Skip to main content
Log in

Unconditional Bases for Homogeneous \(\alpha \)-Modulation Type Spaces

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

We construct orthonormal bases compatible with bi-variate homogeneous \(\alpha \)-modulation spaces and the associated spaces of Triebel–Lizorkin type. The construction is based on generating a separable \(\alpha \)-covering and using carefully selected tensor products of univariate brushlet functions with regard to this covering. We show that the associated systems form an unconditional bases for the homogeneous \(\alpha \)-spaces of Triebel–Lizorkin type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Jawahri, Z., Nielsen, M.: On homogeneous decomposition spaces and associated decompositions of distribution spaces. Math. Nachr. 292(12), 2496–2521 (2019)

    Article  MathSciNet  Google Scholar 

  2. Al-Jawahri, Z., Nielsen, M.: On a discrete transform of homogeneous decomposition spaces. Appl. Comput. Harmon. Anal. 55, 41–70 (2021)

    Article  MathSciNet  Google Scholar 

  3. Auscher, P., Weiss, G., Wickerhauser, M.V.: Local sine and cosine bases of Coifman and Meyer and the construction of smooth wavelets. In Wavelets, volume 2 of Wavelet Anal. Appl., pages 237–256. Academic Press, Boston, MA (1992)

  4. Borup, L., Nielsen, M.: Approximation with brushlet systems. J. Approx. Theory 123(1), 25–51 (2003)

    Article  MathSciNet  Google Scholar 

  5. Borup, L., Nielsen, M.: Nonlinear approximation in \(\alpha \)-modulation spaces. Math. Nachr. 279(1–2), 101–120 (2006)

    Article  MathSciNet  Google Scholar 

  6. Borup, L., Nielsen, M.: Frame decomposition of decomposition spaces. J. Fourier Anal. Appl. 13(1), 39–70 (2007)

    Article  MathSciNet  Google Scholar 

  7. Borup, L., Nielsen, M.: On anisotropic Triebel–Lizorkin type spaces, with applications to the study of pseudo-differential operators. J. Funct. Spaces Appl. 6(2), 107–154 (2008)

    Article  MathSciNet  Google Scholar 

  8. Dahlke, S., Fornasier, M., Rauhut, H., Steidl, G., Teschke, G.: Generalized coorbit theory, Banach frames, and the relation to \(\alpha \)-modulation spaces. Proc. Lond. Math. Soc. (3), 96(2), 464–506 (2008)

  9. Dahlke, S., Teschke, G., Stingl, K.: Coorbit theory, multi-modulation frames, and the concept of joint sparsity for medical multichannel data analysis. EURASIP J. Adv. Signal Process. 2008(1), 471601 (2008)

    Article  Google Scholar 

  10. DeVore, R.A., Jawerth, B., Lucier, B.J.: Image compression through wavelet transform coding. IEEE Trans. Inform. Theory 38(2, part 2), 719–746 (1992)

  11. DeVore, R.A., Jawerth, B., Popov, V.: Compression of wavelet decompositions. Am. J. Math. 114(4), 737–785 (1992)

    Article  MathSciNet  Google Scholar 

  12. Feichtinger, H.G.: Banach spaces of distributions defined by decomposition methods. II. Math. Nachr. 132, 207–237 (1987)

    Article  MathSciNet  Google Scholar 

  13. Feichtinger, H.G., Gröbner, P.: Banach spaces of distributions defined by decomposition methods. I. Math. Nachr. 123, 97–120 (1985)

    Article  MathSciNet  Google Scholar 

  14. R. Gribonval and M. Nielsen. Nonlinear approximation with dictionaries. I. Direct estimates. J. Fourier Anal. Appl. 10(1), 51–71 (2004)

