer’s disease-associated amyloid β interacts with the human serine protease HtrA2/Omi. Neurosci Lett 357:63–67

    Article  PubMed  CAS  Google Scholar 

  115. Hansson CA, Frykman S, Farmery MR, Tjernberg LO, Nilsberth C, Pursglove SE, Ito A, Winblad B, Cowburn RF, Thyberg J, Ankarcrona M (2004) Nicastrin, presenilin, APH-1, and PEN-2 form active γ-secretase complexes in mitochondria. J Biol Chem 279:51654–51660

    Article  PubMed  CAS  Google Scholar 

  116. Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, Miller GW, Yagi T, Matsuno-Yagi A, Greenamyre JT (2003) Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci 23:10756–10764

    PubMed  CAS  Google Scholar 

  117. Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1:1269

    Article  PubMed  CAS  Google Scholar 

  118. Martin LJ, Pan Y, Price AC, Sterling W, Copeland NG, Jenkins NA, Price DL, Lee MK (2006) Parkinson’s disease α-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J Neurosci 26:41–50

    Article  PubMed  CAS  Google Scholar 

  119. Muftuoglu M, Elibol B, Dalmızrak Ö, Ercan A, Kulaksız G, Ögüs H, Dalkara T, Özer N (2004) Mitochondrial complex I and IV activities in leukocytes from patients with parkin mutations. Mov Disord 19:544–548

    Article  PubMed  Google Scholar 

  120. Darios F, Corti O, Lücking CB, Hampe C, Muriel M-P, Abbas N, Gu W-J, Hirsch EC, Rooney T, Ruberg M, Brice A (2003) Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death. Hum Mol Genet 12:517–526

    Article  PubMed  CAS  Google Scholar 

  121. Kuroda Y, Mitsui T, Kunishige M, Shono M, Akaike M, Azuma H, Matsumoto T (2006) Parkin enhances mitochondrial biogenesis in proliferating cells. Hum Mol Genet 15:883–895

    Article  PubMed  CAS  Google Scholar 

  122. Chung KK, Thomas B, Li X, Pletnikova O, Troncoso JC, Marsh L, Dawson VL, Dawson TM (2004) S-nitrosylation of parkin regulates ubiquitination and compromises parkin’s protective function. Science 304:1328–1331

    Article  PubMed  CAS  Google Scholar 

  123. Meulener MC, Graves CL, Sampathu DM, Armstrong-Gold CE, Bonini NM, Giasson BI (2005) DJ-1 is present in a large molecular complex in human brain tissue and interacts with α-synuclein. J Neurochem 93:1524–1532

    Article  PubMed  CAS  Google Scholar 

  124. Moore DJ, Zhang L, Troncoso J, Lee MK, Hattori N, Mizuno Y, Dawson TM, Dawson VL (2005) Association of DJ-1 and parkin mediated by pathogenic DJ-1 mutations and oxidative stress. Hum Mol Genet 14:71–84

    Article  PubMed  CAS  Google Scholar 

  125. Tang B, Xiong H, Sun P, Zhang Y, Wang D, Hu Z, Zhu Z, Ma H, Pan Q, Xia J-h, Xia K, ZhangPan Z (2006) Association of PINK1 and DJ-1 confers digenic inheritance of early-onset Parkinson’s disease. Hum Mol Genet 15:1816–1825

    Article  PubMed  CAS  Google Scholar 

  126. Canet-Aviles RM, Wilson MA, Miller DW, Ahmad R, McLendon C, Bandyopadhyay S, Baptista MJ, Ringe D, Petsko GA, Cookson MR (2004) The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci USA 101:9103–9108

    Article  PubMed  CAS  Google Scholar 

  127. Silvestri L, Caputo V, Bellacchio E, Atorino L, Dallapiccola B, Valente EM, Casari G (2005) Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Hum Mol Genet 14:3477–3492

    Article  PubMed  CAS  Google Scholar 

  128. West AB, Moore DJ, Biskup S, Bugayenko A, Smith WW, Ross CA, Dawson VL, Dawson TM (2005) Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci USA 102:16842–16847

