Skip to main content
Log in

Orthonormal bases for α-modulation spaces

  • Published:
Collectanea mathematica Aims and scope Submit manuscript

Abstract

We construct an orthonormal basis for the family of bi-variate α-modulation spaces. The construction is based on local trigonometric bases, and the basis elements are closely related to so-called brushlets. As an application, we show thatm-term nonlinear approximation with the representing system in an α-modulation space can be completely characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Auscher, G. Weiss, and M.V. Wickerhauser, Local sine and cosine bases of Coifman and Meyer and the construction of smooth wavelets,Wavelets, 237–256, Wavelet Anal. Appl. 2, Academic Press, Boston, MA, 1992.

    Google Scholar 

  2. L. Borup and M. Nielsen, Approximation with brushlet systems,J. Approx. Theory 123 (2003), 25–51.

    Article  MATH  MathSciNet  Google Scholar 

  3. L. Borup and M. Nielsen, Banach frames for multivariate α-modulation spaces,J. Math. Anal. Appl. 321 (2006), 880–895.

    Article  MATH  MathSciNet  Google Scholar 

  4. L. Borup and M. Nielsen, Boundedness for pseudodifferential operators on multivariate αόdulation spaces,Ark. Mat. 44 (2006), 241–259.

    Article  MATH  MathSciNet  Google Scholar 

  5. L. Borup and M. Nielsen, Nonlinear approximation in α-modulation spaces,Math. Nachr. 279 (2006), 101–120.

    Article  MATH  MathSciNet  Google Scholar 

  6. L. Borup and M. Nielsen, Frame decomposition of decomposition spaces,J. Fourier Anal. Appl. 13 (2007), 39–70.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Córdoba and C. Fefferman, Wave packets and Fourier integral operators,Comm. Partial Differential Equations 3 (1978), 979–1005.

    Article  MATH  MathSciNet  Google Scholar 

  8. S. Dahlke, M. Fornasier, H. Rauhut, G. Steidl, and G. Teschke, Generalized coorbit theory, Banach frames, and the relation to alpha-modulation spaces,Proc. Lond. Math. Soc. (3)96 (2008), 464–506.

    MATH  MathSciNet  Google Scholar 

  9. R.A. DeVore, B. Jawerth, and B.J. Lucier, Image compression through wavelet transform coding,IEEE Trans. Inform. Theory 38 (1992), 719–746.

    Article  MathSciNet  Google Scholar 

  10. R.A. DeVore, B. Jawerth, and V. Popov, Compression of wavelet decompositions,Amer. J. Math. 114 (1992), 737–785.

    Article  MATH  MathSciNet  Google Scholar 

  11. R.A. DeVore and G.G. Lorentz,Constructive Approximation, Springer-Verlag, Berlin, 1993.

    MATH  Google Scholar 

  12. H.G. Feichtinger, Banach spaces of distributions defined by decomposition methods II,Math. Nachr. 132 (1987), 207–237.

    Article  MATH  MathSciNet  Google Scholar 

  13. H.G. Feichtinger and P. Gröbner, Banach spaces of distributions defined by decomposition methods I,Math. Nachr. 123 (1985), 97–120.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Fornasier, Banach frames for α-modulation spaces,Appl. Comput. Harmon. Anal. 22 (2007), 157–175.

    Article  MATH  MathSciNet  Google Scholar 

  15. G. Garrigós and E. Hernández, Sharp Jackson and Bernstein inequalities forN-term approximation in sequence spaces with applications,Indiana Univ. Math. J. 53 (2004), 1739–1762.

    Article  MATH  MathSciNet  Google Scholar 

  16. R. Gribonval and M. Nielsen, Some remarks on non-linear approximation with Schauder bases,East J. Approx. 7 (2001), 267–285.

    MATH  MathSciNet  Google Scholar 

  17. P. Gröbner,Banachräume glatter Funktionen und Zerlegungsmethoden, Ph.D. thesis, University of Vienna, 1992.

  18. E. Hernández and G. Weiss,A First Course on Wavelets, with a foreword by Yves Meyer, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1996.

    Book  MATH  Google Scholar 

  19. G. Kerkyacharian and D. Picard, Entropy, universal coding, approximation, and bases properties,Constr. Approx. 20 (2004), 1–37.

    Article  MATH  MathSciNet  Google Scholar 

  20. S.V. Konyagin and V.N. Temlyakov, A remark on greedy approximation in Banach spaces,East J. Approx. 5 (1999), 365–379.

    MATH  MathSciNet  Google Scholar 

  21. E. Laeng, Une base orthonormale deL 2 (R) dont les éléments sont bien localisés dans l’espace de phase et leurs supports adaptés à toute partition symétrique de l’espace des fréquences,C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), 677–680.

    MATH  MathSciNet  Google Scholar 

  22. F.G. Meyer and R.R. Coifman, Brushlets: a tool for directional image analysis and image compression,Appl. Comput. Harmon. Anal. 4 (1997), 147–187.

    Article  MATH  MathSciNet  Google Scholar 

  23. Y. Meyer,Wavelets and Operators, Cambridge Studies in Advanced Mathematics37, Cambridge University Press, Cambridge, 1992.

    MATH  Google Scholar 

  24. B. Nazaret and M. Holschneider, An interpolation family between Gabor and wavelet transformations: application to differential calculus and construction of anisotropic Banach spaces,Nonlinear hyperbolic equations, spectral theory, and wavelet transformations, 363–394, Oper. Theory Adv. Appl.145, Birkhäuser, Basel, 2003.

    Google Scholar 

  25. L. Päivärinta and E. Somersalo, A generalization of the Calderón-Vaillancourt theorem toL p andh p,Math. Nachr. 138 (1988), 145–156.

    Article  MATH  MathSciNet  Google Scholar 

  26. H. Triebel,Theory of Function Spaces, Monographs in Mathematics78, Birkhäuser Verlag, Basel, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten Nielsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, M. Orthonormal bases for α-modulation spaces. Collect. Math. 61, 173–190 (2010). https://doi.org/10.1007/BF03191240

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03191240

Keywords

MSC2000

Navigation