Skip to main content
Log in

Clifford Algebraic Approach to the De Donder–Weyl Hamiltonian Theory

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

The Clifford algebraic formulation of the Duffin–Kemmer–Petiau (DKP) algebras is applied to recast the De Donder–Weyl Hamiltonian (DWH) theory as an algebraic description independent of the matrix representation of the DKP algebra. We show that the DWH equations for antisymmetric fields arise out of the action of the DKP algebra on certain invariant subspaces of the Clifford algebra which carry the representations of the fields. The matrix representation-free formula for the bracket associated with the DKP form of the DWH equations is also derived. This bracket satisfies a generalization of the standard properties of the Poisson bracket.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See footnote\(^3\).

  2. In the applications considered here \({\mathbb {F}}\) can be assumed to be \({\mathbb {R}}\) or \({\mathbb {C}}\).

  3. The Witt index of a non-degenerate symmetric bilinear form on a vector space W is the dimension of a maximal totally isotropic subspace of W relative to the form \(\langle \cdot , \cdot \rangle _W\) Maximal totally isotropic subspaces are also called Lagrangian subspaces [39, 41].

  4. A split bilinear form on W implies that W is hyperbolic [39].

  5. The negative sign in front of the metric is sometimes used in the case of the Clifford algebra relations in order to simplify the correspondence with quaternions: \(vw+wv=-2g(v,w)\), with g(vw) the Euclidean metric.

References

  1. Awane, A., Goze, M.: Pfaffian Systems, \(k\)-Symplectic Systems. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  2. Becher, P., Joos, H.: The Dirac–Kähler equation and fermions on the lattice. Z. Phys. C 15, 343–365 (1982). (see also:)

    Article  MathSciNet  ADS  Google Scholar 

  3. Benn, I.M., Tucker, R.W.: Fermions without spinors. Commun. Math. Phys. 89, 341–362 (1983)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. Benn, I.M., Tucker, R.W.: An Introduction to Spinors and Geometry with Applications in Physics. Adam Hilger, Bristol (1987)

    MATH  Google Scholar 

  5. Bergdolt, G.: Projector bases and algebraic spinors. J. Math. Phys. 29, 2519–2522 (1988)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Bergdolt, G.: The complete reduction of Clifford algebras. J. Math. Phys. 34, 5924–5934 (1993)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Carathéodory, C.: Über die Variationsrechnung bei mehrfachen Integralen. Acta Sci. Math. (Szeged) 4, 193–216 (1929)

    MATH  Google Scholar 

  8. Cartan, E.: The Theory of Spinors. Dover Publications, New York (1966)

    MATH  Google Scholar 

  9. Corson, I.: Introduction to Tensors, Spinors, and Relativistic Wave equations. Benjamon Press, New York (1953)

    MATH  Google Scholar 

  10. De Donder, T.: Théorie Invariantive du Calcul des Variations. Gauthiers-Villars, Paris (1935)

    MATH  Google Scholar 

  11. de León, M., McLean, M., Norris, L.K., Rey-Roca, A., Salgado, M.: Geometric structures in field theory. arXiv:math-ph/0208036v1

  12. de León, M., Salgado, M.M., Vilariño, S.: Methods of Differential Geometry in Classical Field Theories, \(k\)-Symplectic and \(k\)-Cosymplectic Approaches. World Scientific Publishing Co. Pte. Ltd, Singapore, Hackensack, NJ (2016)

  13. Deligne, P.: Notes on spinors. In: Quantum Fields and Strings: A Course for Mathematicians. American Mathematical Society, Providence (1999)

  14. Duffin, R.J.: On the characteristic matrices of covariant systems. Phys. Rev. 54, 1114–1114 (1938)

    Article  MATH  ADS  Google Scholar 

  15. Esen, O., de León, M., Sardón, C., Zajac, M.: The globalization problem of the Hamilton–DeDonder–Weyl equations on a local \(k\)-symplectic framework. Mediterr. J. Math 18, 26 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fernandes, M.C.B., Vianna, J.D.M.: On the Duffin–Kemmer–Petiau algebra and the generalized phase space. Braz. J. Phys. 28(4), 487–495 (1998)

    Article  ADS  Google Scholar 

  17. Fernandes, M.C.B., Vianna, J.D.M.: On the generalized phase space approach to Duffin–Kemmer–Petiau particles. Found. Phys. 29, 201–219 (1999)

