Skip to main content

Structural and Optical Properties of Chalcogenide WS2 Thin Film

  • Conference paper
  • First Online:
Recent Advances in Functional Materials and Devices (AFMD 2023)

Abstract

To fabricate the nanocrystalline thin film of WS2, thiourea (CH4N2S), and sodium tungstate (Na2WO4) were used as the sources of sulfide and tungsten, respectively. The chemical bath deposition (CBD) method was employed for developing the chalcogenide WS2 nanocrystalline thin film on p-Si (Silicon) substrate. To validate the results, X-ray diffraction (XRD), ultraviolet—visible (UV—Vis) spectroscopy, and I-V characteristics have been applied systematically to examine the structural, optical, and electrical properties, respectively. XRD results confirmed the formation of a polycrystalline hexagonal phase in the fabricated thin film. The optical absorption spectra show an absorption peak at ~ 305 nm, which lies in the ultraviolet range of the EM spectrum (electromagnetic spectrum), the band gap calculated using Tauc’s plot was found to be ~2.50 eV. The transport properties across the junction of the interfacial structure were performed via measurement of current—voltage (I-V) characteristics. The photo response characteristics for the WS2/p-Si structure were also recorded to investigate the potential usage in the photodetector applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hotovy I, Spiess L, Mikolasek M, Kostic I, Romanus H (2020) Structural and morphological evaluation of layered WS2 thin films. Vacuum 179:109570. https://doi.org/10.1016/j.vacuum.2020.109570

    Article  CAS  Google Scholar 

  2. Shimakawa K (2020) Electrical transport properties. World Sci Ref Amorph Mater Struct Prop Model Main Appl 3(8): 177–202. https://doi.org/10.1142/9789811215575_0007

  3. Hankare PP, Manikshete AH, Sathe DJ, Chate PA, Patil AA, Garadkar KM (2009) WS2 thin films: Opto-electronic characterization. J Alloys Compd 479(1–2):657–660. https://doi.org/10.1016/j.jallcom.2009.01.024

    Article  CAS  Google Scholar 

  4. Ahmadi A, Shoushtari MZ, Farbod M (2019) Photoelectrochemical application of WS2 nanosheets prepared via a low-temperature CVD method. J Mater Sci Mater Electron 30(7):6342–6349. https://doi.org/10.1007/s10854-019-00936-7

    Article  CAS  Google Scholar 

  5. Rapoport L, Moshkovich A, Perfilyev V, Tenne R (2007) On the efficacy of IF-WS 2 nanoparticles as solid lubricant: The effect of the loading scheme. Tribol Lett 28(1):81–87. https://doi.org/10.1007/s11249-007-9250-9

    Article  CAS  Google Scholar 

  6. Kumar A, Pednekar D, Mukherjee S, Choubey RK (2020) Effect of deposition time and complexing agents on hierarchical nanoflake-structured CdS thin films. J Mater Sci Mater Electron 31(19):17055–17066. https://doi.org/10.1007/s10854-020-04263-0

    Article  CAS  Google Scholar 

  7. Gutiérrez HR et al (2013) Extraordinary room-temperature photoluminescence in triangular WS 2 monolayers. Nano Lett 13(8):3447–3454. https://doi.org/10.1021/nl3026357

    Article  CAS  Google Scholar 

  8. Nair PK et al (1998) Semiconductor thin films by chemical bath deposition for solar energy related applications. Sol Energy Mater Sol Cells 52(3–4):313–344. https://doi.org/10.1016/S0927-0248(97)00237-7

    Article  CAS  Google Scholar 

  9. Kumar A et al (2021) “Highly responsive and low-cost ultraviolet sensor based on ZnS/p-Si heterojunction grown by chemical bath deposition”, Sensors Actuators. A Phys 331:112988. https://doi.org/10.1016/j.sna.2021.112988

    Article  CAS  Google Scholar 

  10. Gupta S et al (2023) Temperature-dependent study of the fabricated ZnS/p-Si heterojunction. Phys B Condens Matter 657: 414831. https://doi.org/10.1016/j.physb.2023.414831.

