Skip to main content
Log in

Photoelectrochemical application of WS2 nanosheets prepared via a low-temperature CVD method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report the low-temperature preparation of WS2 nanosheets by chemical vapor deposition (CVD) method for photoelectrochemical (PEC) water splitting application. The WS2 nanosheets were synthesized onto the FTO, ITO, SiO2, and glass substrates at a relatively low temperature of 500 °C under pressure of 10−2 Torr. Compared to temperatures of conventional WS2 synthesis via CVD method, the deposition was performed at a sufficiently low temperature, which has not been reported for the layer deposition yet. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and ultraviolet–visible (UV–visible) spectroscopy. The results show that WS2 nanosheets were grown almost vertically and alike a single crystal. Based on the SEM images, the WS2 nanosheets grew homogenously on the FTO substrate and covered the entire surface of the substrate. Linear sweep voltammetry (LSV), applied bias photon to current efficiency (ABPE), photocurrent response, and electrochemical impedance spectroscopy (EIS) of the fabricated nanosheets were measured for the photoelectrochemical response. Because of no transferring to damage layer, the results showed that WS2 nanosheets on FTO substrate had good photoelectrochemical activity. The measured photocurrent of 32 µAcm−2 and ABPE efficiency of 0.84% at a 0.75 V bias (versus RHE) was considerably high compared to the other results reported for WS2 nanosheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666–669 (2004)

    Article  CAS  Google Scholar 

  2. Y. Dan, Y. Lu, N.J. Kybert, Z. Luo, A.C. Johnson, Intrinsic response of graphene vapor sensors. Nano Lett 9(4), 1472–1475 (2009)

    Article  CAS  Google Scholar 

  3. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat Mater 6(3), 183–191 (2007)

    Article  CAS  Google Scholar 

  4. A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev Modern Phys 81(1), 109 (2009)

    Article  CAS  Google Scholar 

  5. K.I. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9), 351–355 (2008)

    Article  CAS  Google Scholar 

  6. X. Huang, Z. Zeng, H. Zhang, Metal dichalcogenide nanosheets: preparation, properties and applications. Chem. Soc. Rev. 42(5), 1934–1946 (2013)

    Article  CAS  Google Scholar 

  7. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012)

    Article  CAS  Google Scholar 

  8. M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials. Chem. Rev. 113(5), 3766–3798 (2013)

    Article  CAS  Google Scholar 

  9. X. Duan, C. Wang, A. Pan, R. Yu, X. Duan, Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chem. Soc. Rev. 44(24), 8859–8876 (2015)

    Article  CAS  Google Scholar 

  10. L. Lin, Y. Xu, S. Zhang, I.M. Ross, A.C. Ong, D.A. Allwood, Fabrication of luminescent monolayered tungsten dichalcogenides quantum dots with giant spin-valley coupling. ACS Nano 7(9), 8214–8223 (2013)

    Article  CAS  Google Scholar 

  11. D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V.B. Shenoy, G. Eda, M. Chhowalla, Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 13(12), 6222–6227 (2013)

    Article  CAS  Google Scholar 

  12. D. Braga, I. Gutiérrez Lezama, H. Berger, A.F. Morpurgo, Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. Nano Lett. 12(10), 5218–5223 (2012)

    Article  CAS  Google Scholar 

  13. J. Low, S. Cao, J. Yu, S. Wageh, Two-dimensional layered composite photocatalysts. Chem. Commun. 50(74), 10768–10777 (2014)

    Article  CAS  Google Scholar 

  14. W.Z. Teo, E.L.K. Chng, Z. Sofer, M. Pumera, Cytotoxicity of exfoliated transition-metal dichalcogenides (MoS2, WS2, and WSe2) is lower than that of graphene and its analogues. Chem-A Eur J 20(31), 9627–9632 (2014)

    Article  CAS  Google Scholar 

  15. T.-Y. Chen, Y.-H. Chang, C.-L. Hsu, K.-H. Wei, C.-Y. Chiang, L.-J. Li, Comparative study on MoS2 and WS2 for electrocatalytic water splitting. Int. J. Hydrog. Energy 38(28), 12302–12309 (2013)

    Article  CAS  Google Scholar 

  16. D. Chen, G. Ji, B. Ding, Y. Ma, B. Qu, W. Chen, J.Y. Lee, In situ nitrogenated graphene–few-layer WS2 composites for fast and reversible Li + storage. Nanoscale 5(17), 7890–7896 (2013)

    Article  CAS  Google Scholar 

  17. H.R. Gutiérrez, N. Perea-López, A.L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V.H. Crespi, H. Terrones, M. Terrones, Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 13(8), 3447–3454 (2012)

    Article  CAS  Google Scholar 

  18. Y. Rong, Y. Fan, A.L. Koh, A.W. Robertson, K. He, S. Wang, H. Tan, R. Sinclair, J.H. Warner, Controlling sulphur precursor addition for large single crystal domains of WS2. Nanoscale 6(20), 12096–12103 (2014)

    Article  CAS  Google Scholar 

  19. W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, G. Eda, Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7(1), 791–797 (2012)

    Article  CAS  Google Scholar 

  20. R.J. Smith, P.J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G.S. Duesberg, J.C. Grunlan, G. Moriarty, Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater. 23(34), 3944–3948 (2011)

    Article  CAS  Google Scholar 

  21. R. Castellanos-Gomez, E. Roldán, M. Cappelluti, F. Buscema, H.S. Guinea, van der Zant, G.A. Steele, Local strain engineering in atomically thin MoS2. Nano Lett. 13(11), 5361–5366 (2013)

    Article  CAS  Google Scholar 

  22. M. Adelifard, R. Salamatizadeh, S. Ketabi, Fabrication and characterization of nanostructural WS 2/WO 3 binary compound semiconductors prepared by the sulfurization of sprayed thin films. J. Mater. Sci. 27(5), 5243–5250 (2016)

