Skip to main content
Log in

Vector—valued fractal interpolation functions and their box dimension

  • Research Papers
  • Published:
aequationes mathematicae Aims and scope Submit manuscript

Summary

We introduce continuous functions f:\(I \subseteq \mathbb{R} \to \mathbb{R}^n ,n > 1 \), whose graphs are the attractors of certain iterated function systems, and which interpolate a given set of data or interpolation points Δ={(t j ,x j ):j = 0, 1, ⋯, M; M >1} according tof(t j ) =x j . The box dimension of the graph of these functions is in general non-integral. We present a formula for this dimension. Applications to the approximation of complicated self-affine functions are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnsley, M. F.,Fractal functions and interpolation, Constructive Approx.2 (1986), 303–329.

    Article  Google Scholar 

  2. Barnsley, M. F. andDemko, S.,Iterated function systems and the global construction of fractals, Proc. Roy. Soc. London., Ser. A,399 (1985), 243–275.

    Google Scholar 

  3. Barnsley, M. F., Elton, J., Hardin, D. P. andMassopust, P. R.,Hidden variable fractal interpolation functions, SIAM J. Math. Anal.20, No. 5 (1989), 1218–1242.

    Article  Google Scholar 

  4. Barnsley, M. F. andHarrington, A. N.,The calculus of fractal interpolation functions, J. of Approx. Theory57 (1989), 14–34.

    Article  Google Scholar 

  5. Bedford, T.,On Weierstrass-like functions and random recurrent sets, Proc. Cambr. Phil. Soc.106(2) (1989), 325–342.

    Google Scholar 

  6. Bedford, T. andUrbanski, M.,The box and Hausdorff dimension of self-affine sets, to appear Erg. Theory and Dynam. Sys.

  7. Falconer, K.,Fractal geometry, John Wiley, New York, 1990.

    Google Scholar 

  8. Falconer, K.,The Hausdorff dimension of self-affine fractals, Math. Proc. Camb. Phil. Soc.103 (1988), 339–350.

    Google Scholar 

  9. Fournier, A., Fussel, D. andCarpenter, L.,Computer rendering of stochastic models, Comm. ACM25 (1982), 371–384.

    Article  Google Scholar 

  10. Gilbert, S. andMassopust, P. R.,The exact Hausdorff dimension for a class of fractal functions, to appear J. Math. Anal. and Appl.

  11. Hardin, D. P., Ph.D. Thesis, Georgia Institute of Technology, 1985.

  12. Hardin, D. P. andMassopust, P. R.,The capacity for a class of fractal functions, Commun. Math. Phys.105 (1986), 455–460.

    Article  Google Scholar 

  13. Hutchinson, J.,Fractals and self-similarity, Indiana Univ. J. Math.30 (1981), 731–747.

    Google Scholar 

  14. Kono, N.,On self-affine functions I. and II., Japan J. Appl. Math.3(2) (1986), 252–269, Japan J. Appl. Math.5 (3) (1988), 441–454.

    Google Scholar 

  15. Kaplan, J. L., Mallet-Paret, J. andYorke, J. A.,The Lyapunov dimension of a nowhere differentiable attracting torus, Ergod. Th. and Dynam. Sys.4 (1984), 261–281.

    Google Scholar 

  16. Massopust, P. R., Ph.D. Thesis, Georgia Institute of Technology, 1986.

  17. Massopust, P. R.,The box dimension and the exact Hausdorff dimension for a class of vector valued hidden variable fractal interpolating functions, Vanderbilt University, preprint.

  18. Massopust, P. R.,Dynamical systems, fractal functions and dimension, Topology Proceedings12 (1987), 93–110.

    Google Scholar 

  19. Mandelbrot, B.,The fractal geometry of nature, W. H. Freeman, New York, 1982.

    Google Scholar 

  20. Mauldin, M. andWilliams, S. C.,On the Hausdorff dimension of some graphs, Trans. AMS289 (1986), 793–803.

    Google Scholar 

  21. Przytycki, F. andUrbanski, M.,On Hausdorff dimension of some fractal sets, Studia Math.93 (1989), 155–186.

    Google Scholar 

  22. Urbanski, M.,Hausdorff dimension of the graphs of continuous self-affine functions, Proc. AMS108 (1990), 921–930.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massopust, P.R. Vector—valued fractal interpolation functions and their box dimension. Aeq. Math. 42, 1–22 (1991). https://doi.org/10.1007/BF01818475

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01818475

AMS (1980) subject classification

Navigation