  11. Cong C, Shang J, Wang Y, Yu T (2018) Optical Properties of 2D Semiconductor WS2. Adv. Opt. Mater. 6(1):1–15. https://doi.org/10.1002/adom.201700767

    Article  CAS  Google Scholar 

  12. Kumar A et al (2022) Role of deposition parameters on the properties of the fabricated heterojunction ZnS/p-Si Schottky diode. Phys Scr 97(4):45819. https://doi.org/10.1088/1402-4896/ac6078

    Article  Google Scholar 

  13. Patel KJ, Desai MS, Panchal CJ (2011) Properties of RF magnetron sputtered indium tin oxide thin films on externally unheated glass substrate. J Mater Sci Mater Electron 22(8):959–965. https://doi.org/10.1007/s10854-010-0243-3

    Article  CAS  Google Scholar 

  14. Guan Y, Yao H, Zhan H, Wang H, Zhou Y, Kang J (2021) Optoelectronic properties and strain regulation of the 2D WS2/ZnO van der Waals heterostructure. RSC Adv 11(23):14085–14092. https://doi.org/10.1039/d1ra01877a

    Article  CAS  Google Scholar 

  15. Kumar A et al (2021) ZnS microspheres-based photoconductor for UV light-sensing applications. Chem Phys Lett 763:138162. https://doi.org/10.1016/j.cplett.2020.138162

    Article  CAS  Google Scholar 

  16. Huang R, Yu M, Yang Q, Zhang L, Wu Y, Cheng Q (2020) “Numerical simulation for optimization of an ultra-thin n-type WS2/p-type c-Si heterojunction solar cells”. Comput Mater Sci 178: 109600 doi:https://doi.org/10.1016/j.commatsci.2020.109600.

  17. Kumar A et al (2022) Materials Science in Semiconductor Processing Fabrication of low-cost and fast-response visible photodetector based on ZnS : Mn/p-Si heterojunction. Mater Sci Semicond Process 155: 107226. https://doi.org/10.1016/j.mssp.2022.107226.

  18. Kumar A, Mukherjee S, Sahare S, Choubey RK (2021) Influence of deposition time on the properties of ZnS/p-Si heterostructures”. Mater Sci Semicond Process 122: 105471. https://doi.org/10.1016/j.mssp.2020.105471

  19. Pataniya PM, Sumesh CK (2020) WS2Nanosheet/Graphene Heterostructures for Paper-Based Flexible Photodetectors. ACS Appl Nano Mater 3(7):6935–6944. https://doi.org/10.1021/acsanm.0c01276

    Article  CAS  Google Scholar 

  20. Li J, Han J, Li H, Fan X, Huang K (2020) Large-area, flexible broadband photodetector based on WS2 nanosheets films. Mater Sci Semicond Process 107: 104804. https://doi.org/10.1016/j.mssp.2019.104804.

  21. Aggarwal P et al (2022) Centimeter-Scale Synthesis of Monolayer WS2 Using Single-Zone Atmospheric-Pressure Chemical Vapor Deposition: a Detailed Study of Parametric Dependence, Growth Mechanism, and Photodetector Properties. Cryst. Growth Des 22(5):3206–3217

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Arvind Kumar for his encouragement and support during this experimental study. the Material Science Research Lab (Theory and Experiment), Department of Physics, ARSD College, University of Delhi, New Delhi -110021, India has been very helpful to us in providing the synthesis and characterization facilities. We are also grateful to SRM Institute of Science and Technology, Delhi-NCR Campus, Modinagar, Ghaziabad, 201204 for providing the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra Kumar Rana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, A., Kumar, S., Srivastava, M.P., Yadav, P., Surbhi, Rana, D.K. (2024). Structural and Optical Properties of Chalcogenide WS2 Thin Film. In: Krupanidhi, S.B., Sharma, A., Singh, A.K., Tuli, V. (eds) Recent Advances in Functional Materials and Devices. AFMD 2023. Springer Proceedings in Materials, vol 37. Springer, Singapore. https://doi.org/10.1007/978-981-99-6766-7_24

Download citation

Publish with us

Policies and ethics