    Article  PubMed  CAS  Google Scholar 

  129. James AM, Murphy MP (2002) How mitochondrial damage affects cell function. J Biomed Sci 9:475–487

    Article  PubMed  CAS  Google Scholar 

  130. Galley HF (2010) Bench-to-bedside review: targeting antioxidants to mitochondria in sepsis. Crit Care 14:230

    PubMed  Google Scholar 

  131. Smith RAJ, Porteous AM, Coulter CV, Murphy MP (1999) Selective targeting of an antioxidant to mitochondria. Eur J Biochem 263:709–716

    Article  PubMed  CAS  Google Scholar 

  132. Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC, Smith RA, Murphy MP (2001) Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem 276:4588–4596

    Article  PubMed  CAS  Google Scholar 

  133. Dhanasekaran A, Kotamraju S, Kalivendi SV, Matsunaga T, Shang T, Keszler A, Joseph J, Kalyanaraman B (2004) Supplementation of endothelial cells with mitochondria-targeted antioxidants inhibit peroxide-induced mitochondrial iron uptake, oxidative damage, and apoptosis. J Biol Chem 279:37575–37587

    Article  PubMed  CAS  Google Scholar 

  134. Adlam VJ, Harrison JC, Porteous CM, James AM, Smith RA, Murphy MP, Sammut IA (2005) Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. FASEB J 19:1088–1095

    Article  PubMed  CAS  Google Scholar 

  135. Graham D, Huynh NN, Hamilton CA, Beattie E, Smith RA, Cochemé HM, Murphy MP, Dominiczak AF (2009) Mitochondria-targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy. Hypertension 54:322–328

    Article  PubMed  CAS  Google Scholar 

  136. Antipodean Pharmaceuticals, Inc. homepage. http://www.antipodeanpharma.com/

  137. Skulachev VP, Anisimov VN, Antonenko YN, Bakeeva LE, Chernyak BV, Erichev VP, Filenko OF, Kalinina NI, Kapelko VI, Kolosova NG, Kopnin BP, Korshunova GA, Lichinitser MR, Obukhova LA, Pasyukova EG, Pisarenko OI, Roginsky VA, Ruuge EK, Senin II, Severina II, Skulachev MV, Spivak IM, Tashlitsky VN, Tkachuk VA, Vyssokikh MY, Yaguzhinsky LS, Zorov DB (2009) An attempt to prevent senescence: a mitochondrial approach. Biochim Biophys Acta 1787:437–461

    Article  PubMed  CAS  Google Scholar 

  138. Duby G, Boutry M (2002) Mitochondrial protein import machinery and targeting information. Plant Sci 162:477–490

    Article  CAS  Google Scholar 

  139. Eilers M, Hwang S, Schatz G (1988) Unfolding and refolding of a purified precursor protein during import into isolated mitochondria. EMBO J 7:1139–1145

    PubMed  CAS  Google Scholar 

  140. Neupert W (1997) Protein import into mitochondria. Annu Rev Biochem 66:863–917

    Article  PubMed  CAS  Google Scholar 

  141. Matsuura S, Arpin M, Hannum C, Margoliash E, Sabatini DD, Morimoto T (1981) In vitro synthesis and posttranslational uptake of cytochrome c into isolated mitochondria: Role of a specific addressing signal in the apocytochrome. Proc Natl Acad Sci USA 78:4368–4372

    Article  PubMed  CAS  Google Scholar 

  142. Rosenblum JS, Gilula NB, Lerner RA (1996) On signal sequence polymorphisms and diseases of distribution. Proc Natl Acad Sci USA 93:4471–4473

    Article  PubMed  CAS  Google Scholar 

  143. Von Heijne G (1986) Mitochondrial targeting sequences may form amphiphilic helices. EMBO J 5:1335–1342

    Google Scholar 

  144. Brix J, Dietmeier K, Pfanner N (1997) Differential recognition preproteins by the purified cytosolic domains of the mitochondrial import receptors Tom20, Tom22, and Tom70. J Biol Chem 272:20730–20735

    Article  PubMed  CAS  Google Scholar 

  145. Zhao K, Zhao G-M, Wu D, Soong Y, Birk AV, Schiller PW, Szeto HH (2004) Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem 279:34682–34690

    Article  PubMed  CAS  Google Scholar 

  146. Wipf P, Xiao J, Jiang J, Belikova NA, Tyurin VA, Fink MP, Kagan VE (2005) Mitochondrial targeting of selective electron scavengers: synthesis and biological analysis of hemigramicidin-TEMPO conjugates. J Am Chem Soc 127:12460–12461

