Skip to main content
Log in

Dexmedetomidine exerts cerebral protective effects against cerebral ischemic injury by promoting the polarization of M2 microglia via the Nrf2/HO-1/NLRP3 pathway

  • Original Resarch Article
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Introduction

Cerebral ischemic injury is associated with long-term disability. Dexmedetomidine (Dex) can exert neuroprotective effects on cerebral ischemic/reperfusion injury. The present study explored the mechanism of Dex in cerebral ischemic injury.

Materials and methods

To this end, the permanent middle cerebral artery occlusion (p-MCAO) mouse model was established and treated with Dex or/and Nrf2 inhibitor ML385. Subsequently, microglia were subjected to oxygen–glucose deprivation (OGD) in sugar-free environment and thereafter treated with Dex, Nrf2 inhibitor, and NLRP3 lentiviral overexpression vector, respectively.

Results

Dex alleviated the neurobehavioral deficit of p-MCAO mice, reduced brain water content, relieved pathological changes, and reduced cerebral infarction size. Dex promoted the polarization of microglia from M1 to M2, thus ameliorating oxidative stress and inflammatory responses. Our results showed that Dex promoted M2-polarization of microglia in vivo and in vitro by promoting HO-1 expression via Nrf2 nuclear import. Moreover, the Nrf2/HO-1 axis inhibited the activation of NLRP2 inflammasome and NLRP3 overexpression reversed the effect of Dex.

Conclusion

In conclusion, Dex promoted M2-polarization of microglia and attenuated oxidative stress and inflammation, and thus protected against cerebral ischemic injury by activating the Nrf2/HO-1 pathway and inhibiting NLRP3 inflammasome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Elmer J, Callaway CW. The brain after cardiac arrest. Semin Neurol. 2017;37(1):19–24.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Park WS, Sung DK, Kang S, Koo SH, Kim YJ, Lee JH, Chang YS, Lee M. Therapeutic window for cycloheximide treatment after hypoxic-ischemic brain injury in neonatal rats. J Korean Med Sci. 2006;21(3):490–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fodale V, Santamaria LB, Schifilliti D, Mandal PK. Anaesthetics and postoperative cognitive dysfunction: a pathological mechanism mimicking Alzheimer’s disease. Anaesthesia. 2010;65(4):388–95.

    Article  CAS  PubMed  Google Scholar 

  4. Cai Y, Xu H, Yan J, Zhang L, Lu Y. Molecular targets and mechanism of action of dexmedetomidine in treatment of ischemia/reperfusion injury. Mol Med Rep. 2014;9(5):1542–50.

    Article  CAS  PubMed  Google Scholar 

  5. Yeo J, Park S. Effect of dexmedetomidine on the development of mechanical allodynia and central sensitization in chronic post-ischemia pain rats. J Pain Res. 2018;11:3025–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang J, Liu G, Zhang F, Fang H, Zhang D, Liu S, Chen B, Xiao H. Analysis of postoperative cognitive dysfunction and influencing factors of dexmedetomidine anesthesia in elderly patients with colorectal cancer. Oncol Lett. 2019;18(3):3058–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Gong Z, Li J, Zhong Y, Guan X, Huang A, Ma L. Effects of dexmedetomidine on postoperative cognitive function in patients undergoing coronary artery bypass grafting. Exp Ther Med. 2018;16(6):4685–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu M, Liang Y, Dai Z, Wang S. Perioperative dexmedetomidine reduces delirium after cardiac surgery: a meta-analysis of randomized controlled trials. J Clin Anesth. 2018;50:33–42.

    Article  CAS  PubMed  Google Scholar 

  9. Xu HY, Fu GH, Wu GS. Effect of dexmedetomidine-induced anesthesia on the postoperative cognitive function of elder patients after laparoscopic ovarian cystectomy. Saudi J Biol Sci. 2017;24(8):1771–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang J, Wang G, Zhang F, Zhao Q. Improvement of postoperative cognitive dysfunction and attention network function of patients with ischemic cerebrovascular disease via dexmedetomidine. Exp Ther Med. 2018;15(3):2968–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Madore C, Yin Z, Leibowitz J, Butovsky O. Microglia, lifestyle stress, and neurodegeneration. Immunity. 2020;52(2):222–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen Z, Trapp BD. Microglia and neuroprotection. J Neurochem. 2016;136(Suppl 1):10–7.

