Skip to main content
Log in

The Relativistic Hamilton–Jacobi Equation for a Massive, Charged and Spinning Particle, its Equivalent Dirac Equation and the de Broglie–Bohm Theory

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

Using Clifford and Spin–Clifford formalisms we prove that the classical relativistic Hamilton Jacobi equation for a charged massive (and spinning) particle interacting with an external electromagnetic field is equivalent to Dirac–Hestenes equation satisfied by a class of spinor fields that we call classical spinor fields. These spinor fields are characterized by having the Takabayashi angle function constant (equal to 0 or \(\pi \)). We also investigate a nonlinear Dirac–Hestenes like equation that comes from a class of generalized classical spinor fields. Finally, we show that a general Dirac–Hestenes equation (which is a representative in the Clifford bundle of the usual Dirac equation) gives a generalized Hamilton–Jacobi equation where the quantum potential satisfies a severe constraint and the “mass of the particle” becomes a variable. Our results can then eventually explain experimental discrepancies found between prediction for the de Broglie–Bohm theory and recent experiments. We briefly discuss de Broglie’s double solution theory in view of our results showing that it can be realized, at least in the case of spinning free particles.The paper contains several appendices where notation and proofs of some results of the text are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boudet, R.: Quantum Mechanics in the Geometry of Space-Time. Elementary Theory. Springer Briefs in Physics. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  2. Bohm, D., Hiley, B.J.: The Undivided Universe—An Ontological Interpretation of Quantum Theory. Routledge, London (1993)

    Google Scholar 

  3. Chen, P., Kleinert, H.: Bohm Trajectories as Approximations to Properly Fluctuating Quantum Trajectories. arXiv:1308.5021v1 [quant-ph]

  4. Chen, P., Kleinert, H.: Deficiencies of Bohmian trajectories in view of basic quantum principles. Elect. J. Theor. Phys. 13, 1–12 (2016). http://www.ejtp.com/articles/ejtpv13i35

  5. Crumeyrolle, A.: Orthogonal and Symplectic Clifford Algebras. Kluwer Acad. Publ, Dordrecht (1990)

    Book  MATH  Google Scholar 

  6. Daviau, C.: Solutions of the Dirac equation and of a nonlinear dirac equation for the hydrogen atom. Adv. Appl. Clifford Algebras 7(S), 175–194 (1997)

    MathSciNet  MATH  Google Scholar 

  7. de Broglie, L.: Non-Linear Wave Mechanics. A Causal Interpretation. Elsevier Publ. Co., Amsterdam (1960)

    MATH  Google Scholar 

  8. de Gosson, M., Hiley, B., Cohen, E.: Observing Quantum Trajectories: From Mott’s Problem to Quantum Zeno Effect and Back. arXiv:1606.060651v1 [quant-ph]

  9. Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  10. Englert, B.G., Scully, M.O., Süssmann, G., Walther, H.: Surrealistic Bohm trajectories. Z. Naturforsch. 47A, 1175 (1992)

    ADS  Google Scholar 

  11. Geroch, R.: Spinor structure of space-times in general relativity I. J. Math. Phys. 9, 1739–1744 (1968)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Geroch, R.: Spinor structure of space-times in general relativity. II. J. Math. Phys. 11, 343–348 (1970)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Giglio, J.F.T., Rodrigues Jr., W.A.: Locally inertial reference frames in Lorentzian and Riemann–Cartan spacetimes. Annalen der Physik. 502, 302–310 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Hestenes, D.: Space-Time Algebra (Second Revision), revised edn. Birkhäuser, Basel (2015)

    Book  MATH  Google Scholar 

  15. Hestenes, D.: Local observables in Dirac theory. J. Math. Phys. 14, 893–905 (1973)

    Article  ADS  Google Scholar 

  16. Hestenes, D.: Observables, operators and complex numbers in classical and quantum physics. J. Math. Phys. 16, 556–572 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  17. Hestenes, D.: Real Dirac theory. In: Keller, J., Oziewicz, Z. (eds.) Proceedings of the International Conference on Theory of the Electron (Mexico City, September 24–27, 1995). Adv. Appl. Clifford Algebras 7(S), 97–144 (1997)

  18. Hiley, B.J., Callaghan, R.E.: Delayed choice experiments and the Bohm approach. Phys. Scr. 74, 336–348 (2006). arXiv:1602.06100

