Skip to main content
Log in

Rosiglitazone, a Peroxisome Proliferator-Activated Receptor (PPAR)-γ Agonist, Attenuates Inflammation Via NF-κB Inhibition in Lipopolysaccharide-Induced Peritonitis

  • Published:
Inflammation Aims and scope Submit manuscript

ABSTRACT

We assessed the anti-inflammatory effect of peroxisome proliferator-activated receptor (PPAR)-γ agonist, rosiglitazone, in a lipopolysaccharide (LPS)-induced peritonitis rat model. LPS was intraperitoneally injected into rats to establish peritonitis model. Male Sprague–Dawley (SD) rats were assigned to normal saline (the solvent of LPS), LPS, rosiglitazone plus LPS, and rosiglitazone alone. A simple peritoneal equilibrium test was performed with 20 ml 4.25 % peritoneal dialysis fluid. We measured the leukocyte count in dialysate and ultrafiltration volume. Peritoneal membrane histochemical staining was performed, and peritoneal thickness was assessed. CD40 and intercellular adhesion molecule-1 messenger RNA (ICAM-1 mRNA) levels in rat visceral peritoneum were detected by reverse transcription (RT)-PCR. IL-6 in rat peritoneal dialysis effluent was measured using enzyme-linked immunosorbent assay. The phosphorylation of NF-κB-p65 and IκBα was analyzed by Western blot. LPS administration resulted in increased peritoneal thickness and decreased ultrafiltration volume. Rosiglitazone pretreatment significantly decreased peritoneal thickness. In addition to CD40 and ICAM-1 mRNA expression, the IL-6, p-p65, and p-IκBα protein expressions were enhanced in LPS-administered animals. Rosiglitazone pretreatment significantly decreased ICAM-1 mRNA upregulation, secretion of IL-6 protein, and phosphorylation of NF-κB-p65 and IκBα without decreasing CD40 mRNA expression. Rosiglitazone has a protective effect in peritonitis, simultaneously decreasing NF-κB phosphorylation, suggesting that NF-κB signaling pathway mediated peritoneal inflammation induced by LPS. PPAR-γ might be considered a potential therapeutic target against peritonitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Krediet, R.T. 2007. 30 years of peritoneal dialysis development: the past and the future. Peritoneal Dialysis International 27: S35–S41.

    PubMed  Google Scholar 

  2. Gokal, R. 2002. Peritoneal dialysis in the 21st century: an analysis of current problems and future developments. Journal of the American Society of Nephrology 13: S104–S116.

    CAS  PubMed  Google Scholar 

  3. Fan, X., R. Huang, J. Wang, H. Ye, Q. Guo, C. Yi, J. Lin, Q. Zhou, F. Shao, X. Yu, and X. Yang. 2014. Risk factors for the first episode of peritonitis in Southern Chinese continuous ambulatory peritoneal dialysis patients. PLoS ONE 9, e107485.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Szeto, C.C., and K.M. Chow. 2007. Gram-negative peritonitis—the Achilles heel of peritoneal dialysis? Peritoneal Dialysis International 27: S267–S271.

    PubMed  Google Scholar 

  5. Feng, X., X. Yang, C. Yi, Q. Guo, H. Mao, Z. Jiang, Z. Li, D. Chen, Y. Cui, and X. Yu. 2014. Escherichia coli peritonitis in peritoneal dialysis: the prevalence, antibiotic resistance and clinical outcomes in a South China dialysis center. Peritoneal Dialysis International 34: 308–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Devuyst, O., P.J. Margetts, and N. Topley. 2010. The pathophysiology of the peritoneal membrane. Journal of the American Society of Nephrology 21: 1077–1085.

    Article  CAS  PubMed  Google Scholar 

  7. Park, J.H., Y.G. Kim, M. Shaw, T.D. Kanneganti, Y. Fujimoto, K. Fukase, N. Inohara, and G. Núñez. 2007. Nod1/RICK and TLR signaling regulate chemokine and antimicrobial innate immune responses in mesothelial cells. Journal of Immunology 179: 514–521.

    Article  CAS  Google Scholar 

  8. Laman, J.D., M. de Boer, and B.A. Hart. 1998. CD40 in clinical inflammation: from multiple sclerosis to atherosclerosis. Developmental Immunology 6: 215–222.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Zhang, Y.F., X. Yang, Y.J. Zhang, Y.L. Sun, X.L. Zou, Q.Y. Kong, X.Q. Dong, X.Q. Ye, and X.Q. Yu. 2006. Peroxisome proliferator-activated receptor-gamma is expressed by rat peritoneal mesothelial cells: its potential role in peritoneal cavity local defense. American Journal of Nephrology 26: 602–611.