    Article  MathSciNet  Google Scholar 

  18. Fernandes, M.C.B., Santana, A.E., Vianna, J.D.M.: Galilean Duffin–Kemmer–Petiau algebra and symplectic structure. J. Phys. A: Math. Gen. 36, 3841–3854 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. Gawȩdski, K.: On the geometrization of the canonical formalism in the classical field theory. Rep. Math. Phys. 3, 307–326 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  20. Giachetta, G., Mangiarotti, L., Sardanashvily, G.: New Lagrangian and Hamiltonian Methods in Field Theoy. World Scientific, Singapore (1997)

    Book  MATH  Google Scholar 

  21. Good, R.H., Jr.: Hamiltonian mechanics of fields. Phys. Rev. 93, 239–243 (1954)

    Article  MathSciNet  ADS  Google Scholar 

  22. Gotay, M.J., Isenberg, J., Marsden J.E.: Momentum maps and classical relativistic fields, part I: covariant field theory. arXiv:physics/9801019v2

  23. Hestenes, D.: Space-Time Algebra. Gordon and Breach, New York (1966)

    MATH  Google Scholar 

  24. Kanatchikov, I.V.: From the DeDonder–Weyl Hamiltonian formalism to quantization of gravity. arXiv:gr-qc/9810076

  25. Kanatchikov, I.V.: Canonical structure of classical field theory in the polymomentum phase space. Rep. Math. Phys. 41, 49–90 (1998)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  26. Kanatchikov, I.V.: On the Duffin–Kemmer–Petiau formulation of the covariant Hamiltonian dynamics in field theory. Rep. Math. Phys. 46, 107–112 (2000)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. Kanatchikov, I.V.: Precanonical perspective in quantum gravity. Nucl. Phys. Proc. Suppl. 88, 326–330 (2000)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  28. Kanatchikov, I.V.: Precanonical quantum gravity: quantization without the space-time decomposition. Int. J. Theor. Phys. 40, 1121–1149 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kanatchikov, I.V.: De Donder–Weyl Hamiltonian formulation and precanonical quantization of vielbein gravity. J. Phys. Conf. Ser. 442, 012041 (2013)

    Article  Google Scholar 

  30. Kanatchikov, I.V.: On the spectrum of DW Hamiltonian of quantum \(\rm SU(2)\) gauge field. Int. J. Geom. Methods Mod. Phys. 14, 1750123 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kanatchikov, I.V.: Schrödinger Wave functional in quantum Yang–Mills theory from precanonical quantization. Rep. Math. Phys. 82, 373–388 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  32. Kanatchikov, I.V.: Precanonical structure of the Schrödinger wave functional of a quantum scalar field in curved space-time. Symmetry 11, 1413 (2019)

    Article  Google Scholar 

  33. Kastrup, H.: Canonical theories of Lagrangian dynamical systems in physics. Phys. Rep. 101, 1–167 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  34. Kemmer, N.: The particle aspect of meson theory. Proc. R. Soc. (Lond.) A173, 91–116 (1939)

    MathSciNet  MATH  ADS  Google Scholar 

  35. Kemmer, N.: The algebra of meson matrices. Proc. Cambr. Philos. Soc. 39, 189–196 (1943)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  36. Kijowski, J.: A finite-dimensional canonical formalism in the classical field theory. Commun. Math. Phys. 30, 99–128 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  37. Kijowski, J., Szczyrba, W.: A canonical structure for classical field theories. Commun. Math. Phys. 46, 183–206 (1976)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  38. Kijowski, J., Tulczyjew, W.M.: A Dymplectic Framework for Field Theories. Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  39. Lam, T.Y.: The Algebraic Theory of Quadratic Forms. The Benjamin/Cummings Publishing Company, Reading (1973)

    MATH  Google Scholar 

  40. Marsden, J.E., Montgomery, R.: Covariant Poisson brackets for classical fields. Ann. Phys. 169, 29–47 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  41. Meinrenken, E.: Clifford Algebras and Lie Theory. Springer, New York (2013)

    Book  MATH  Google Scholar 

  42. Paufler, C., Römer, H.: De Donder–Weyl equations and multisymplectic geometry. Rep. Math. Phys. 49, 325–334 (2002)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  43. Petiau, G.: Contribution à la théorie des équations d’ondes corpusculaires. Acad. R. Belg. A. Sci. Mem. Collect. 16(2), 118 (1936) [published in University of Paris thesis (1936)]