    Article  PubMed  CAS  Google Scholar 

  147. Winterbourn CC, Parsons-Mair HN, Gebicki S, Gebicki JM, Davies MJ (2004) Requirements for superoxide-dependent tyrosine hydroperoxide formation in peptides. Biochem J 381:241.248

    PubMed  Google Scholar 

  148. Ban S, Nakagawa H, Suzuki T, Miyata N (2007) Novel membrane-localizing TEMPO derivatives for measurement of cellular oxidative stress at the cell membrane. Bioorg Med Chem Lett 17:1451–1454

    Article  PubMed  CAS  Google Scholar 

  149. Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74

    Article  PubMed  CAS  Google Scholar 

  150. Malkus KA, Tsika E, Ischiropoulos H (2009) Oxidative modifications, mitochondrial dysfunction, and impaired protein degradation in Parkinson’s disease: how neurons are lost in the Bermuda triangle. Mol Neurodegener 4:24. doi:10.1186/1750-1326-4-24

    Article  PubMed  CAS  Google Scholar 

  151. Migliore L, Coppedè F (2009) Environmental-induced oxidative stress in neurodegenerative disorders and aging. Mutat Res 674:73–84

    Article  PubMed  CAS  Google Scholar 

  152. Roberts RA, Laskin DL, Smith CV, Robertson FM, Allen EMG, Doorn JA, Slikkerk W (2009) Nitrative and oxidative stress in toxicology and disease. Toxicol Sci 112:4–16

    Article  PubMed  CAS  Google Scholar 

  153. Takashima A (2009) Amyloid-β, Tau, and dementia. J Alzheimer’s Dis 17:729–736

    CAS  Google Scholar 

  154. Moreira PI (2010) Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease. Eur Neurol Rev 5:17–21

    Google Scholar 

  155. Douglas PM, Dillin A (2010) Protein homeostasis and aging in neurodegeneration. J Cell Biol 190:719–729

    Article  PubMed  CAS  Google Scholar 

  156. Squier TC. Oxidative stress and protein aggregation during biological aging

    Google Scholar 

  157. Gidalevitz T, Kikis EA, Morimoto RI (2010) A cellular perspective on conformational disease: the role of genetic background and proteostasis networks. Curr Opin Struct Biol 20:23–32

    Article  PubMed  CAS  Google Scholar 

  158. Voisine C, Pedersen JS, Morimoto RI (2010) Chaperone networks: tipping the balance in protein folding diseases. Neurobiol Dis 40:12–20

    Article  PubMed  CAS  Google Scholar 

  159. Kikis EA, Gidalevitz T, Morimoto RI (2010) Protein homeostasis in models of aging and age-related conformational disease. Adv Exp Med Biol 694:138–159

    Article  PubMed  CAS  Google Scholar 

  160. Khalil M, Teunissen C, Langkammer C (2011) Iron and neurodegeneration in multiple sclerosis. Multiple Sclerosis Int 2011. Article ID 606807, doi:10.1155/2011/606807

  161. Farooqui T, Farooqui AA (2011) Lipid-mediated oxidative stress and inflammation in the pathogenesis of parkinson's disease. Parkinson’s Dis 2011. Article ID 247467. doi:10.4061/2011/247467

  162. Barsukova AG, Bourdette D, Forte M (2011) Mitochondrial calcium and its regulation in neurodegeneration induced by oxidative stress. Eur J Neurosci 34:437–447

    Article  PubMed  Google Scholar 

  163. Numakawa T, Matsumoto T, Numakawa Y, Richards M, Yamawaki S, Kunugi, H (2011) J Toxicol 2011. Article ID 405194, doi:10.1155/2011/405194

Download references

Acknowledgments

We acknowledge Prof. Henryk Kozlowski for his continuous support and suggestions. We also want to apologize for all the reports we have not mentioned. The number of records found by any motor of research is incredibly huge and it is practically impossible to mention all the work done, especially in the last 5–10 years. Among the literature reports, many review articles can be found [2, 149163].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianni Valensin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Gaggelli, E., Valensin, G. (2012). Oxidative stress in neurodegeneration: targeting mitochondria as a therapeutic aid. In: Linert, W., Kozlowski, H. (eds) Metal Ions in Neurological Systems. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1001-0_12

Download citation

Publish with us

Policies and ethics