    Article  CAS  PubMed  Google Scholar 

  10. Wu, J., X. Yang, Y.F. Zhang, S.F. Zhou, R. Zhang, X.Q. Dong, J.J. Fan, M. Liu, and X.Q. Yu. 2009. Angiotensin II upregulates Toll-like receptor 4 and enhances lipopolysaccharide-induced CD40 expression in rat peritoneal mesothelial cells. Inflammation Research 58: 473–482.

    Article  CAS  PubMed  Google Scholar 

  11. Forman, B.M., P. Tontonoz, J. Chen, R.P. Brun, B.M. Spiegelman, and R.M. Evans. 1995. 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 83: 803–12.

    Article  CAS  PubMed  Google Scholar 

  12. Lehmann, J.M., L.B. Moore, T.A. Smith-Oliver, W.O. Wilkison, T.M. Willson, and S.A. Kliewer. 1995. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). Journal of Biological Chemistry 270: 12953–6.

    Article  CAS  PubMed  Google Scholar 

  13. Blanquart, C., O. Barbier, J.C. Fruchart, B. Staels, and C. Glineur. 2003. Peroxisome proliferator-activated receptors: regulation of transcriptional activities and roles in inflammation. Journal of Steroid Biochemistry and Molecular Biology 85: 267–73.

    Article  CAS  PubMed  Google Scholar 

  14. Liu, D., Z. Geng, W. Zhu, H. Wang, Y. Chen, and J. Liang. 2014. 15-deoxy-Δ12,14-prostaglandin J2 ameliorates endotoxin-induced acute lung injury in rats. Chinese Medical Journal 127: 815–20.

    CAS  PubMed  Google Scholar 

  15. Kim, J.C., Y.H. Lee, M.K. Yu, N.H. Lee, J.D. Park, G. Bhattarai, and H.K. Yi. 2012. Anti-inflammatory mechanism of PPAR γ on LPS-induced pulp cells: role of the ROS removal activity. Archives of Oral Biology 57: 392–400.

    Article  CAS  PubMed  Google Scholar 

  16. Nizamutdinova, I.T., Y.M. Kim, H.J. Kim, H.G. Seo, J.H. Lee, and K.C. Chang. 2009. Carbon monoxide (from CORM-2) inhibits high glucose-induced ICAM-1 expression via AMP-activated protein kinase and PPAR-gamma activations in endothelial cells. Atherosclerosis 207: 405–11.

    Article  CAS  PubMed  Google Scholar 

  17. Sauter, M., K. Kastenmüller, F. Belling, M. Wörnle, R. Ladurner, T. Mussack, and T. Sitter. 2012. Activation of peroxisome proliferator-activated receptor-gamma by glitazones reduces the expression and release of monocyte chemoattractant protein-1 in human mesothelial cells. Mediators of Inflammation 2012: 217696.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Sandoval, P., J. Loureiro, G. González-Mateo, M.L. Pérez-Lozano, A. Maldonado-Rodríguez, J.A. Sánchez-Tomero, L. Mendoza, B. Santamaría, A. Ortiz, M. Ruíz-Ortega, R. Selgas, P. Martín, F. Sánchez-Madrid, A. Aguilera, and M. López-Cabrera. 2010. PPAR-γ agonist rosiglitazone protects peritoneal membrane from dialysis fluid-induced damage. Laboratory Investigation 90: 1517–32.

    Article  CAS  PubMed  Google Scholar 

  19. Sun, H., Y. Huang, X. Yu, Y. Li, J. Yang, R. Li, Y. Deng, and G. Zhao. 2008. Peroxisome proliferator-activated receptor gamma agonist, rosiglitazone, suppresses CD40 expression and attenuates inflammatory responses after lithium pilocarpine-induced status epilepticus in rats. International Journal of Developmental Neuroscience 26: 505–15.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, Y.J., X. Yang, Q.Y. Kong, Y.F. Zhang, W.Y. Chen, X.Q. Dong, X.Y. Li, and X.Q. Yu. 2006. Effect of 15d-PGJ2 on the expression of CD40 and RANTES induced by IFN-gamma and TNF-alpha on renal tubular epithelial cells (HK-2). American Journal of Nephrology 26: 356–62.

    Article  PubMed  Google Scholar 

  21. Kielian, T., M. McMahon, E.D. Bearden, A.C. Baldwin, P.D. Drew, and N. Esen. 2004. S. aureus-dependent microglial activation is selectively attenuated by the cyclopentenone prostaglandin 15-deoxy-delta12,14- prostaglandin J2 (15d-PGJ2). Journal of Neurochemistry 90: 1163–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Hontecillas, R., W.T. Horne, M. Climent, A.J. Guri, C. Evans, Y. Zhang, B.W. Sobral, and J. Bassaganya-Riera. 2011. Immunoregulatory mechanisms of macrophage PPAR-γ in mice with experimental inflammatory bowel disease. Mucosal Immunology 4: 304–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Luo, Y., C. Liang, C. Xu, Q. Jia, D. Huang, L. Chen, K. Wang, Z. Wu, and J. Ge. 2004. Ciglitazone inhibits oxidized-low density lipoprotein induced immune maturation of dendritic cells. Journal of Cardiovascular Pharmacology 44: 381–5.