  19. Hiley, B.J., Callaghan, R.E.: Clifford algebras and the Dirac–Bohm quantum Hamilton–Jacobi equation. Found. Phys. 42, 192–208 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Hiley, B.J., Callaghan, R.E.: The Dirac particle and its relation to the Bohm approach. The Clifford algebra approach to quantum mechanics B (2010). arXiv:1011.4033

  21. Holland, P.R.: The Quantum Theory of Motion. University Press, Cambridge (1995)

    MATH  Google Scholar 

  22. Jones, E., Bach, R., Batelaan, H.: Path integrals, matter waves, and the double slit. Eur. J. Phys. 36, 065048 (2015)

    Article  MATH  Google Scholar 

  23. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields, fourth revised, English edn. Pergamon Press, New York (1975)

    MATH  Google Scholar 

  24. Lawson, H., Blaine, M.L.: Spin Geometry. Princeton University Press, Princeton (1989)

    Google Scholar 

  25. Lounesto, P.: Clifford Algebras and Spinors. Cambridge Univ. Press, Cambridge (1997)

    MATH  Google Scholar 

  26. Mahler, D.H., Rozema, L., Fisher, K., Vermeyden, L., Resch, K.J., Wiseman, H.M., Steinberg, A.: Experimental nonlocal and Surreal Bohmian trajectories. Sci. Adv. 2, e1501466 (2016). http://advances.sciencemag.org/content/advances/2/2/e1501466.full

  27. Oliveira de, E.C., Rodrigues Jr., W.A., Vaz, J. Jr.: Elko spinor fields and massive magnetic like monopoles. Int. J. Theor. Phys. (2014). arXiv:1306.4645 [math-ph]

  28. Rodrigues Jr., W.A., Vaz, J. Jr.: Subluminal and superluminal solutions in vacuum of the Maxwell equations and the massless dirac equation. In: Talk presented at the International Conference on the Theory of the Electron, Mexico City, 1995. Adv. Appl. Clifford Algebras 7(Sup.), 453–462 (1997)

  29. Rodrigues Jr., W.A., Lu, J.Y.: On the existence of undistorted progressive waves (UPWs) of arbitrary speeds \(0\le v<\infty \) in nature. Found. Phys. 27, 435–508 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  30. Mosna, R.A., Rodrigues Jr., W.A.: The bundles of algebraic and Dirac–Hestenes spinor fields. J. Math. Phys. 45, 2945–2966 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Rodrigues Jr., W.A.: Algebraic and Dirac–Hestenes spinors and spinor fields. J. Math. Phys. 45, 2908–2994 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Rodrigues Jr., W.A., Vaz Jr., J., Pavsic, M.: The Clifford bundle and the dynamics of the superparticle. Banach Center Publications. Polish Acad. Sci. 37, 295–314 (1996)

    MATH  Google Scholar 

  33. Rodrigues Jr., W.A., Capelas de Oliveira, E.: The Many Faces of Maxwell, Dirac and Einstein Equations. A Clifford Bundle Approach (Second Revised and Enlarged Edition). Springer, Heidelberg (2016)

    Book  MATH  Google Scholar 

  34. Sachs, R.K., Wu, H.: General Relativity for Mathematicians. Springer, New York (1977)

    Book  MATH  Google Scholar 

  35. Sawant, R., Samuel, J., Sinha, A., Sinha, S., Sinha, U.: Nonclassical Paths in Quantum Interference Experiments. Phys. Rev. Lett. 113(12), 120406 (2014)

    Article  ADS  Google Scholar 

  36. Vaz Jr., J., da Rocha, R.: An Introduction to Clifford Algebras and Spinors. Oxford Univ. Press, Oxford (2016)

    Book  MATH  Google Scholar 

  37. Zeni, J.R.R., Rodrigues Jr., W.A.: A thoughtful study of Lorentz transformations by clifford algebras. Int. J. Mod. Phys. A 7, 1793–1817 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel A. Wainer.

Additional information

Communicated by Rafał Abłamowicz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, W.A., Wainer, S.A. The Relativistic Hamilton–Jacobi Equation for a Massive, Charged and Spinning Particle, its Equivalent Dirac Equation and the de Broglie–Bohm Theory. Adv. Appl. Clifford Algebras 27, 1779–1799 (2017). https://doi.org/10.1007/s00006-017-0768-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-017-0768-0

Keywords

Navigation