Skip to main content

Advertisement

Log in

Exosomal PPARγ derived from macrophages suppresses LPS-induced peritonitis by negative regulation of CD14/TLR4 axis

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

Intercellular communication between macrophages and peritoneal mesothelial cells (PMCs) has been suggested as a key factor regulating peritonitis development. Here, we explored whether PPARγ (peroxisome proliferator-activated receptor gamma) can be packaged into macrophage exosomes to mediate intercellular communication and regulate peritonitis.

Methods

Macrophage exosomes were isolated by ultracentrifugation and identified by nanoparticle tracking analysis and transmission electron microscopy. Proteomic analysis of macrophage-derived exosomes was performed using mass spectrometry. Co-culture models of supernatants or exosomes with PMCs, as well as a mouse peritonitis model induced by lipopolysaccharide (LPS), were employed.

Results

 In this study, using stable Raw264.7 cells overexpressing GFP-FLAG-PPARγ (OE-PPARγ), we found that PPARγ inhibited LPS-induced inflammatory responses in Raw264.7 cells and that PPARγ was incorporated into macrophage exosomes during this process. Overexpression of PPARγ mainly regulated the secretion of differentially expressed exosomal proteins involved in the biological processes of protein transport, lipid metabolic process, cell cycle, apoptotic process, DNA damage stimulus, as well as the KEGG pathway of salmonella infection. Using co-culture models and mouse peritonitis model, we showed that exosomes from Raw264.7 cells overexpressing PPARγ inhibited LPS-induced inflammation in co-cultured human PMCs and in mice through downregulating CD14 and TLR4, two key regulators of the salmonella infection pathway. Pretreatment of the PPARγ inhibitor GW9662 abolished the anti-inflammatory effect of exosomes from Raw264.7 OE-PPARγ cells on human PMCs.

Conclusions

These results suggested that overexpression of PPARγ largely altered the proteomic profile of macrophage exosomes and that exosomal PPARγ from macrophages acted as a regulator of intercellular communication to suppress LPS-induced inflammatory responses in vitro and in vivo via negatively regulating the CD14/TLR4 axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during the current study are available in the ProteomeXchange Consortium via the PRIDE partner repository with the identifier PXD039203 (http://www.proteomexchange.org/). All other data generated during this study are included in this published article and its supplementary information file.

Abbreviations

CD14:

Cluster of differentiation 14

CD63:

Cluster of differentiation 63

FDR:

False discovery rate

HE:

Hematoxylin–eosin

IHC:

Immunohistochemistry

IL-1β:

Interleukin 1β

iNOS:

Inducible nitric oxide synthase

KEGG:

Kyoto encyclopedia of genes and genomes

LPS:

Lipopolysaccharide

MS:

Mass spectrometry

NTA:

Nanoparticle tracking analysis

OE-PPARγ:

Overexpression of PPARγ

OE-V:

Overexpression of vector

PD:

Peritoneal dialysis

PMCs:

Peritoneal mesothelial cells

PPARγ:

Peroxisome proliferator-activated receptor gamma

qRT-PCR:

Quantitative real-time PCR

TEM:

Transmission electron microscopy

TNF-α:

Tumor necrosis factor-alpha

TLR4:

Toll-like receptor 4

References

  1. Mehrotra R, Devuyst O, Davies SJ, Johnson DW. The current state of peritoneal dialysis. J Am Soc Nephrol. 2016;27:3238–52. https://doi.org/10.1681/ASN.2016010112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Terri M, Trionfetti F, Montaldo C, Cordani M, Tripodi M, Lopez-Cabrera M, Strippoli R. Mechanisms of peritoneal fibrosis: focus on immune cells-peritoneal stroma interactions. Front Immunol. 2021;12: 607204. https://doi.org/10.3389/fimmu.2021.607204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nochaiwong S, et al. A clinical risk prediction tool for peritonitis-associated treatment failure in peritoneal dialysis patients. Sci Rep. 2018;8:14797. https://doi.org/10.1038/s41598-018-33196-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mutsaers SE, Birnie K, Lansley S, Herrick SE, Lim CB, Prele CM. Mesothelial cells in tissue repair and fibrosis. Front Pharmacol. 2015;6:113. https://doi.org/10.3389/fphar.2015.00113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wilm B, Munoz-Chapuli R. The role of WT1 in embryonic development and normal organ homeostasis. Methods Mol Biol. 2016;1467:23–39. https://doi.org/10.1007/978-1-4939-4023-3_3.

