Skip to main content
Log in

Fractal Dimension of \(\alpha \)-Fractal Functions Without Endpoint Conditions

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this article, we manifest the existence of a new class of \(\alpha \)-fractal functions without endpoint conditions in the space of continuous functions. Furthermore, we add the existence of the same class in numerous spaces such as the Hölder space, the convex Lipschitz space, and the oscillation space. We also estimate the fractal dimensions of the graphs of the newly constructed \(\alpha \)-fractal functions adopting some function spaces and covering methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Agrawal, V., Som, T.: Fractal dimension of \(\alpha \)-fractal function on the Sierpiński Gasket. Eur. Phys. J. Spec. Top. 230(21), 3781–3787 (2021)

    Article  Google Scholar 

  2. Agrawal, V., Som, T.: \({\cal{L}}^p\)-approximation using fractal functions on the Sierpiński Gasket. Results Math. 77(2), 1–17 (2021)

    Google Scholar 

  3. Barnsley, M.F.: Fractals Everywhere. Academic Press, Orlando (1988)

    Google Scholar 

  4. Barnsley, M.F.: Fractal functions and interpolation. Constr. Approx. 2, 303–329 (1986)

    Article  MathSciNet  Google Scholar 

  5. Carvalho, A.: Box dimension, oscillation and smoothness in function spaces. J. Funct. Spaces Appl. 3(3), 287–320 (2005)

    Article  MathSciNet  Google Scholar 

  6. Chandra, S., Abbas, S.: Analysis of fractal dimension of mixed Riemann-Liouville integral. Numer. Algorithms 91(3), 1021–1046 (2022)

  7. Chandra, S., Abbas, S.: On fractal dimensions of fractal functions using functions spaces. Bull. Aust. Math. Soc. 106(3), 470–480 (2022)

  8. Deliu, A., Jawerth, B.: Geometrical dimension versus smoothness. Constr. Approx. 8, 211–222 (1992)

    Article  MathSciNet  Google Scholar 

  9. Drakopoulos, V., Bouboulis, P., Theodoridis, S.: Image compression using affine fractal interpolation on rectangular lattices. Fractals 14(04), 259–269 (2006)

    Article  MathSciNet  Google Scholar 

  10. Falconer, K.J.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, New York (1999)

    Google Scholar 

  11. Fisher, Y.: Fractal Image Compression: Theory and Application. Springer, New York (1995)

    Book  Google Scholar 

  12. Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30, 713–747 (1981)

    Article  MathSciNet  Google Scholar 

  13. Jha, S., Verma, S.: Dimensional analysis of \(\alpha \)-fractal functions. Results Math. 76(4), 1–24 (2021)

    Article  MathSciNet  Google Scholar 

  14. Jha, S., Verma, S., Chand, A.K.B.: Non-stationary zipper \(\alpha \)-fractal functions and associated fractal operator. Fract. Calc. Appl. Anal. 25(4), 1527–1552 (2022)

    Article  MathSciNet  Google Scholar 

  15. Liang, Z., Ruan, H.-J.: Construction and box dimension of recurrent fractal interpolation surfaces. J. Fractal Geom. 8(3), 261–288 (2021)

    Article  MathSciNet  Google Scholar 

  16. Liang, Y.S.: Box dimensions of Riemann–Liouville fractional integrals of continuous functions of bounded variation. Nonlinear Anal. 72, 4304–4306 (2010)

    Article  MathSciNet  Google Scholar 

  17. Malysz, R.: The Minkowski dimension of the bivariate fractal interpolation surfaces. Chaos Solitons Fractals 27(5), 1147–1156 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  18. Mandelbrot, B.B.: The Fractal Geometry of Nature. Freeman, New York (1982)

    Google Scholar 

  19. Mauldin, R.D., Williams, S.C.: On the Hausdorff dimension of some graphs. Trans. Am. Math. Soc. 298(2), 793–803 (1986)

    Article  MathSciNet  Google Scholar 

  20. Massopust, P.R.: Vector-valued fractal interpolation functions and their box dimension. Aequ. Math. 42(1), 1–22 (1991)

    Article  MathSciNet  Google Scholar 

  21. Nussbaum, R.D., Priyadarshi, A., Lunel, S.V.: Positive operators and Hausdorff dimension of invariant sets. Trans. Am. Math. Soc. 364(2), 1029–1066 (2012)

    Article  MathSciNet  Google Scholar 

  22. Navascués, M.A.: Fractal polynomial interpolation. Z. Anal. Anwend. 25(2), 401–418 (2005)

    Article  MathSciNet  Google Scholar 

  23. Navascués, M.A.: Fractal approximation. Complex Anal. Oper. Theory 4(4), 953–974 (2010)

    Article  MathSciNet  Google Scholar 

  24. Navascués, M.A.: New equilibria of non-autonomous discrete dynamical systems. Chaos Solitons Fractals 152, 111413 (2021)

    Article  MathSciNet  Google Scholar 

  25. Priyadarshi, A.: Lower bound on the Hausdorff dimension of a set of complex continued fractions. J. Math. Anal. Appl. 449(1), 91–95 (2017)

    Article  MathSciNet  Google Scholar 

  26. Sahu, A., Priyadarshi, A.: On the box-counting dimension of graphs of harmonic functions on the Sierpiński gasket. J. Math. Anal. Appl. 487, 124036 (2020)

    Article  MathSciNet  Google Scholar 

  27. Verma, M., Priyadarshi, A.: Graphs of continuous functions and fractal dimensions. Chaos Solitons Fractals 172, 113513 (2023)

    Article  MathSciNet  Google Scholar 

  28. Verma, M., Priyadarshi, A., Verma, S.: Vector-valued fractal functions: fractal dimension and fractional calculus. Indag. Math. 34(4), 830–853 (2023)

    Article  MathSciNet  Google Scholar 

  29. Verma, S., Viswanathan, P.: A fractalization of rational trigonometric functions. Mediterr. J. Math. 17(3), 23 (2020)

    Article  MathSciNet  Google Scholar 

  30. Verma, S., Viswanathan, P.: A revisit to \(\alpha \)-fractal function and box dimension of its graph. Fractals 27, 1950090 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  31. Wang, H.Y., Yu, J.S.: Fractal interpolation functions with variable parameters and their analytical properties. J. Approx. Theory 175, 1–18 (2013)

    Article  MathSciNet  Google Scholar 

  32. Yu, B.Y., Liang, Y.S.: Fractal dimension variation of continuous functions under certain operations. Fractals 31(5), 2350044 (2023)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for reviewing the manuscript and providing their constructive comments and suggestions to improve the manuscript. The first author acknowledges the Prime Minister’s Research Fellowship (PMRF) from the Ministry of Education, Government of India (PMRF ID: 2202749) for the financial support for his Ph.D. work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Verma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurubachan, Chandramouli, V.V.M.S. & Verma, S. Fractal Dimension of \(\alpha \)-Fractal Functions Without Endpoint Conditions. Mediterr. J. Math. 21, 71 (2024). https://doi.org/10.1007/s00009-024-02610-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-024-02610-7

Keywords

Mathematics Subject Classification

Navigation