Skip to main content
Log in

Asymmetric anisotropic fractional Sobolev norms

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

Bourgain, Brezis, and Mironescu showed that (with suitable scaling) the fractional Sobolev s-seminorm of a function \({f \in W^{1,p}(\mathbb{R}^n)}\) converges to the Sobolev seminorm of f as \({s\rightarrow1^-}\) . Ludwig introduced the anisotropic fractional Sobolev s-seminorms of f defined by a norm on \({\mathbb{R}^n}\) with unit ball K and showed that they converge to the anisotropic Sobolev seminorm of f defined by the norm whose unit ball is the polar L p moment body of K, as \({s \rightarrow 1^-}\) . The asymmetric anisotropic s-seminorms are shown to converge to the anisotropic Sobolev seminorm of f defined by the Minkowski functional of the polar asymmetric L p moment body of K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Alvino et al., Convex symmetrization and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997), 275–293.

  2. J. Bourgain, H. Brezis and P. Mironescu, Another look at Sobolev spaces, Optimal Control and Partial Differential Equations, A volume in honor of A. Bensoussans’s 60th birthday (Amsterdam) (J. L. Menaldi, E. Rofman, and A. Sulemn, eds.), IOS Press, 2001, pp. 439–455.

  3. J. Bourgain, H. Brezis and P. Mironescu, Limiting embedding theorems for W s.p when \({s \uparrow 1}\) and applications, J. Anal. Math. 87 (2002), 77–101, Dedicated to the memory of Thomas H. Wolff.

  4. Cordero-Erausquin D., Nazaret B., Villani C.: A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities. Adv. Math. 182, 307–332 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Di Nezza E., Palatucci G., Valdinoci E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. L. Evans and R. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.

  7. Figalli A., Maggi F., Pratelli A.: Sharp stability theorems for the anisotropic Sobolev and log-Sobolev inequalities on functions of bounded variation. Adv. Math. 242, 80–101 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gagliardo E.: Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili. Rend. Sem. Mat. Univ. Padova 27, 284–305 (1957)

    MATH  MathSciNet  Google Scholar 

  9. R. J. Gardner, Geometric tomography, 2nd ed., Cambridge Univ. Press, New York, 2006.

  10. M. Gromov, Isoperimetric inequalities in Riemannian manifolds, Asymptotic Theory of Finite-dimensional Normed Spaces (V. D. Milman and G. Schechtman, eds.), Springer-Verlag, Berlin Heidelberg, 1986, pp. 114–129.

  11. Haberl C.: Minkowski valuations intertwining the special linear group. J. Eur. Math. Soc. 14, 1565–1597 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Haberl C., Schuster F.: General L p affine isoperimetric inequalities. J. Differential Geom. 83, 1–26 (2009)

    MATH  MathSciNet  Google Scholar 

  13. Ludwig M.: Ellipsoids and matrix valued valuations. Duke Math. J. 119, 159–188 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ludwig M.: Minkowski valuations. Trans. Amer. Math. Soc. 357, 4191–4213 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ludwig M.: Minkowski areas and valuations. J. Differential Geom. 86, 133–161 (2010)

    MATH  MathSciNet  Google Scholar 

  16. Ludwig M.: Anisotropic fractional perimeters. J. Differential Geom. 96, 77–93 (2014)

    MATH  MathSciNet  Google Scholar 

  17. Ludwig M.: Anisotropic fractional Sobolev norms. Adv. Math. 252, 150–157 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lutwak E.: Centroid bodies and dual mixed volumes. Proc. London Math. Soc. 60, 365–391 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  19. E. Lutwak, D. Yang, and G. Zhang, L p affine isoperimetric inequalities, J. Differential Geom. 56 (2000), 111–132.

  20. E. Lutwak, D. Yang, and G. Zhang, A new ellipsoid associated with convex bodes, Duke. Math. J. 104 (2000), 375–390.

  21. E. Lutwak, D. Yang, and G. Zhang, The Cramer-Rao inequality for star bodies, Duke Math. J. 112 (2002), 59–81.

  22. E. Lutwak, D. Yang, and G. Zhang, Moment-entropy inequalities, Ann. Probab. 32 (2004), 757–774.

  23. E. Lutwak, D. Yang, and G. Zhang, Orlicz centroid bodies, J. Differential Geom. 84 (2010), 365–387.

  24. V. G. Maz’ya, Sobolev spaces with applications to elliptic partial differential equations, augmented ed., Grundlehren der Mathematischen Wissenschaften, vol. 342, Springer-Verlag, Berlin Heidelberg, 2011.

  25. Paouris G. A.: Concentration of mass on convex bodies. Geom. Funct. Anal. 16, 1021–1049 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. G. A. Paouris and E. Werner, Relative entropy of cone measures and L p centroid bodies. Proc. Lond. Math. Soc. 104 (2012), no. 2, 253–286.

  27. L. Parapatits, SL(n)-contravariant L p -Minkowski valuations, Trans. Amer. Math. Soc. 366 (2014), 1195–1211.

  28. Parapatits L.: SL(n)-covariant L p -Minkowski valuations. J. London Math. Soc. 89, 397–414 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  29. Ponce A.: A new approach to Sobolev spaces and connections to Γ-convergence. Calc. Var. Partial Differential Equations 19, 229–255 (2004)

    Article  MathSciNet  Google Scholar 

  30. D. Spector, Characterization of Sobolev and BV spaces, Ph.D. thesis, Carnegie Mellon University, 2011.

  31. Wannerer T.: GL(n) equivariant Minkowski valuations. Indiana Univ. Math. J. 60, 1655–1672 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, D. Asymmetric anisotropic fractional Sobolev norms. Arch. Math. 103, 167–175 (2014). https://doi.org/10.1007/s00013-014-0680-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-014-0680-y

Mathematics Subject Classification

Keywords

Navigation