  44. Pietrzyk, M.E.: Polysymplectic integrator for the short pulse equation and numerical general relativity. In: Bianchi, M., Jentzen, R.T., Ruffini, R. (eds.) Proceedings of the Fourteenth Marcel Grossmann Meeting on General Relativity, pp. 2677–2682. World Scientific (2017)

  45. Riahi, N., Pietrzyk, M.E.: On the relation between the canonical Hamilton-Jacobi equation and the De Donder–Weyl Hamilton–Jacobi formulation in general relativity. Acta Phys. Pol. B Proc. Suppl. 13, 213–221 (2020)

    Article  Google Scholar 

  46. Riesz, M.: Comptes Rendus 12me Cong. Math. Scand. 241–266 (1953)

  47. Rünkla, M., Vilson, O.: Family of scalar-nonmetricity theories of gravity. Phys. Rev. D 98, 084034 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  48. Salingaros, N.A., Wene, G.P.: The Clifford algebra of differential forms. Acta Appl. Math. 4, 271–292 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  49. Sanchez-Valenzuela, O.A., Zuazua-Vega, R.E.: Duffin–Kemmer algebras revisited. J. Phys. A Math. Gen. 26, 4967–4990 (1993)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  50. Schönberg, M.: Quantum kinematics and geometry. Nuovo Cim. VI supplem. n. 1, 356–380 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  51. See also: Rosenfeld, B.A.: A History of Non-Euclidean Geometry: Evolution of the Concept of a Geometric Space. Springer, New York (1988)

  52. Shimpuku, T.: Symmetric Algebra by Direct Product of Clifford Algebra. Seibunsha Publishers, Osaka (1988)

    MATH  Google Scholar 

  53. Śnyatycki, J.: On the geometric structure of classical field theory in Lagrangian formulation. Proc. Cambr. Philos. Soc. 68, 475–484 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  54. Struckmeier, J., Redelbach, A.: Covariant Hamiltonian field theory. Int. J. Mod. Phys. E 17, 435–491 (2008)

    Article  ADS  Google Scholar 

  55. Tapia, V.: Covariant field theory and surface terms. Nuovo Cim. 102B, 123–130 (1988)

    Article  ADS  Google Scholar 

  56. Tulczyjew, W.M.: Warsaw seminar in geometry of phase space (1968) (unpublished)

  57. Vey, D.: Multisymplectic formulation of vielbein gravity: I. De Donder–Weyl formulation, Hamiltonian \((n-1)\)-forms. Class. Quantum Gravity 32, 095005 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  58. Weyl, H.: Geodesic fields in the calculus of variation for multiple integrals. Ann. Math. 36(3), 607–629 (1935)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to express my gratitude to J. D. M. Vianna for bringing Ref. [50] to my attention in the early stages of my academic career and for the countless discussions on the fascinating insights into the geometric algebras contained in that reference. I also thank José F. R. Neto for reading early drafts of the manuscript and making useful remarks. Finally, I would also like to thank the referees for the comments and suggestions which greatly contributed to the improvement of this work. Special thanks are due to the editor for making the article better.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.C.B. Fernandes.

Additional information

Communicated by Jayme Vaz

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Multilinear Endomorphisms in \(\mathrm {G}_n\)

Appendix: Multilinear Endomorphisms in \(\mathrm {G}_n\)

In this Appendix we show that the splitting \(W=V\oplus V^*\) of the vector space W into two complementary Lagrangian subspaces V and \(V^*\) under the bilinear form, relation (1), in addition with the corresponding invariant projector (P), lead to a useful basis to expand the algebra \(\mathrm {G}_n\). The convenience of this type of basis is that it makes explicit the appearance of the spaces of algebraic spinors [5, 6, 8, 16, 50] in \(\mathrm {G}_n\). These spaces turn out to be the minimal left and right ideals of the algebra. We will also introduce the multi-index notation which is particularly useful when dealing with multilinear algebras.

1.1 The Projector Basis of the Split Form

Start with a dual basis \(e_1,\ldots , e_n\) and \(e^1,\ldots , e^n\) of vectors and covectors respectively of the complementary Lagrangian subspaces V and \(V^*\). Set the invariant projectors as follows,

$$\begin{aligned} \Pi _{p}=(p\,!)^{-1}\sum _{j_1=1}^{n}\cdots \sum _{j_p=1}^{n} {}^{j_1,\ldots ,j_p}\!P_{j_p,\ldots ,j_1}, \end{aligned}$$
(38)

where

$$\begin{aligned} {}^{j_1,\ldots ,j_p}\!P_{j_p,\ldots ,j_1}:= e^{j_1}\cdots e^{j_p}(P)e_{j_p}\cdots e_{j_1}, \end{aligned}$$
(39)

and \(p=0,\ldots ,n\), \(\dim V =n\), with the convention that \(\Pi _{0}:=P= {{\mathcal {N}}}_{1}\cdots {{\mathcal {N}}}_{n}=e_{1}e^{1}\cdots e_{n}e^{n}\). Notice that the projectors (38) are not postulated but they are constructed from Clifford products of isotropic basis vectors. This construction is due to Schönberg [50].