    Article  CAS  PubMed  Google Scholar 

  24. Wakino, S., U. Kintscher, Z. Liu, S. Kim, F. Yin, M. Ohba, T. Kuroki, A.H. Schonthal, W.A. Hsueh, and R.E. Law. 2001. Peroxisome proliferator-activated receptor gamma ligands inhibit mitogenic induction of p21(Cip1) by modulating the protein kinase C delta pathway in vascular smooth muscle cells. Journal of Biological Chemistry 276: 47650–47657.

    Article  CAS  PubMed  Google Scholar 

  25. Gosset, P., A.S. Charbonnier, P. Delerive, J. Fontaine, B. Staels, J. Pestel, A.B.. Tonnel, and F. Trottein. 2001. Peroxisome proliferator-activated receptor gamma activators affect the maturation of human monocyte-derived dendritic cells. European Journal of Immunology 31(10): 2857–65.

  26. Hayden, M.S., and S. Ghosh. 2008. Shared principles in NF-κB signaling. Cell 132: 344–362.

    Article  CAS  PubMed  Google Scholar 

  27. Yamamoto, Y., and R.B. Gaynor. 2004. IkappaB kinases: key regulators of the NF-kappaB pathway. Trends in Biochemical Sciences 29: 72–79.

    Article  CAS  PubMed  Google Scholar 

  28. Cruz, M.T., C.B. Duarte, M. Gonçalo, A.P. Carvalho, and M.C. Lopes. 2001. LPS induction of I kappa B-alpha degradation and iNOS expression in a skin dendritic cell line is prevented by the Janus kinase 2 inhibitor, tyrphostin b42. Nitric Oxide 5(1): 53–61.

    Article  CAS  PubMed  Google Scholar 

  29. Taggart, C.C., C.M. Greene, N.G. McElvaney, and S. O’Neill. 2002. Secretory leucoprotease inhibitor prevents lipopolysaccharide-induced IkappaBalpha degradation without affecting phosphorylation or ubiquitination. Journal of Biological Chemistry 277(37): 33648–53.

    Article  CAS  PubMed  Google Scholar 

  30. Verma, I.M., J.K. Stevenson, E.M. Schwarz, D. Van Antwerp, and S. Miyamoto. 1995. Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. Genes and Development 9(22): 2723–35.

    Article  CAS  PubMed  Google Scholar 

  31. Liu, Z.N., M. Zhao, Q. Zheng, H.Y. Zhao, W.J. Hou, and S.L. Bai. 2013. Inhibitory effects of rosiglitazone on paraquat-induced acute lung injury in rats. Acta Pharmacologica Sinica 34: 1317–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. He, X., L. Feng, H. Meng, X. Wang, and S. Liu. 2012. Rosiglitazone protects dopaminergic neurons against lipopolysaccharide-induced neurotoxicity through inhibition of microglia activation. International Journal of Neuroscience 122: 532–40.

    Article  CAS  PubMed  Google Scholar 

  33. Leypoldt, J.K., C.D. Kemerath, and J.F. Gilson. 2007. Acute peritonitis in a C57BL/6 mouse model of peritoneal dialysis. Advances in Peritoneal Dialysis 23: 66–70.

    CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was funded by the Key Clinical Discipline Program of the Ministry of Health, China (Grant No. [2010]439), the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2011BAI10B05), the Program of National Key Clinical Specialties, and Guangzhou Committee of Science and Technology, China (Grant No. 2010U1-E00831), and the program of Huadu district science and technology, Guangzhou, China (Grant No.13-HDWS2003).

Author Contributions

Prof Xiao YANG and Prof Xue-Qing YU conceived the study, participated in its design and coordination, and helped in drafting the manuscript. Dr. Yun-Fang ZHANG and Xun-Liang ZOU participated in study design, carried out the laboratory experiments, analyzed the data, interpreted the results, and wrote the manuscript. Jun WU carried out the laboratory experiments. All authors have approved the final version of the manuscript. We thank Ms. Xiu-Qing DONG and Dr Wen-Xing PENG for their technical advice and assistance.

Conflict of Interest

The authors declare that they have no competing interests.

Ethical approval

All experiments involving animals were approved by the Animal Care and Use Committee of the Sun Yat-sen University, Guangdong, China and carried out in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Yang.

Additional information

Yun-Fang Zhang and Xun-Liang Zou contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YF., Zou, XL., WU, J. et al. Rosiglitazone, a Peroxisome Proliferator-Activated Receptor (PPAR)-γ Agonist, Attenuates Inflammation Via NF-κB Inhibition in Lipopolysaccharide-Induced Peritonitis. Inflammation 38, 2105–2115 (2015). https://doi.org/10.1007/s10753-015-0193-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-015-0193-2

KEY WORDS

Navigation