    Article  PubMed  Google Scholar 

  6. Yung S, Chan TM. Pathophysiological changes to the peritoneal membrane during PD-related peritonitis: the role of mesothelial cells. Mediat Inflamm. 2012;2012: 484167. https://doi.org/10.1155/2012/484167.

    Article  Google Scholar 

  7. Topley N, Mackenzie RK, Williams JD. Macrophages and mesothelial cells in bacterial peritonitis. Immunobiology. 1996;195:563–73. https://doi.org/10.1016/S0171-2985(96)80022-2.

    Article  CAS  PubMed  Google Scholar 

  8. Langston PK, et al. Glycerol phosphate shuttle enzyme GPD2 regulates macrophage inflammatory responses. Nat Immunol. 2019;20:1186–95. https://doi.org/10.1038/s41590-019-0453-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. He C, Zheng S, Luo Y, Wang B. Exosome theranostics: biology and translational medicine. Theranostics. 2018;8:237–55. https://doi.org/10.7150/thno.21945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020. https://doi.org/10.1126/science.aau6977.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhang X, Yuan X, Shi H, Wu L, Qian H, Xu W. Exosomes in cancer: small particle, big player. J Hematol Oncol. 2015;8:83. https://doi.org/10.1186/s13045-015-0181-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Simpson RJ, Lim JW, Moritz RL, Mathivanan S. Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics. 2009;6:267–83. https://doi.org/10.1586/epr.09.17.

    Article  CAS  PubMed  Google Scholar 

  13. Carvalho MV, Goncalves-de-Albuquerque CF, Silva AR. PPAR gamma: from definition to molecular targets and therapy of lung diseases. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22020805.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Montaigne D, Butruille L, Staels B. PPAR control of metabolism and cardiovascular functions. Nat Rev Cardiol. 2021;18:809–23. https://doi.org/10.1038/s41569-021-00569-6.

    Article  CAS  PubMed  Google Scholar 

  15. Vallee A, Lecarpentier Y. Crosstalk between peroxisome proliferator-activated receptor gamma and the canonical WNT/beta-catenin pathway in chronic inflammation and oxidative stress during carcinogenesis. Front Immunol. 2018;9:745. https://doi.org/10.3389/fimmu.2018.00745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li Z, Feng J, Yang S, Meng P, Li J, Li H, Gao X, Zhang Y. Lipopolysaccharide-induced inflammation in human peritoneal mesothelial cells is controlled by ERK1/2-CDK5-PPARgamma axis. Ann Transl Med. 2021;9:850. https://doi.org/10.21037/atm-21-1623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature. 1998;391:82–6. https://doi.org/10.1038/34184.

    Article  CAS  PubMed  Google Scholar 

  18. Brunmeir R, Xu F. Functional regulation of PPARs through post-translational modifications. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19061738.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pascual G, et al. A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature. 2005;437:759–63. https://doi.org/10.1038/nature03988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hernandez-Quiles M, Broekema MF, Kalkhoven E. PPARgamma in metabolism, immunity, and cancer: unified and diverse mechanisms of action. Front Endocrinol (Lausanne). 2021;12: 624112. https://doi.org/10.3389/fendo.2021.624112.

    Article  PubMed  Google Scholar 

  21. Ho MM, Manughian-Peter A, Spivia WR, Taylor A, Fraser DA. Macrophage molecular signaling and inflammatory responses during ingestion of atherogenic lipoproteins are modulated by complement protein C1q. Atherosclerosis. 2016;253:38–46. https://doi.org/10.1016/j.atherosclerosis.2016.08.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ran L, et al. Cx3cr1 deficiency in mice attenuates hepatic granuloma formation during acute schistosomiasis by enhancing the M2-type polarization of macrophages. Dis Model Mech. 2015;8:691–700. https://doi.org/10.1242/dmm.018242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao M, Bian YY, Yang LL, Chen YQ, Wang YJ, Ma YT, Pei YQ, Li WL, Zeng L. HuoXueTongFu formula alleviates intraperitoneal adhesion by regulating macrophage polarization and the SOCS/JAK2/STAT/PPAR-gamma signalling pathway. Mediators Inflamm. 2019;2019:1769374. https://doi.org/10.1155/2019/1769374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang YF, Zou XL, Wu J, Yu XQ, Yang X. Rosiglitazone, a peroxisome proliferator-activated receptor (PPAR)-gamma agonist, attenuates inflammation via NF-kappaB inhibition in lipopolysaccharide-induced peritonitis. Inflammation. 2015;38:2105–15. https://doi.org/10.1007/s10753-015-0193-2.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Y, Feng J, Wang Q, Zhao S, Xu J, Li H. PPAR-gamma agonist rosiglitazone ameliorates peritoneal deterioration in peritoneal dialysis rats with LPS-induced peritonitis through up-regulation of AQP-1 and ZO-1. 2018. Biosci Rep. https://doi.org/10.1042/BSR20180009.