A multi-index I of length k is a k-tuple of positive integers, say \(i_1 i_2\ldots i_k\), from the set \(\{1,2,\ldots ,\dim V\}\). We are going to denote them by the upper-case Roman letters and the associated indices will be denoted by the lower case letters. A multi-index I is said to have the length p if \(k=p\) in the k-tuple that represents I and in that case, we write \(|I|=p\) for the length of I. We will also use the summation convention for the multi-index.

Using the multi-index notation we rewrite Eqs. (38) and (39) accordingly,

$$\begin{aligned} \Pi _{|J|}=(|J|!)^{-1}\sum _{J} {}^{J}\!P_{\overleftarrow{J}}, \end{aligned}$$
(40)

where \(J=j_{1}\ldots j_{|J|}\); \(\overleftarrow{J}:=j_{|J|}\ldots j_1\) and \(|\overleftarrow{J}|=|J|=p\). The length |K| of the elements can only runs from 0 to dim V in the \(\mathrm {G}_n\) algebra.

As a consequence of the relations (2), (3), (4) and (6), the elements (39) satisfy the relation,

$$\begin{aligned} ({}^{j_1,\ldots ,j_p}\!P_{k_q,\ldots ,k_1})({}^{j'_{1},\ldots ,j'_{p'}}\!P_{k'_{q'},\ldots ,k'_{1}})= \delta _{q,p'}\delta ^{j'_{1},\ldots ,j'_{p'}}_{k_1,\ldots ,k_q}({}^{j_1,\ldots ,j_p}\!P_{k'_{q'},\ldots ,k'_{1}}) , \end{aligned}$$
(41)

where \(\delta _{q,p'}\delta ^{j'_{1},\ldots ,j'_{p'}}_{k_1,\ldots ,k_q}\) denotes the generalized Kronecker deltas,

$$\begin{aligned} \delta _{q,p'} \delta ^{j'_{1},\ldots ,j'_{p'}}_{k_1,\ldots ,k_q} = \det \left( \begin{array}{cccc} \delta ^{j'_1}_{k_1}&{} \delta ^{j'_1}_{k_2}&{} \cdots &{} \delta ^{j'_{1'}}_{k_q} \\ \delta ^{j'_2}_{k_1} &{} \delta ^{j'_2}_{k_2} &{} \cdots &{} \delta ^{j'_{2'}}_{k_q} \\ \cdot &{} \cdot &{} \cdot &{} \cdot \\ \delta ^{j'_{p'}}_{k_1} &{} \delta ^{j'_{p'}}_{k_2} &{} \cdots &{} \delta ^{j'_{p'}}_{k_q} \end{array} \right) , \end{aligned}$$

or succinctly stated,

$$\begin{aligned} ({}^{J}\!P_{\overleftarrow{K}})({}^{J'}\!P_{\overleftarrow{K'}})=\delta _{|\overleftarrow{K}|,|J'|} \Delta ^{J'}_{K} ({}^{J}\!P_{\overleftarrow{K'}}), \qquad |\overleftarrow{K}|=q, \; |J'|=p', \end{aligned}$$
(42)

where \(\Delta ^{J'}_{K}\equiv \delta ^{j'_{1},\ldots ,j'_{p'}}_{k_1,\ldots ,k_q}\).

Relation (41) or (42) shows that the set of \(2^{2n}\) elements (39) of \(\mathrm {G}_n\) with \(p,q=0,\ldots ,n\) and \(j_{1}<\cdots <j_{p}\), \(k_{1}<\cdots <k_{q}\), \(j, k=1,\ldots ,n\) are linearly independent and thus form a basis of \(\mathrm {G}_n\), which has dimension \(2^{2n}\).

