Skip to main content
Log in

A possible correspondence between Ricci identities and Dirac equations in the Newman–Penrose formalism

Towards an understanding of gravity induced collapse of the wave-function?

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

It is well-known that in the Newman–Penrose formalism the Riemann tensor can be expressed as a set of eighteen complex first-order equations, in terms of the twelve spin coefficients, known as Ricci identities. The Ricci tensor herein is determined via the Einstein equations. It is also known that the Dirac equation in a curved spacetime can be written in the Newman–Penrose formalism as a set of four first-order coupled equations for the spinor components of the wave-function. In the present article we suggest that it might be possible to think of the Dirac equations in the N–P formalism as a special case of the Ricci identities, after an appropriate identification of the four Dirac spinor components with four of the spin coefficients, provided torsion is included in the connection, and after a suitable generalization of the energy-momentum tensor. We briefly comment on similarities with the Einstein–Cartan–Sciama–Kibble theory. The motivation for this study is to take some very preliminary steps towards developing a rigorous description of the hypothesis that dynamical collapse of the wave-function during a quantum measurement is caused by gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ghirardi, G.C., Rimini, A., Weber, T.: Phys. Rev. D 34, 470 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Ghirardi, G.C., Pearle, P., Rimini, A.: Phys. Rev. A 42, 78 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  3. Pearle, P.: Phys. Rev. D 13, 857 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bassi, A., Ghirardi, G.C.: Phys. Rep. 379, 257 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Bassi, A., Lochan, K., Satin, S., Singh, T.P., Ulbricht, H.: Rev. Mod. Phys. 85, 471 (2013)

    Article  ADS  Google Scholar 

  6. Karolyhazy, F.: Nuovo Cimento 42A, 390 (1966)

    Article  ADS  Google Scholar 

  7. Karolyhazy, F., Frenkel, A., Lukács, B.: On the possible role of gravity in the reduction of the wave function. In: Penrose, R., Isham, C.J. (eds.) Quantum Concepts in Space and Time (Clarendon, Oxford, 1986)

  8. Penrose, R.: Gen. Relativ. Gravit. 28, 581 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Diósi, L.: Phys. Lett. A 120, 377 (1987)

    Article  ADS  Google Scholar 

  10. Frenkel, A.: Found. Phys. 32, 751 (2002)

    Article  MathSciNet  Google Scholar 

  11. Giulini, D., Großardt, A.: Class. Quant. Grav. 28, 195026 (2011)

    Article  ADS  Google Scholar 

  12. Giulini, D., Großardt, A.: Class. Quant. Grav. 29, 215010 (2012)

    Article  ADS  Google Scholar 

  13. Giulini, D., Großardt, A.: Class. Quant. Grav. 30, 155018 (2013)

    Article  ADS  Google Scholar 

  14. Hu, B.L.: arXiv:1402.6584 (2014)

  15. Colin, S., Durt, T., Willox, R.: arXiv:1402.5653 (2014)

  16. Gao, S.: Stud. Hist. Philos. Mod. Phys. 44, 148 (2013)

    Article  MATH  Google Scholar 

  17. Diósi, L.: J. Phys. Conf. Ser. 442, 012001 (2013)

    Article  ADS  Google Scholar 

  18. Adler, S. L.: arXiv:1401.0353 [gr-qc] (2014)

  19. Chandrasekhar, S.: The Mathematical Theory of Black Holes. Oxford University Press, Oxford (1983)

    MATH  Google Scholar 

  20. O’Connor, M.P., Smrz, P.K.: Aust. J. Phys. 31, 195 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  21. Jogia, S., Griffiths, J.B.: Gen. Relativ. Gravit. 12, 597 (1980)

    ADS  MATH  MathSciNet  Google Scholar 

  22. Zecca, A.: Int. J. Theo. Phys. 41, 421 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hehl, F.W., von der Heyde, P., Kerlick, G.D., Nester, J.M.: Rev. Mod. Phys. 48, 393 (1976)

    Article  ADS  Google Scholar 

  24. Trautman, A.: arXiv:gr-qc/0606062 (2006)

  25. Blagojevic, M.: Gravitation and Gauge Symmetries. IOP Publishing, UK (2002)

    Book  MATH  Google Scholar 

  26. Blagojevic, M., Hehl, F.W. (eds.): Gauge Theories of Gravitation: A Reader with Commentaries. (Imperial College Press, London, 2013)

  27. Hehl, F.W.: Phys. Lett. A 377, 1775 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  28. Hehl, F. W.: arXiv:1204.3672 (2012)

Download references

Acknowledgments

This work is supported by a grant from the John Templeton Foundation (# 39530).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tejinder P. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Singh, T.P. A possible correspondence between Ricci identities and Dirac equations in the Newman–Penrose formalism. Gen Relativ Gravit 46, 1821 (2014). https://doi.org/10.1007/s10714-014-1821-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-014-1821-0

Keywords

Navigation