  26. Looze C, et al. Proteomic profiling of human plasma exosomes identifies PPARgamma as an exosome-associated protein. Biochem Biophys Res Commun. 2009;378:433–8. https://doi.org/10.1016/j.bbrc.2008.11.050.

    Article  CAS  PubMed  Google Scholar 

  27. Gao X, et al. ZSWIM1 promotes the proliferation and metastasis of lung adenocarcinoma cells through the STK38/MEKK2/ERK1/2 axis. J Proteome Res. 2022. https://doi.org/10.1021/acs.jproteome.2c00412.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhang HT, et al. TRIM21-regulated Annexin A2 plasma membrane trafficking facilitates osteosarcoma cell differentiation through the TFEB-mediated autophagy. Cell Death Dis. 2021;12:21. https://doi.org/10.1038/s41419-020-03364-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gao X, et al. hnRNPK inhibits GSK3beta Ser9 phosphorylation, thereby stabilizing c-FLIP and contributes to TRAIL resistance in H1299 lung adenocarcinoma cells. Sci Rep. 2016;6:22999. https://doi.org/10.1038/srep22999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zeng QZ, Liu WT, Lu JL, Liu XH, Zhang YF, Liu LX, Gao XJ. YWHAZ binds to TRIM21 but is not involved in TRIM21-stimulated osteosarcoma cell proliferation. Biomed Environ Sci. 2018;31:186–96. https://doi.org/10.3967/bes2018.024.

    Article  CAS  PubMed  Google Scholar 

  31. Feng J, Lu M, Li W, Li J, Meng P, Li Z, Gao X, Zhang Y. PPARgamma alleviates peritoneal fibrosis progression along with promoting GLUT1 expression and suppressing peritoneal mesothelial cell proliferation. Mol Cell Biochem. 2022;477:1959–71. https://doi.org/10.1007/s11010-022-04419-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Miao J, et al. Wnt/beta-catenin/RAS signaling mediates age-related renal fibrosis and is associated with mitochondrial dysfunction. Aging Cell. 2019;18: e13004. https://doi.org/10.1111/acel.13004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Simons M, Raposo G. Exosomes–vesicular carriers for intercellular communication. Curr Opin Cell Biol. 2009;21:575–81. https://doi.org/10.1016/j.ceb.2009.03.007.

    Article  CAS  PubMed  Google Scholar 

  34. Lee SM, Son KN, Shah D, Ali M, Balasubramaniam A, Shukla D, Aakalu VK. Histatin-1 attenuates LPS-induced inflammatory signaling in RAW264.7 macrophages. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22157856.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang G, et al. Proteomic profiling of LPS-induced macrophage-derived exosomes indicates their involvement in acute liver injury. Proteomics. 2019;19: e1800274. https://doi.org/10.1002/pmic.201800274.

    Article  CAS  PubMed  Google Scholar 

  36. Hui WW, Hercik K, Belsare S, Alugubelly N, Clapp B, Rinaldi C, Edelmann MJ. Salmonella enterica serovar Typhimurium alters the extracellular proteome of macrophages and leads to the production of proinflammatory exosomes. Infect Immun. 2018. https://doi.org/10.1128/IAI.00386-17.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang JJ, Chen C, Xie PF, Pan Y, Tan YH, Tang LJ. Proteomic analysis and immune properties of exosomes released by macrophages infected with Mycobacterium avium. Microbes Infect. 2014;16:283–91. https://doi.org/10.1016/j.micinf.2013.12.001.

    Article  CAS  PubMed  Google Scholar 

  38. Bouhlel MA, et al. PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab. 2007;6:137–43. https://doi.org/10.1016/j.cmet.2007.06.010.