    Article  CAS  PubMed  Google Scholar 

  13. Zhao SC, Ma LS, Chu ZH, Xu H, Wu WQ, Liu F. Regulation of microglial activation in stroke. Acta Pharmacol Sin. 2017;38(4):445–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang T, Zhao N, Peng L, Li Y, Huang X, Zhu J, Chen Y, Yu S, Zhao Y. DJ-1 Regulates microglial polarization through P62-mediated TRAF6/IRF5 signaling in cerebral ischemia-reperfusion. Front Cell Dev Biol. 2020;8:593890.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Song J, Choi SM, Kim BC. Adiponectin regulates the polarization and function of microglia via PPAR-gamma signaling under amyloid beta toxicity. Front Cell Neurosci. 2017;11:64.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ma DC, Zhang NN, Zhang YN, Chen HS. Salvianolic Acids for Injection alleviates cerebral ischemia/reperfusion injury by switching M1/M2 phenotypes and inhibiting NLRP3 inflammasome/pyroptosis axis in microglia in vivo and in vitro. J Ethnopharmacol. 2021;270:113776.

    Article  CAS  PubMed  Google Scholar 

  17. Bao Y, Zhu Y, He G, Ni H, Liu C, Ma L, Zhang L, Shi D. Dexmedetomidine attenuates neuroinflammation in LPS-stimulated BV2 microglia cells through upregulation of miR-340. Drug Des Devel Ther. 2019;13:3465–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang X, Fei GQ, Liu WJ, Ding J, Wang Y, Wang H, Ji JL, Wang X. Adipose-derived mesenchymal stem cells protect against CMS-induced depression-like behaviors in mice via regulating the Nrf2/HO-1 and TLR4/NF-kappaB signaling pathways. Acta Pharmacol Sin. 2020;41(5):612–9.

    Article  CAS  PubMed  Google Scholar 

  19. Wang P, Zhao Y, Li Y, Wu J, Yu S, Zhu J, Li L, Zhao Y. Sestrin2 overexpression attenuates focal cerebral ischemic injury in rat by increasing Nrf2/HO-1 pathway-mediated angiogenesis. Neuroscience. 2019;410:140–9.

    Article  CAS  PubMed  Google Scholar 

  20. Ye Y, Jin T, Zhang X, Zeng Z, Ye B, Wang J, Zhong Y, Xiong X, Gu L. Meisoindigo protects against focal cerebral ischemia-reperfusion injury by inhibiting NLRP3 inflammasome activation and regulating microglia/macrophage polarization via TLR4/NF-kappaB signaling pathway. Front Cell Neurosci. 2019;13:553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sadana P, Coughlin L, Burke J, Woods R, Mdzinarishvili A. Anti-edema action of thyroid hormone in MCAO model of ischemic brain stroke: possible association with AQP4 modulation. J Neurol Sci. 2015;354(1–2):37–45.

    Article  CAS  PubMed  Google Scholar 

  22. Zhai M, Liu C, Li Y, Zhang P, Yu Z, Zhu H, Zhang L, Zhang Q, Wang J, Wang J. Dexmedetomidine inhibits neuronal apoptosis by inducing Sigma-1 receptor signaling in cerebral ischemia-reperfusion injury. Aging (Albany NY). 2019;11(21):9556–68.

    Article  CAS  Google Scholar 

  23. Yu Y, Wu DM, Li J, Deng SH, Liu T, Zhang T, He M, Zhao YY, Xu Y. Bixin attenuates experimental autoimmune encephalomyelitis by suppressing TXNIP/NLRP3 inflammasome activity and activating NRF2 signaling. Front Immunol. 2020;11:593368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu RP, Zou M, Wang JY, Zhu JJ, Lai JM, Zhou LL, Chen SF, Zhang X, Zhu JH. Paroxetine ameliorates lipopolysaccharide-induced microglia activation via differential regulation of MAPK signaling. J Neuroinflammation. 2014;11:47.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhu C, Zhou Q, Luo C, Chen Y. Dexmedetomidine protects against oxygen-glucose deprivation-induced injury through inducing astrocytes autophagy via TSC2/mTOR pathway. Neuromolecular Med. 2020;22(2):210–7.

    Article  CAS  PubMed  Google Scholar 

  26. Lin Y, Luo T, Weng A, Huang X, et al. Gallic acid alleviates gouty arthritis by inhibiting NLRP3 inflammasome activation and pyroptosis through enhancing Nrf2 signaling. Front Immunol. 2020;11:580593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Badimon A, Strasburger HJ, Ayata P, Chen X, et al. Negative feedback control of neuronal activity by microglia. Nature. 2020;586(7829):417–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fu CY, Zhong CR, Yang YT, Zhang M, Li WA, Zhou Q, Zhang F. Sirt1 activator SRT2104 protects against oxygen-glucose deprivation/reoxygenation-induced injury via regulating microglia polarization by modulating Sirt1/NF-kappaB pathway. Brain Res. 2021;1753:147236.