  15. Gröbner, P.: Banachräume glatter Funktionen und Zerlegungsmethoden. PhD thesis, University of Vienna (1992)

  16. Hernández, E., Weiss, G.: A First Course on Wavelets. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1996)

    Book  Google Scholar 

  17. Kyriazis, G., Petrushev, P.: New bases for Triebel–Lizorkin and Besov spaces. Trans. Am. Math. Soc. 354(2), 749–776 (2002)

    Article  MathSciNet  Google Scholar 

  18. Laeng, E.: Une base orthonormale de \(L^2({\bf R})\) dont les éléments sont bien localisés dans l’espace de phase et leurs supports adaptés à toute partition symétrique de l’espace des fréquences. C. R. Acad. Sci. Paris Sér. I Math. 311(11), 677–680 (1990)

  19. Meyer, F.G., Coifman, R.R.: Brushlets: a tool for directional image analysis and image compression. Appl. Comput. Harmon. Anal. 4(2), 147–187 (1997)

    Article  MathSciNet  Google Scholar 

  20. Meyer, Y.: Wavelets and Operators. Cambridge Studies in Advanced Mathematics, vol. 37. Cambridge University Press, Cambridge (1992)

  21. Nielsen, M.: Orthonormal bases for \(\alpha \)-modulation spaces. Collect. Math. 61(2), 173–190 (2010)

    Article  MathSciNet  Google Scholar 

  22. Päivärinta, L., Somersalo, E.: A generalization of the Calderón-Vaillancourt theorem to \(L^p\) and \(h^p\). Math. Nachr. 138, 145–156 (1988)

    Article  MathSciNet  Google Scholar 

  23. Petrushev, P.: Nonlinear approximation from dictionaries: some open problems: research problems 2001–1. Constr. Approx. 17(1), 153–155 (2001)

    Article  MathSciNet  Google Scholar 

  24. Rasmussen, K.N.: Orthonormal bases for anisotropic \(\alpha \)-modulation spaces. Collect. Math. 63(1), 109–121 (2012)

    Article  MathSciNet  Google Scholar 

  25. Speckbacher, M., Bayer, D., Dahlke, S., Balazs, P.: The \(\alpha \)-modulation transform: admissibility, coorbit theory and frames of compactly supported functions. Monatsh. Math. 184(1), 133–169 (2017)

    Article  MathSciNet  Google Scholar 

  26. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series, vol. 43. Princeton University Press, Princeton, NJ (1993)

  27. Triebel, H.: Modulation spaces on the Euclidean \(n\)-space. Z. Anal. Anwendungen 2(5), 443–457 (1983)

    Article  MathSciNet  Google Scholar 

  28. Voigtlaender, F.: Embeddings of Decomposition Spaces into Sobolev and BV Spaces (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten Nielsen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Some Technical Results

Appendix A: Some Technical Results

This appendix contains some results on vector-valued maximal functions needed for the analysis of the \(\alpha \)-TL spaces.

For \(0<r<\infty \), the Hardy–Littlewood maximal function is defined by

$$\begin{aligned} M_r u(x):=\sup _{t>0}\bigg (\frac{1}{|B(x,t)|} \int _{{B}(x,t)} |u(y)|^r \mathrm{d}y\bigg )^{1/r},\qquad u\in L_{r,\text {loc}}(\mathbb {R}^2). \end{aligned}$$

For \(0<p,q\le \infty \), and a sequence \(f=\{f_j\}_{j\in \mathbb {N}}\) of \(L_p(\mathbb {R}^2)\) functions, we define the norm

$$\begin{aligned} \Vert f\Vert _{L_p(\ell _q)}:=\big \Vert \big (\sum _{j\in \mathbb {N}} |f_j|^q\big )^{1/q}\big \Vert _{L_p(\mathbb {R}^2)}, \end{aligned}$$

Where there is no risk of ambiguity we will abuse notation slightly and write \(\Vert f_k\Vert _{L_p(\ell _q)}\) instead of \(\Vert \{f_k\}_k\Vert _{L_p(\ell _q)}\).

