Skip to main content
Log in

Anisotropic fractional Sobolev extension and its applications

  • Original Paper
  • Published:
Annals of Functional Analysis Aims and scope Submit manuscript

Abstract

In this paper, we show that every function in an anisotropic fractional Sobolev space defined on a regular domain extends to a function defined on the whole \({\mathbb {R}}^n\) with the same Sobolev indices. As an application, we get that such functions are Hölder continuous and we give an explicit estimate for the continuity exponent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronszajn, N.: Boundary values of functions with finite Dirichlet integral. Tech. Rep. Univ. Kans. 14, 77–94 (1955)

    MATH  Google Scholar 

  2. Bagby, R.J.: An extended inequality for the maximal function. Proc. Am. Math. Soc. 48, 419–422 (1975)

    Article  MathSciNet  Google Scholar 

  3. Boggarapu, P., Roncal, L., Thangavelu, S.: Mixed norm estimates for the Cesàro means associated with Dunkl–Hermite expansions. Trans. Am. Math. Soc. 369(10), 7021–7047 (2017)

    Article  Google Scholar 

  4. Carneiro, E., Oliveira e Silva, D., Sousa, M.: Sharp mixed norm spherical restriction. Adv. Math. 341, 583–608 (2019)

    Article  MathSciNet  Google Scholar 

  5. Cleanthous, G., Georgiadis, A.G.: Mixed-norm \(\alpha \)-modulation spaces. Trans. Am. Math. Soc. 373(5), 3323–3356 (2020)

    Article  MathSciNet  Google Scholar 

  6. Córdoba, A., Latorre Crespo, E.: Radial multipliers and restriction to surfaces of the Fourier transform in mixed-norm spaces. Math. Z. 286(3–4), 1479–1493 (2017)

    Article  MathSciNet  Google Scholar 

  7. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  8. Gagliardo, E.: Proprietà di alcune classi di funzioni in più variabili. Ricerche Mat. 7, 102–137 (1958)

    MathSciNet  MATH  Google Scholar 

  9. Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific Publishing Co., Inc., River Edge (2003)

    Book  Google Scholar 

  10. Hajłasz, P., Koskela, P., Tuominen, H.: Measure density and extendability of Sobolev functions. Rev. Mat. Iberoam. 24(2), 645–669 (2008)

    Article  MathSciNet  Google Scholar 

  11. Hart, J., Torres, R.H., Wu, X.: Smoothing properties of bilinear operators and Leibniz-type rules in Lebesgue and mixed Lebesgue spaces. Trans. Am. Math. Soc. 370(12), 8581–8612 (2018)

    Article  MathSciNet  Google Scholar 

  12. Huang, L., Liu, J., Yang, D., Yuan, W.: Atomic and Littlewood–Paley characterizations of anisotropic mixed-norm hardy spaces and their applications. J. Geom. Anal. 29(3), 1991–2067 (2019)

    Article  MathSciNet  Google Scholar 

  13. Huang, L., Liu, J., Yang, D., Yuan, W.: Dual spaces of anisotropic mixed-norm Hardy spaces. Proc. Am. Math. Soc. 147(3), 1201–1215 (2019)

    Article  MathSciNet  Google Scholar 

  14. Huang, L., Liu, J., Yang, D., Yuan, W.: Identification of anisotropic mixed-norm Hardy spaces and certain homogeneous Triebel–Lizorkin spaces. J. Approx. Theory 258, Paper No. 105459 (2020)

    Article  MathSciNet  Google Scholar 

  15. Jonsson, A., Wallin, H.: A Whitney extension theorem in \(L_{p}\) and Besov spaces. Ann. Inst. Fourier (Grenoble) 28(1), 139–192 (1978)

  16. Li, P., Stinga, P.R., Torrea, J.L.: On weighted mixed-norm Sobolev estimates for some basic parabolic equations. Commun. Pure Appl. Anal. 16(3), 855–882 (2017)

    Article  MathSciNet  Google Scholar 

  17. Rubio de Francia, J.L., Ruiz, F.J., Torrea, J.L.: Calderón–Zygmund theory for operator-valued kernels. Adv. Math. 62, 7–48 (1986)

    Article  MathSciNet  Google Scholar 

  18. Shvartsman, P.: Local approximations and intrinsic characterization of spaces of smooth functions on regular subsets of \({{\mathbb{R}}}^n\). Math. Nachr. 279(11), 1212–1241 (2006)

    Article  MathSciNet  Google Scholar 

  19. Slobodeckiĭ, L.N.: Generalized Sobolev spaces and their application to boundary problems for partial differential equations. Leningrad. Gos. Ped. Inst. Učen. Zap. 197, 54–112 (1958)

    MathSciNet  Google Scholar 

  20. Stefanov, A., Torres, R.H.: Calderón–Zygmund operators on mixed Lebesgue spaces and applications to null forms. J. Lond. Math. Soc. (2) 70(2), 447–462 (2004)

    Article  Google Scholar 

  21. Torres, R.H., Ward, E.L.: Leibniz’s rule, sampling and wavelets on mixed Lebesgue spaces. J. Fourier Anal. Appl. 21(5), 1053–1076 (2015)

    Article  MathSciNet  Google Scholar 

  22. Xu, C., Sun, W.: An embedding theorem for anisotropic fractional Sobolev spaces. Banach J. Math. Anal. 15(4), Paper No. 63 (2021)

  23. Zhou, Y.: Fractional Sobolev extension and imbedding. Trans. Am. Math. Soc. 367(2), 959–979 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the referees very much for valuable suggestions. This work was partially supported by the National Natural Science Foundation of China (12171250 and U21A20426)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenchang Sun.

Additional information

Communicated by Feng Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Sun, W. Anisotropic fractional Sobolev extension and its applications. Ann. Funct. Anal. 13, 41 (2022). https://doi.org/10.1007/s43034-022-00184-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43034-022-00184-7

Keywords

Mathematics Subject Classification

Navigation