    CAS  Google Scholar 

  23. Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen, Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 7(10), 8963–8971 (2013)

    Article  CAS  Google Scholar 

  24. L. Huang, Y. Yu, C. Li, L. Cao, Substrate mediation in vapor deposition growth of layered chalcogenide nanoplates: a case study of SnSe2. J. Phys. Chem. C 117(12), 6469–6475 (2013)

    Article  CAS  Google Scholar 

  25. B. Zheng, Y. Chen, Z. Wang, F. Qi, Z. Huang, X. Hao, P. Li, W. Zhang, Y. Li, Vertically oriented few-layered HfS2 nanosheets: growth mechanism and optical properties. 2D Materials 3(3), 035024 (2016)

    Article  CAS  Google Scholar 

  26. M. Abd-Lefdil, R. Diaz, H. Bihri, M.A. Aouaj, F. Rueda, Preparation and characterization of sprayed FTO thin films. Eur. Phys. J.-Appl. Phys. 38(3), 217–219 (2007)

    Article  CAS  Google Scholar 

  27. N. Khusayfan, M. El-Nahass, Study of structure and electro-optical characteristics of indium tin oxide thin films. Adv. Condens. Matter Phys. (2013). https://doi.org/10.1155/2013/408182

    Article  Google Scholar 

  28. C.S. Reddy, A. Zak, E. Zussman, WS 2 nanotubes embedded in PMMA nanofibers as energy absorptive material. J. Mater. Chem. 21(40), 16086–16093 (2011)

    Article  CAS  Google Scholar 

  29. M. Krause, M. Viršek, M. Remškar, N. Salacan, N. Fleischer, L. Chen, P. Hatto, A. Kolitsch, W. Möller, Diameter and morphology dependent Raman signatures of WS2 nanostructures. ChemPhysChem 10(13), 2221–2225 (2009)

    Article  CAS  Google Scholar 

  30. M. Zirak, M. Zhao, O. Moradlou, M. Samadi, N. Sarikhani, Q. Wang, H.-L. Zhang, A. Moshfegh, Controlled engineering of WS2 nanosheets–CdS nanoparticle heterojunction with enhanced photoelectrochemical activity. Sol. Energy Mater. Sol. Cells 141, 260–269 (2015)

    Article  CAS  Google Scholar 

  31. M. Zirak, O. Akhavan, O. Moradlou, Y. Nien, A. Moshfegh, Vertically aligned ZnO@ CdS nanorod heterostructures for visible light photoinactivation of bacteria. J. Alloy. Compd. 590, 507–513 (2014)

    Article  CAS  Google Scholar 

  32. G. Frey, R. Tenne, M. Matthews, M. Dresselhaus, G. Dresselhaus, Optical properties of MS2 (M = Mo, W) inorganic fullerenelike and nanotube material optical absorption and resonance Raman measurements. J. Mater. Res. 13(9), 2412–2417 (1998)

    Article  CAS  Google Scholar 

  33. M. Becerril, H. Silva-Lopez, O. Zelaya-Angel, Band gap energy in Zn-rich Zn1-xCd xTe thin films grown by rf sputtering. Rev. mex. de fís. 50(6), 588–593 (2004)

    CAS  Google Scholar 

  34. A.K. Zak, R. Razali, W.A. Majid, M. Darroudi, Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles. Int. J. Nanomed. 6, 1399 (2011)

    Google Scholar 

  35. A.B. Laursen, S. Kegnæs, S. Dahl, I. Chorkendorff, Molybdenum sulfides—efficient and viable materials for electro-and photoelectrocatalytic hydrogen evolution. Energy Environ. Sci. 5(2), 5577–5591 (2012)

    Article  CAS  Google Scholar 

  36. Z. Li, W. Luo, M. Zhang, J. Feng, Z. Zou, Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ. Sci. 6(2), 347–370 (2013)

    Article  CAS  Google Scholar 

  37. Y. Pi, Z. Li, D. Xu, J. Liu, Y. Li, F. Zhang, G. Zhang, W. Peng, X. Fan, 1T-phase MoS2 nanosheets on TiO2 nanorod arrays: 3D photoanode with extraordinary catalytic performance. ACS Sustain. Chem. Eng. 5(6), 5175–5182 (2017)

    Article  CAS  Google Scholar 

  38. Y. Zhong, Y. Shao, F. Ma, Y. Wu, B. Huang, X. Hao, Band-gap-matched CdSe QD/WS2 nanosheet composite: size-controlled photocatalyst for high-efficiency water splitting. Nano Energy 31, 84–89 (2017)

    Article  CAS  Google Scholar 

  39. M.S. Akple, J. Low, S. Wageh, A.A. Al-Ghamdi, J. Yu, J. Zhang, Enhanced visible light photocatalytic H2-production of g-C3N4/WS2 composite heterostructures. Appl. Surf. Sci. 358, 196–203 (2015)

    Article  CAS  Google Scholar 

  40. F. Li, C. Chen, F. Tan, C. Li, G. Yue, L. Shen, W. Zhang, Semitransparent inverted polymer solar cells employing a sol-gel-derived TiO 2 electron-selective layer on FTO and MoO 3/Ag/MoO 3 transparent electrode. Nanoscale Res. Lett. 9(1), 579 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of this work by Shahid-Chamran University of Ahvaz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zargar Shoushtari.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, A., Shoushtari, M.Z. & Farbod, M. Photoelectrochemical application of WS2 nanosheets prepared via a low-temperature CVD method. J Mater Sci: Mater Electron 30, 6342–6349 (2019). https://doi.org/10.1007/s10854-019-00936-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00936-7

Navigation