Skip to main content
Log in

Set-Valued \(\alpha \)-Fractal Functions

  • Published:
Constructive Approximation Aims and scope

Abstract

In this paper, we introduce the concept of the \(\alpha \)-fractal function and fractal approximation for a set-valued continuous map defined on a closed and bounded interval of real numbers. Also, we study some properties of such fractal functions. Further, we estimate the perturbation error between the given continuous function and its \(\alpha \)-fractal function. Additionally, we define a new graph of a set-valued function different from the standard graph introduced in the literature and establish some bounds on the fractal dimension of the newly defined graph of some special classes of set-valued functions. Also, we explain the need to define this new graph with examples. In the sequel, we prove that this new graph of an \(\alpha \)-fractal function is an attractor of an iterated function system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data availability

No data were used to support this study.

Code Availability

Not applicable.

References

  1. Agrawal, V., Som, T.: \({L}_p\)-approximation using fractal functions on the Sierpiński gasket. RM 77(2), 1–17 (2022)

    MATH  Google Scholar 

  2. Artstein, Z.: Piecewise linear approximations of set-valued maps. J. Approx. Theory 56(1), 41–47 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Springer Science & Business Media, Berlin (2009)

    Book  MATH  Google Scholar 

  4. Baier, R., Perria, G.: Set-valued Hermite interpolation. J. Approx. Theory 163(10), 1349–1372 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bandt, C., Hung, N., Rao, H.: On the open set condition for self-similar fractals. Proc. Am. Math. Soc. 134(5), 1369–1374 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barnsley, M.F.: Fractal functions and interpolation. Constr. Approx. 2(1), 303–329 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barnsley, M.F.: Fractals Everywhere. Academic Press, Cambridge (2014)

    MATH  Google Scholar 

  8. Barnsley, M.F., Massopust, P.R.: Bilinear fractal interpolation and box dimension. J. Approx. Theory 192, 362–378 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Berdysheva, E.E., Dyn, N., Farkhi, E., Mokhov, A.: Metric approximation of set-valued functions of bounded variation. J. Comput. Appl. Math. 349, 251–264 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Campiti, M.: Korovkin-type approximation in spaces of vector-valued and set-valued functions. Appl. Anal. 98(13), 2486–2496 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chand, A.K.B., Kapoor, G.P.: Generalized cubic spline fractal interpolation functions. SIAM J. Numer. Anal. 44(2), 655–676 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chandra, S., Abbas, S.: The calculus of bivariate fractal interpolation surfaces. Fractals 29(03), 2150066 (2021)

    Article  MATH  Google Scholar 

  13. Dyn, N., Farkhi, E.: Set-valued approximations with Minkowski averages-convergence and convexification rates. Numer. Funct. Anal. Optim. 25(3–4), 363–377 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dyn, N., Farkhi, E., Mokhov, A.: Approximation of Set-Valued Functions: Adaptation of Classical Approximation Operators. World Scientific, Singapore (2014)

    Book  MATH  Google Scholar 

  15. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, New York (2004)

    MATH  Google Scholar 

  16. Hu, S., Papageorgiou, N.S.: Handbook of Multivalued Analysis: Applications. Kluwer Academic Publishers, Amsterdam (1997)

    Book  MATH  Google Scholar 

  17. Jha, S., Verma, S.: Dimensional analysis of \(\alpha \)-fractal functions. RM 76(4), 1–24 (2021)

    MathSciNet  Google Scholar 

  18. Levin, D.: Multidimensional reconstruction by set-valued approximations. IMA J. Numer. Anal. 6(2), 173–184 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liang, Y.: Box dimensions of Riemann-Liouville fractional integrals of continuous functions of bounded variation. Nonlinear Anal. Theory Methods Appl. 72(11), 4304–4306 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Massopust, P.R.: Fractal Functions, Fractal Surfaces, and Wavelets. Academic Press, Cambridge (2016)

    MATH  Google Scholar 

  21. Michta, M., Motyl, J.: Selection properties and set-valued Young integrals of set-valued functions. RM 75(4), 1–22 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Navascués, M.: Fractal approximation. Complex Anal. Oper. Theory 4(4), 953–974 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Navascués, M., Sebastián, M.: Fitting curves by fractal interpolation: an application to the quantification of cognitive brain processes. In: Thinking In Patterns, pp. 143–154. World Scientific (2004)

  24. Navascués, M.A.: Fractal polynomial interpolation. Zeitschrift für Analysis und ihre Anwendungen 24(2), 401–418 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Navascués, M.A., Sebastián, M.V.: Generalization of Hermite functions by fractal interpolation. J. Approx. Theory 131(1), 19–29 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nussbaum, R., Priyadarshi, A., Verduyn Lunel, S.: Positive operators and Hausdorff dimension of invariant sets. Trans. Am. Math. Soc. 364(2), 1029–1066 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pandey, M., Agrawal, V., Som, T.: Fractal dimension of multivariate \(\alpha \)-fractal functions and approximation aspects. Fractals 30(07), 1–17 (2022)

    Article  MATH  Google Scholar 

  28. Pandey, M., Agrawal, V., Som, T.: Some remarks on multivariate fractal approximation. In: Frontiers of Fractal Analysis Recent Advances and Challenges, pp. 1–24. CRC Press (2022)

  29. Ri, S.: A new idea to construct the fractal interpolation function. Indag. Math. 29(3), 962–971 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sahu, A., Priyadarshi, A.: On the box-counting dimension of graphs of harmonic functions on the Sierpiński gasket. J. Math. Anal. Appl. 487(2), 124036 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schief, A.: Self-similar sets in complete metric spaces. Proc. Am. Math. Soc. 124(2), 481–490 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shen, W.: Hausdorff dimension of the graphs of the classical Weierstrass functions. Math. Z. 289(1), 223–266 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Verma, S.: Hausdorff dimension and infinitesimal similitudes on complete metric spaces. arXiv preprint arXiv:2101.07520 (2021)

  34. Verma, S., Viswanathan, P.: Bivariate functions of bounded variation: Fractal dimension and fractional integral. Indag. Math. 31(2), 294–309 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. Verma, S., Viswanathan, P.: A fractal operator associated with bivariate fractal interpolation functions on rectangular grids. RM 75(1), 1–26 (2020)

    MathSciNet  MATH  Google Scholar 

  36. Verma, S., Viswanathan, P.: Parameter identification for a class of bivariate fractal interpolation functions and constrained approximation. Numer. Funct. Anal. Optim. 41(9), 1109–1148 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  37. Vitale, R.A.: Approximation of convex set-valued functions. J. Approx. Theory 26, 301–316 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by MHRD Fellowship to the 1st author as a TA-ship at the Indian Institute of Technology (BHU), Varanasi. Some results of this paper have been presented at the conference, “ AMS Fall Western Virtual Sectional Meeting (formerly at the University of New Mexico): SS 13A - Special Session on Fractal Geometry and Dynamical Systems., October 23–24, 2021”.

Author information

Authors and Affiliations

Authors

Contributions

Each author contributed equally to this manuscript.

Corresponding author

Correspondence to Megha Pandey.

Ethics declarations

Conflict of interest

We do not have any conflict of interest.

Additional information

Communicated by Edward B. Saff.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, M., Som, T. & Verma, S. Set-Valued \(\alpha \)-Fractal Functions. Constr Approx (2023). https://doi.org/10.1007/s00365-023-09652-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00365-023-09652-2

Keywords

Mathematics Subject Classification

Navigation