    Article  CAS  PubMed  Google Scholar 

  29. Le K, Song Z, Deng J, Peng X, Zhang J, Wang L, Zhou L, Bi H, Liao Z, Feng Z. Quercetin alleviates neonatal hypoxic-ischemic brain injury by inhibiting microglia-derived oxidative stress and TLR4-mediated inflammation. Inflamm Res. 2020;69(12):1201–13.

    Article  CAS  PubMed  Google Scholar 

  30. Zhao Y, Kong GY, Pei WM, Zhou B, Zhang QQ, Pan BB. Dexmedetomidine alleviates hepatic injury via the inhibition of oxidative stress and activation of the Nrf2/HO-1 signaling pathway. Eur Cytokine Netw. 2019;30(3):88–97.

    CAS  PubMed  Google Scholar 

  31. Hashem RM, Rashd LA, Hashem KS, Soliman HM. Cerium oxide nanoparticles alleviate oxidative stress and decreases Nrf-2/HO-1 in D-GALN/LPS induced hepatotoxicity. Biomed Pharmacother. 2015;73:80–6.

    Article  CAS  PubMed  Google Scholar 

  32. Gomperts E, Belcher JD, Otterbein LE, Coates TD, Wood J, Skolnick BE, Levy H, Vercellotti GM. The role of carbon monoxide and heme oxygenase in the prevention of sickle cell disease vaso-occlusive crises. Am J Hematol. 2017;92(6):569–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xiao L, Zheng H, Li J, Wang Q, Sun H. Neuroinflammation mediated by NLRP3 inflammasome after intracerebral hemorrhage and potential therapeutic targets. Mol Neurobiol. 2020;57(12):5130–49.

    Article  CAS  PubMed  Google Scholar 

  34. Lu W, Wen J, Chen Z. Distinct roles of ROCK1 and ROCK2 on the cerebral ischemia injury and subsequently neurodegenerative changes. Pharmacology. 2020;105(1–2):3–8.

    Article  CAS  PubMed  Google Scholar 

  35. Ding Q, Zhang X, Chen P. Intraoperative dexmedetomidine in peripheral or emergency neurologic surgeries of patients with mild-to-moderate traumatic brain injuries: a retrospective cohort study. Dose Response. 2020;18(2):1559325820920119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jiang L, Hu M, Lu Y, Cao Y, Chang Y, Dai Z. The protective effects of dexmedetomidine on ischemic brain injury: a meta-analysis. J Clin Anesth. 2017;40:25–32.

    Article  CAS  PubMed  Google Scholar 

  37. Chen L, Cao J, Cao D, Wang M, Xiang H, Yang Y, Ying T, Cong H. Protective effect of dexmedetomidine against diabetic hyperglycemia-exacerbated cerebral ischemia/reperfusion injury: an in vivo and in vitro study. Life Sci. 2019;235:116553.

    Article  CAS  PubMed  Google Scholar 

  38. Yu Y, Zhang X, Han Z, Zhao W, Zhang L. Expression and regulation of miR-449a and AREG in cerebral ischemic injury. Metab Brain Dis. 2019;34(3):821–32.

    Article  CAS  PubMed  Google Scholar 

  39. Mamtilahun M, Tang G, Zhang Z, Wang Y, Tang Y, Yang GY. Targeting water in the brain: role of aquaporin-4 in ischemic brain edema. Curr Drug Targets. 2019;20(7):748–55.

    Article  CAS  PubMed  Google Scholar 

  40. Li P, Zhang Y, Liu H. The role of Wnt/beta-catenin pathway in the protection process by dexmedetomidine against cerebral ischemia/reperfusion injury in rats. Life Sci. 2019;236:116921.

    Article  CAS  PubMed  Google Scholar 

  41. Liu X, Liu J, Zhao S, Zhang H, et al. Interleukin-4 is essential for microglia/macrophage M2 polarization and long-term recovery after cerebral ischemia. Stroke. 2016;47(2):498–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Qiu Z, Lu P, Wang K, Zhao X, et al. Dexmedetomidine inhibits neuroinflammation by altering microglial M1/M2 polarization through MAPK/ERK pathway. Neurochem Res. 2020;45(2):345–53.

    Article  CAS  PubMed  Google Scholar 

  43. Yuan Y, Zhang Y, Han X, Li Y, Zhao X, Sheng L, Li Y. Relaxin alleviates TGFbeta1-induced cardiac fibrosis via inhibition of Stat3-dependent autophagy. Biochem Biophys Res Commun. 2017;493(4):1601–7.

