Skip to main content
Log in

Prey abundance vs diet breadth in a spider test system

  • Papers
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Summary

‘Decisions’ made as to what prey types to include in the diet were analysed for two populations of the spider,Agelenopsis aperta existing under markedly different prey availability and predation levels. Potential prey types were ranked as to their relative profitabilities with respect to energy gain per handling effort and predation risk. Members of the population experiencing limited prey availability but low risk of predation to visually hunting predators exhibited a significantly higher capture attempt rate towards all prey encountered than the population for which prey were abundant but for which predation was a significant problem. Neither spider population preferentially attacked prey that exhibited higher profitability rankings. An experiment was completed that indicates thatA. aperta can discriminate between more and less profitable prey. Suggestions are made as to why the population experiencing abundant food did not exhibit a narrower diet when compared to the population existing under limited food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Caraco, T. (1980) On foraging time allocation in a stochastic environment.Ecology 61, 119–28.

    Google Scholar 

  • Caraco, T. and Chasin, M. (1984) Foraging preferences: response to reward skew.Anim. Behav. 32, 76–85.

    Google Scholar 

  • Caraco, T. and Gillespie, R. G. (1986) Risk-sensitivity: foraging mode in an ambush predator.Ecology 67, 1180–5.

    Google Scholar 

  • Greenstone, M. H. (1978) Spider feeding behavior optimises dietary essential amino acid composition.Nature 282, 501–3.

    Google Scholar 

  • Griffiths, D. (1980) The feeding biology of ant lion larvae: prey capture, handling and utilization.J. Anim. Ecol. 49, 99–125.

    Google Scholar 

  • Hammerstein, P. and Riechert, S. E. (1988) Payoffs and strategies in territorial contests: ESS analyses of two ecotypes of the spiderAgelenopsis aperta.Evol. Ecol. 2, 115–38.

    Google Scholar 

  • Hedrick, A. V. and Riechert, S. E. (1989) Population variation in the foraging of a spider: the role of genetics.Ecologia 80, 533–9.

    Google Scholar 

  • Heinrich, B. and Heinrich, J. E. (1984) The pit-trapping foraging strategy of the ant lion,Myrmeleon immaculata (Neuroptera: Myrmeleontidae).Behav. Ecol. Sociobiol. 14, 151–60.

    Google Scholar 

  • Krebs, J. R. and Davies, N. B. (1981)An Introduction to Behavioural Ecology. Sinauer, Sunderland, USA.

    Google Scholar 

  • Pimentel, R. A. (1979)Morphometrics, pp. 276. Kendall Hunt, Dubuque, Iowa, USA.

    Google Scholar 

  • Pyke, G. H. (1984) Optimal foraging theory: A critical review.Ann. Rev. Ecol. Syst. 15, 523–75.

    Google Scholar 

  • Pyke, G. H., Pulliam, H. R. and Charnov, E. L. (1977) Optimal foraging: a selective review of theory and tests.Quart. Rev. Biol. 52, 137–54.

    Google Scholar 

  • Riechert, S. E. (1976) Web-site selection in a desert spider,Agelenopsis aperta (Gertsch).Oikos 27, 311–5.

    Google Scholar 

  • Riechert, S. E. (1978) Energy-based territoriality in populations of the desert spider,Agelenopsis aperta (Gertsch).Symp. Zool. Soc. London 42, 211–22.

    Google Scholar 

  • Riechert, S. E. (1979) Games spiders play II: resource assessment strategies.Behav. Ecol. Sociobiol. 4, 1–8.

    Google Scholar 

  • Riechert, S. E. (1981) The consequences of being terroritial: spiders, a case study.Amer. Natur. 117, 871–92.

    Google Scholar 

  • Riechert, S. E. (1986) Spider flights: a test of evolutionary game theory.Amer. Sci. 4, 604–10.

    Google Scholar 

  • Riechert, S. E. and Tracy, C. R. (1975) Thermal balance and prey availability: bases for a model relating web-site characteristics to spider reproductive success.Ecology 56, 265–84.

    Google Scholar 

  • Riechert, S. E. and Luczak, J. (1982) Spider foraging: behavioral repsonses to prey. InBiology of Spider Communication: Mechanisms and Ecological Signicance (P. N. Witt and J. Rovner, eds). Princeton University Press, Princeton, USA.

    Google Scholar 

  • Riechert, S. E. and Hedrick, A. V. (1990) Levels of predation and genetically based anti-predatory behavior in the spider,Agelenopsis aperta.Anim. Behav. 40, 679–88.

    Google Scholar 

  • Rogers, L. E., Hinds, W. T. and Buschbom, R. L. (1976) A general weight vs length relationship for insects.Ann. Entomol. Soc. 69, 387–9.

    Google Scholar 

  • Sokal, R. R. and Rohlf, F. J. (1981)Biometry. W. H. Freeman, San Francisco, USA.

    Google Scholar 

  • Stephens, D. W. and Charnov, E. L. (1982) Optimal foraging: some simple stochastic models.Behav. Ecol. Sociobiol. 10, 251–63.

    Google Scholar 

  • Stephens, D. W. and Krebs, J. R. (1986)Foraging Theory. Princeton University Press, Princeton, USA.

    Google Scholar 

  • Townsend, C. R. and Hughes, R. N. (1981) Maximizing net energy returns from foraging. InPhysiological ecology: an evolutionary approach to resource use. (C. R. Townsend and P. Calow, eds). Sinauer Press, Sunderland, USA.

    Google Scholar 

  • Waddington, K. D. and Holden, L. R. (1979) Optimal foraging: on flower selection by bees.Amer. Natur. 114, 179–96.

    Google Scholar 

  • Wilson, D. S. (1974) Prey capture and competition in the ant-lion.Biotropica 6, 187–93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riechert, S.E. Prey abundance vs diet breadth in a spider test system. Evol Ecol 5, 327–338 (1991). https://doi.org/10.1007/BF02214236

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02214236

Keywords

Navigation