    Article  CAS  PubMed  Google Scholar 

  39. Wu MM, Wang QM, Huang BY, Mai CT, Wang CL, Wang TT, Zhang XJ. Dioscin ameliorates murine ulcerative colitis by regulating macrophage polarization. Pharmacol Res. 2021;172: 105796. https://doi.org/10.1016/j.phrs.2021.105796.

    Article  CAS  PubMed  Google Scholar 

  40. Zhou JP, Yang XN, Song Y, Zhou F, Liu JJ, Hu YQ, Chen LG. Rosiglitazone alleviates lipopolysaccharide-induced inflammation in RAW264.7 cells via inhibition of NF-kappaB and in a PPARgamma-dependent manner. Exp Ther Med. 2021;22:743. https://doi.org/10.3892/etm.2021.10175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ciesielska A, Matyjek M, Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol Life Sci. 2021;78:1233–61. https://doi.org/10.1007/s00018-020-03656-y.

    Article  CAS  PubMed  Google Scholar 

  42. Plociennikowska A, Hromada-Judycka A, Dembinska J, Roszczenko P, Ciesielska A, Kwiatkowska K. Contribution of CD14 and TLR4 to changes of the PI(4,5)P2 level in LPS-stimulated cells. J Leukoc Biol. 2016;100:1363–73. https://doi.org/10.1189/jlb.2VMA1215-577R.

    Article  CAS  PubMed  Google Scholar 

  43. Wensink AC, Kemp V, Fermie J, Garcia Laorden MI, van der Poll T, Hack CE, Bovenschen N. Granzyme K synergistically potentiates LPS-induced cytokine responses in human monocytes. Proc Natl Acad Sci USA. 2014;111:5974–9. https://doi.org/10.1073/pnas.1317347111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ryu JK, et al. Reconstruction of LPS transfer cascade reveals structural determinants within LBP, CD14, and TLR4-MD2 for efficient LPS recognition and transfer. Immunity. 2017;46:38–50. https://doi.org/10.1016/j.immuni.2016.11.007.

    Article  CAS  PubMed  Google Scholar 

  45. Gioannini TL, Teghanemt A, Zhang D, Levis EN, Weiss JP. Monomeric endotoxin:protein complexes are essential for TLR4-dependent cell activation. J Endotoxin Res. 2005;11:117–23. https://doi.org/10.1179/096805105X35198.

    Article  CAS  PubMed  Google Scholar 

  46. Schappe MS, et al. Chanzyme TRPM7 mediates the Ca(2+) influx essential for lipopolysaccharide-induced toll-like receptor 4 endocytosis and macrophage activation. Immunity. 2018;48:59-74 e5. https://doi.org/10.1016/j.immuni.2017.11.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kagan JC, Su T, Horng T, Chow A, Akira S, Medzhitov R. TRAM couples endocytosis of toll-like receptor 4 to the induction of interferon-beta. Nat Immunol. 2008;9:361–8. https://doi.org/10.1038/ni1569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (81800675; 81860143; 82200758), Medical Scientific Research Foundation of Guangdong Province of China (A2021251), Guangdong Basic and Applied Basic Research Foundation (2023A1515011221; 2023A1515010248), China Postdoctoral Science Foundation (2018M633085), Guangzhou Science and Technology Project (202201010034). Open project supported by the Key Laboratory of tumor molecular biology of the Ministry of education of Jinan University (202203).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. MM and ML contributed to the execution of most experiments and data analysis. JF, XZ, PM, LC and XL contributed to the performance of the rest experiments. MM, LL, XG and YZ wrote the first draft of the manuscript. XZ, LL, XG and YZ contributed to the conception and design of the experiment, data analysis, drafted the manuscript and approved the final version to be published.

Corresponding authors

Correspondence to Langxia Liu, Xuejuan Gao or Yunfang Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

All animal procedures were approved by the Experimental Animal Ethics Committee of Jinan University, Guangzhou, China (approval number: 100041).

Additional information

Responsible Editor: L Li.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 334 KB)

11_2023_1765_MOESM2_ESM.xlsx

Supplementary file2Table S1. Differentially secreted proteins of exosomes from the indicated groups identified in this study (XLSX 463 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, M., Lu, M., Feng, J. et al. Exosomal PPARγ derived from macrophages suppresses LPS-induced peritonitis by negative regulation of CD14/TLR4 axis. Inflamm. Res. 72, 1567–1581 (2023). https://doi.org/10.1007/s00011-023-01765-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-023-01765-5

Keywords

Navigation