    Article  CAS  PubMed  Google Scholar 

  44. Zhao M, Zhu P, Fujino M, Zhuang J, Guo H, Sheikh I, Zhao L, Li XK. Oxidative stress in hypoxic-ischemic encephalopathy: molecular mechanisms and therapeutic strategies. Int J Mol Sci. 2016;17(12):2078.

    Article  PubMed Central  Google Scholar 

  45. Li F, Wang X, Deng Z, Zhang X, Gao P, Liu H. Dexmedetomidine reduces oxidative stress and provides neuroprotection in a model of traumatic brain injury via the PGC-1alpha signaling pathway. Neuropeptides. 2018;72:58–64.

    Article  CAS  PubMed  Google Scholar 

  46. Sun Z, Lin Y, Li Y, Ren T, Du G, Wang J, Jin X, Yang LC. The effect of dexmedetomidine on inflammatory inhibition and microglial polarization in BV-2 cells. Neurol Res. 2018;40(10):838–46.

    Article  CAS  PubMed  Google Scholar 

  47. Li H, Zhang X, Chen M, Chen J, Gao T, Yao S. Dexmedetomidine inhibits inflammation in microglia cells under stimulation of LPS and ATP by c-Fos/NLRP3/caspase-1 cascades. EXCLI J. 2018;17:302–11.

    PubMed  PubMed Central  Google Scholar 

  48. Chen C, Qian Y. Protective role of dexmedetomidine in unmethylated CpG-induced inflammation responses in BV2 microglia cells. Folia Neuropathol. 2016;54(4):382–91.

    Article  PubMed  Google Scholar 

  49. Peng J, Zhang P, Zheng H, Ren YQ, Yan H. Dexmedetomidine reduces hippocampal microglia inflammatory response induced by surgical injury through inhibiting NLRP3. Chin J Traumatol. 2019;22(3):161–5.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ge M, Yao W, Yuan D, Zhou S, Chen X, Zhang Y, Li H, Xia Z, Hei Z. Brg1-mediated Nrf2/HO-1 pathway activation alleviates hepatic ischemia-reperfusion injury. Cell Death Dis. 2017;8(6): e2841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen Y, Bian W, Xu B. Pretreatment with dexmedetomidine alleviates lung injury in a rat model of intestinal ischemia reperfusion. Mol Med Rep. 2020;21(3):1233–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen Z, Zhong H, Wei J, Lin S, et al. Inhibition of Nrf2/HO-1 signaling leads to increased activation of the NLRP3 inflammasome in osteoarthritis. Arthritis Res Ther. 2019;21(1):300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Abderrazak A, Syrovets T, Couchie D, El Hadri K, Friguet B, Simmet T, Rouis M. NLRP3 inflammasome: from a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases. Redox Biol. 2015;4:296–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang Z, Guo S, Wang J, Shen Y, Zhang J, Wu Q. Nrf2/HO-1 mediates the neuroprotective effect of mangiferin on early brain injury after subarachnoid hemorrhage by attenuating mitochondria-related apoptosis and neuroinflammation. Sci Rep. 2017;7(1):11883.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bian H, Wang G, Huang J, Liang L, Zheng Y, Wei Y, Wang H, Xiao L, Wang H. Dihydrolipoic acid protects against lipopolysaccharide-induced behavioral deficits and neuroinflammation via regulation of Nrf2/HO-1/NLRP3 signaling in rat. J Neuroinflammation. 2020;17(1):166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Luo X, Chen T, Kang G, Zhao K, Qiu X, Yan L, Li M. Dexmedetomidine promotes spinal cord injury repairing via activating Nrf2/HO-1 signaling pathway. J Neurosurg Sci. 2020;64(6):583–5.

    PubMed  Google Scholar 

Download references

Funding

Research Foundation of the Second Affiliated Hospital of Harbin Medical University (KYBS2015-02); Postdoctoral Research Fund of Heilongjiang Province (LBH-Z15139); Heilongjiang Health and Family Planning Commission Research Project (2017-078).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenjuan Liu or Kuo Tian.

Ethics declarations

Conflict of interests

All authors declare that there is no conflict of interests in this study.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Nie, H., Zhang, Y. et al. Dexmedetomidine exerts cerebral protective effects against cerebral ischemic injury by promoting the polarization of M2 microglia via the Nrf2/HO-1/NLRP3 pathway. Inflamm. Res. 71, 93–106 (2022). https://doi.org/10.1007/s00011-021-01515-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-021-01515-5

Keywords

Navigation