The vector-valued Fefferman–Stein maximal inequality gives the estimate (see [26, Chapters I&II])

$$\begin{aligned} \Vert \{M_rf_j\}\Vert _{L_p(\ell _q)}\le C_B\Vert \{f_j\}\Vert _{L_p(\ell _q)} \end{aligned}$$
(27)

for \(r<q\le \infty \) and \(r<p<\infty \), \(C_B:=C_B(r,p,q)\).

For \(\Omega =\{\Omega _n\}\) a sequence of compact subsets of \(\mathbb {R}^2\), we let

$$\begin{aligned} L_p^\Omega (\ell _q):=\{\{f_n\}_{n\in \mathbb {N}}\in L_p(\ell _q)\,|\,{\text {supp}}(\hat{f}_n)\subseteq \Omega _n,\,\forall n\}. \end{aligned}$$

For \(\xi \in \mathbb {R}^2\), we let \(\langle \xi \rangle :=(1+|\xi |^2)^{1/2}\). Let u(x) be a continuous function on \(\mathbb {R}^2\). We define, for \(a,R>0\),

$$\begin{aligned} u^*(a,R;x):=\sup _{y\in \mathbb {R}^2} \langle y\rangle ^{-a}|u(x-y/R)|,\qquad x\in \mathbb {R}^2. \end{aligned}$$

The following is a variation on Peetre’s maximal estimate in a vector-valued setting.

Proposition 3.7

Suppose \(0<p<\infty \) and \(0<q\le \infty \), and let \(\Omega =\{T_k \mathcal {C}\}_{k\in \mathbb {N}}\) be a sequence of compact subsets of \(\mathbb {R}^2\) generated by a family \(\{T_k={t_k}Id \cdot +\xi _k\}_{k\in \mathbb {N}}\) of invertible affine transformations on \(\mathbb {R}^2\), with \(\mathcal {C}\) a fixed compact subset of \(\mathbb {R}^2\). If \(0<r<\min (p,q)\), then there exists a constant K such that

$$\begin{aligned} \bigg \Vert \big \{ (f_k)^*(2/r,t_k;\cdot ) \big \} \bigg \Vert _{L_p(\ell _q)}\le K\Vert \{f_k\}\Vert _{L_p(\ell _q)}, \end{aligned}$$
(28)

for all \(f\in L_p^\Omega (\ell _q)\), where \(f=\{f_k\}_{k\in \mathbb {N}}.\)

Finally, we need the following vector-valued multiplier result. For \(s\in \mathbb {R}_+\), we let

$$\begin{aligned} \Vert f\Vert _{H_2^s}:=\biggl ( \int |\mathcal {F}^{-1}f(x)|^2 \langle x\rangle ^{2s} \mathrm{d}x\biggr )^{1/2} \end{aligned}$$

denote the Sobolev norm.

Proposition 3.8

Suppose \(0<p<\infty \) and \(0<q\le \infty \), and let \(\Omega =\{T_k \mathcal {C}\}_{k\in \mathbb {N}}\) be a sequence of compact subsets of \(\mathbb {R}^2\) generated by a family \(\{T_k={t_k}Id \cdot +\xi _k\}_{k\in \mathbb {N}}\) of invertible affine transformations on \(\mathbb {R}^2\), with \(\mathcal {C}\) a fixed compact subset of \(\mathbb {R}^2\). Assume \(\{\psi _j\}_{j\in \mathbb {N}}\) is a sequence of functions satisfying \(\psi _j\in H^s_2\) for some \(s>\frac{\nu }{2}+\frac{\nu }{\min (p,q)}\). Then there exists a constant \(C<\infty \) such that

$$\begin{aligned} \Vert \{\psi _k(D)f_k\}\Vert _{L_p(\ell _q)} \le C\sup _j\Vert \psi _j(T_j\cdot )\Vert _{H^s_2}\cdot \Vert \{f_k\}\Vert _{L_p(\ell _q)} \end{aligned}$$

for all \(\{f_k\}_{k\in \mathbb {N}} \in L_p^\Omega (\ell _q)\).