In particular, the generators \((e_j)\) and \((e^j)\) can be retrieved from the basis elements \({}^{j_1,\ldots ,j_p}\!P_{k_q,\ldots ,k_1}\) by writing

$$\begin{aligned} e^j&=\sum _p (p!)^{-1}({}^{j,j_1,\ldots ,j_p}\!P_{ j_p,\ldots ,j_1})=\sum _{|J|=0}^{n} (|J|!)^{-1}\;({}^{j,J}\!P_{\overleftarrow{J}}), \\ e_j&=\sum _p (p!)^{-1}({}^{j_1,\ldots ,j_p}\!P_{j_p,\ldots ,j_1,j})=\sum _{|J|=0}^{n} (|J|!)^{-1}({}^{J}\!P_{\overleftarrow{J},j}), \end{aligned}$$

which are seen to satisfy the defining relations (2)–(4) of the \(\mathrm {G}_n\) algebra according to multiplication (41) or (42). Any element of the \(\mathrm {G}_n\) algebra can be written in the basis \((^{J} P_{\overleftarrow{K}})\) as follows:

$$\begin{aligned} \Lambda= & {} \sum _{p,q=0}^n (p!q!)^{-1} A_{j_1,\ldots ,j_p}{}^{k_1,\ldots ,k_q} ({}^{j_1,\ldots ,j_p}\!P_{k_q,\ldots ,k_1}) \nonumber \\= & {} \sum _{|J|,|K|=0}^{n} A_{J}{}^{K}({}^{J}\! P_{\overleftarrow{K}}), \end{aligned}$$
(43)

where we can recognize the coefficients \(A_{j_1,\ldots ,j_p}{}^{k_1,\ldots ,k_q}\) as tensor components. Note that, by writing all the terms of the sum explicitly there will occur all types of tensors including the zeroth rank elements regarded as the scalars, the mixed tensors and finally the antisymmetric ones, either covariant or contravariant up to rank n. The great advantage of studying the \(\mathrm {G}_n\) algebra in this basis is that by using the system of multilinear projectors \(\Pi _{|J|}\) we can easily project on tensor spaces of different lengths within \(\mathrm {G}_n\). One of the most important projectors is the minimal idempotent \(\Pi _0=(P)\). It projects \(\mathrm {G}_n\) onto its minimal left/right ideals. That is, take \(\Lambda \in \mathrm {G}_n\) written in the form (43) and compute the product or right projection \(\Lambda (\Pi _0)=\Lambda (P)\) using rules (41). The result is

$$\begin{aligned} \psi =\sum _{p=0}^n (p!)^{-1} A_{j_1,\ldots ,j_p} ({}^{j_1,\ldots ,j_p}\!P)=\sum _{|J|=0}^n (|J|!)^{-1}A_J({}^J \! P). \end{aligned}$$

Let us call the space of these elements \(\mathrm {G}_n(P)\). Such space is isomorphic to the direct sum of the linear spaces of homogeneous forms of all orders up to \(n=\dim V\). The set \(\mathrm {G}_n(P)\) is a minimal left ideal of \(\mathrm {G}_n\). Clearly, due to rules (41) one can easily check that the elements \(\Lambda \in \mathrm {G}_n\) are endomorphisms of \(\mathrm {G}_n(P)\). So \(\mathrm {G}_n(P)\) is the space of spinors of the vector space \(W=V\oplus V^{*}\) with which we started.

Upon left projection, the analogous arguments lead to the minimal right ideal \((P)\mathrm {G}_n\) which is the dual of \(\mathrm {G}_n(P)\).

It is common in the literature to define these spinors as elements of the Grassmann algebra of the Lagrangian subspace \(V^{*}\) of W [13, 41]. This Grassmann algebra turns out to be a Clifford module. The dual spinors belong to the Grassmann algebra of the complementary space V. These Clifford modules are isomorphic to the minimal left/right ideals of \(\mathrm {G}_n\). These minimal ideals are known as algebraic spinor spaces [5, 6, 8, 46, 50].

By using the system of multilinear projectors \(\Pi _p\), we see that the projection \(\Pi _p\mathrm {G}_n(P)\) is isomorphic to the space of homogeneous forms of order (rank) p. By using the \((\Pi _p)\) we can also write an element of \(\mathrm {G}_n(P)\) in a basis free form

$$\begin{aligned} \psi =\sum _{|J|=0}^n (\Pi _{|J|})\Lambda (P), \end{aligned}$$

where \(\Lambda \in \text {G}_n\).

From the multiplication rule (41) the following useful algebraic properties can be obtained which are used throughout the text

$$\begin{aligned} \sum _{|J|=0}^{n} \Pi _{|J|}=1_{G_n}, \quad \Pi _{|J|}(\Pi _{|K|})=\delta _{|J|,|K|}(\Pi _{|J|}) \end{aligned}$$

and

$$\begin{aligned} \alpha (\Pi _{|J|})=(\Pi _{|J|+1})\alpha , \qquad \Pi _{|J|}(v)=v(\Pi _{|J|+1}). \end{aligned}$$
(44)

In plain words, \(\Pi _{|J|}\) changes to \(\Pi _{|J|+1}\) when it moves left past a covariant vector, and \(\Pi _{|J|}\) changes to \(\Pi _{|J|+1}\) when it moves right past a contravariant vector. We also assume that \(\Pi _{-1}=0\) and \(\Pi _{n+1}=0\).

1.2 Adjunction and Contraction

Two further operations in the algebra can be defined. The first operation is adjunction which is defined as follows [50],

$$\begin{aligned} (e_i)^{\dag }=(e_i,0)^{\dag }:=(0,g_{ij}e^j)=(0,{\widetilde{e}}_i)=g_{ij}(e^j)\equiv ({\widetilde{e}}_i) \end{aligned}$$
(45)

and similarly,

(46)

and hence \((P)^{\dag }=(P)\). The adjunction is an involution of \(\mathrm {G}_n\). In the case of \(\mathrm {G}_n\) over the real numbers the adjunction becomes transposition which is an involution corresponding to the transformation \(v\rightarrow \sum v^i e^i\), \(\alpha \rightarrow \sum \alpha _i e_i\). In the complex case the involution corresponds to the transformation \(v\rightarrow \sum (v^i)^*e_i^{\dag }\) associated to a unitary metric \(g_{ij}=h_{ij}\) [50].

The other operation is contraction. Recall that the standard operation of contraction defined for tensors fields shrinks an (rs) tensor to an \((r-1,s-1)\) tensor. For example, for (1, 1) tensor fields on a manifold M, the contraction shrinks into functions. It is defined as the \({\mathfrak {F}}(M)\)-linear map

$$\begin{aligned} {\mathbf {C}}: {\mathfrak {T}}^1_1\rightarrow {\mathfrak {F}}(M), \qquad {\mathbf {C}}(X\otimes \theta )=\langle \theta , X\rangle , \end{aligned}$$

for all one-forms \(\theta \) and vector fields X. In the local chart \((U,x^1\cdots x^n)\) we must have \({\mathbf {C}}(dx^i\otimes \partial _j)=\delta ^i_j\). So for a tensor field \(A \in {\mathfrak {T}}^1_1\), we obtain

$$\begin{aligned} {\mathbf {C}}\left( \sum A_{\;\;i}^j\partial _j \otimes dx^i \right) =\sum A^i_{\;\;i}=A_{\;\;i}^i. \end{aligned}$$

Einstein summation rule has been employed.

In analogy with this operation on tensors, we define a similar operation of contraction in the algebra \(\mathrm {G}_n\). For example, for the elements \(A_i^j ({}^{i}\!P_{\!j})\) we define:

$$\begin{aligned} {\mathbf {C}}[A_i^{\;\;j} ({}^{i}\!P_{\!j})]= & {} A_i^{\;\;j}{\mathbf {C}}[{}^{i}\!P_{\!j}]:=A_i^{\;\;j}(P_{\!j})({}^{i}\!P) \nonumber \\= & {} A_i^{\;\;j} \delta ^i_{j}(P)=A^{\;\;i}_{i}(P) \end{aligned}$$
(47)

where the property (9) and the idempotency of (P) have been used. We extend the contraction operation to the basis elements of \(\mathrm {G}_n\) as follows:

$$\begin{aligned} {\mathbf {C}}_{(p)}\left[ {}^{J}\!P_{\overleftarrow{K}}\right] := \Delta ^{J}_{K}(P) \end{aligned}$$
(48)

with \(|J|=|K|=p\). This full contraction shrinks the elements \({}^{J}\!P_{\overleftarrow{K}}\) to products s(P) of the projectors P in the subspace of the scalars in \(\mathrm {G}_n\) with s an element of \({\mathbb {F}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, M. Clifford Algebraic Approach to the De Donder–Weyl Hamiltonian Theory. Adv. Appl. Clifford Algebras 32, 23 (2022). https://doi.org/10.1007/s00006-022-01202-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-022-01202-6

Keywords

Mathematics Subject Classification

Navigation