The following Lemma was used in the proof of Lemma 3.5.

Lemma 3.9

Let \(0<r\le 1\). There exists a constant C such that for any sequence \(\{s_{Q,{n}}\}_{Q,{n}}\) we have

$$\begin{aligned} \sum _{{n}} |s_{Q,{n}}||w_{n,Q}|(x)\le C|Q|^{1/2} \sum _{\ell =1}^4 M_r\Bigl (\sum _{{n}} |s_{Q,{n}}| \chi _{U(Q,{n})}\Bigr )(R_\ell x). \end{aligned}$$

Proof

From (9) we have that

$$\begin{aligned} |w_{n,Q}(x)|\le C_N|Q|^{1/2}\sum _{\ell =1}^4\big (1+\big | R_\ell \delta _{Q}x-\pi ({n}+{a})\big |\big )^{-N}, \end{aligned}$$
(29)

for any \(N>0\), with \(C_N\) independent of Q, where we use the same notation as in the proof of Lemma 3.5. Fix \(N>2/r\). We can, without loss of generality, suppose \(x\in U(Q,\mathbf {0})\).

For \(j\in \mathbb {N}\), we let \(A_j=\{ {n}\in \mathbb {N}_0^2:2^{j-1}<| \pi ({n}+{a})|\le 2^j\}\). Notice that \(\cup _{{n}\in A_j} U(Q,{n})\) is a bounded set contained in the ball \({B}(0,c2^{j+1}|Q|^{-1/2})\). Now,

$$\begin{aligned} \sum _{{n}\in A_j}&|s_{Q,{n}}|\big (1+\big | \delta _{Q}x-\pi ({n}+{a})\big |\big )^{-N} \\ {}&\le C2^{-jN} \sum _{{n}\in A_j} |s_{Q,{n}}|\\&\le C2^{-jN} \Bigl ( \sum _{{n}\in A_j} |s_{Q,{n}}|^r\Bigr )^{1/r}\\&\le C2^{-jN} |Q|^{1/r} \biggl ( \int \sum _{{n}\in A_j} |s_{Q,{n}}|^r\chi _{U(Q,{n})}(y)\, \mathrm{d}y \biggr )^{1/r}\\&\le CL^{1-r}2^{-jN} |Q|^{1/r} \biggl ( \int _{{B}(0,c2^{j+1}|Q|^{-1/2})} \Bigl (\sum _{{n}\in A_j} |s_{Q,{n}}|\chi _{U(Q,{n})}(y)\Bigr )^r \, \mathrm{d}y\biggr )^{1/r}\\&\le C'2^{-j(N-2/r)} M_r \Bigl (\sum _{{n}\in \mathbb {N}_0^2} |s_{Q,{n}}|\chi _{U(Q,{n})} \Bigr )(x). \end{aligned}$$

We now perform the summation over \(j\in \mathbb {N}_0\) to obtain

$$\begin{aligned} \sum _{{n}\in \mathbb {N}_0^2} |s_{Q,{n}}|\big (1+\big | \delta _{Q}x-\pi ({n}+{a})\big |\big )^{-N} \le CM_r \Bigl (\sum _{{n}\in \mathbb {N}_0^2} |s_{Q,{n}}|\chi _{U(Q,{n})} \Bigr )(x). \end{aligned}$$

We then use the substitutions \(x=R_\ell z\), \(\ell =1,\ldots ,4\), to cover all four terms on the RHS of (29), where we use the fact that \(R_{\ell }\) and \(\delta _Q\) commute. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nielsen, M. Unconditional Bases for Homogeneous \(\alpha \)-Modulation Type Spaces. Mediterr. J. Math. 19, 55 (2022). https://doi.org/10.1007/s00009-022-02001-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-022-02001-w

Keywords

Mathematics Subject Classification

Navigation