Skip to main content

Impact of Environmental Gases on Mycorrhizal Symbiosis and Its Influence on Ecosystem Functioning Under the Current Climate Change Scenario

  • Chapter
  • First Online:
Mycorrhizal Symbiosis and Agroecosystem Restoration
  • 79 Accesses

Abstract

Arbuscular mycorrhizal (AM) fungi are of paramount importance that develop a good mutual relationship with higher plants. The impact of different environmental gases on AM symbiosis has not been studied extensively. The available data suggest that elevated CO2 increases the biomass and productivity of plants. However, the effect of CO2 on mycorrhizal symbiosis is still a matter of debate. The impact of CO2 on the development of mycorrhiza and spore production is a very interesting aspect to be unravelled. Assessment of the effect of SO2 and O3 is also not much congenial to the growth and development of mycorrhizal fungi. These gases cause enormous negative impacts on the plant’s biomass and productivity, as well as mycorrhizal network. In general, the effects of these gases are influential to biomass production and mycorrhizal spore formation and thus need further attention from the researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott LK, Gazey C (1994) An ecological view of the formation of VA mycorrhizas. Plant Soil 159(1):69–78

    Article  Google Scholar 

  • Abbott LK, Robson AD (1979) A quantitative study of the spores and anatomy of mycorrhizas formed by a species of Glomus, with reference to its taxonomy. Aust J Bot 27(4):363–375

    Article  Google Scholar 

  • Abbott LK, Robson AD, De Boer GJNP (1984) The effect of phosphorus on the formation of hyphae in soil by thevesicular-arbuscular mycorrhizal fungus, Glomus fasciculatum. New Phytolo 97(3):437–446

    Article  CAS  Google Scholar 

  • Abdel Latef AA, Chaoxing HJ (2014) Does the inoculation with Glomus mosseae improve salt tolerance in pepper plants? Plant Growth Regul 33:644–653. https://doi.org/10.1007/s00344-014-9414-4

    Article  CAS  Google Scholar 

  • Abdel-Salam E, Alatar A, El-Sheikh MA (2018) Inoculation with arbuscular mycorrhizal fungi alleviates harmful effects of drought stress on damask rose. Saudi J Biol Sci 25(8):1772–1780

    Article  PubMed  Google Scholar 

  • Agrawal M, Deepak SS (2003) Physiological and biochemical responses of two cultivars of wheat to elevated levels of CO2 and SO2, singly and in combination. Environ Pollut 121(2):189–197

    Article  CAS  PubMed  Google Scholar 

  • Aguilera P, Pablo C, Fernando B, Fritz O (2014) Diversity of arbuscular mycorrhizal fungi associated with Triticum aestivum L. plants growing in an andosol with high aluminum level. Agric Ecosyst Environ 186:178–184. https://doi.org/10.1016/j.agee.2014.01.029

    Article  CAS  Google Scholar 

  • Ahanger MA, Agarwal RM (2017) Potassium up-regulates antioxidant metabolism and alleviates growth inhibition under water and osmotic stress in wheat (Triticum aestivum L.). Protoplasma 254(4):1471–1486. https://doi.org/10.1007/s00709-016-1037-0

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and non-enzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30:161–175. https://doi.org/10.3109/07388550903524243

    Article  CAS  PubMed  Google Scholar 

  • Alexander T, Toth R, Meier R, Weber HC (1989) Dynamics of arbuscule development and degeneration in onion, bean, and tomato with reference to vesicular–arbuscular mycorrhizae in grasses. Can J Bot 67(8):2505–2513

    Article  Google Scholar 

  • Al-Karaki G, Mcmichael B, Zak J (2004) Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mychorrhiza 14:263–269. https://doi.org/10.1007/s00572-003-0265-2

    Article  Google Scholar 

  • Allen JW, Shachar-Hill Y (2009) Sulfur transfer through an arbuscular mycorrhiza. Plant Physiol 149(1):549–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen EB, Allen MF, Helm DJ, Trappe JM, Molina R, Rincon E (1995) Patterns and regulation of mycorrhizal plant and fungal diversity. Plant Soil 170:47–62

    Article  CAS  Google Scholar 

  • Amiri R, Nikbakht A, Rahimmalek M, Hosseini H (2017) Variation in the essential oil composition, antioxidant capacity, and physiological characteristics of Pelargonium graveolens L. inoculated with two species of mycorrhizal fungi under water deficit conditions. J Plant Growth Regul 36:502–515

    Article  CAS  Google Scholar 

  • Ansari RA, Khan TA (2012a) Parasitic association of root-knot nematode, Meloidogyne incognita on guava. e J Sci Technol 5(12):65–67

    Google Scholar 

  • Ansari RA, Khan TA (2012b) Diversity and community structure of Phytonematodes associated with guava in and around Aligarh, Uttar Pradesh. Trends Biosci 5(3):202–204

    Google Scholar 

  • Ansari RA, Mahmood I (2017a) Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeonpea. Sci Hortic 226:1–9

    Article  CAS  Google Scholar 

  • Ansari RA, Mahmood I (2017b) Determination of disease incidence caused by Meloidogyne spp. and or Fusarium udum on pigeonpea in Aligarh district: a survey. Trends Biosci 10(24):5239–5243

    Google Scholar 

  • Ansari RA, Mahmood I (2019a) Plant health under biotic stress. In: Ansari RA, Mahmood I (eds) Microbial interactions, vol II. Springer Nature, Singapore

    Google Scholar 

  • Ansari RA, Mahmood I (2019b) Plant health under biotic stress. In: Ansari RA, Mahmood I (eds) Organic strategies, vol I. Springer Nature, Singapore

    Google Scholar 

  • Ansari RA, Mahmood I, Rizvi R, Sumbul A (2017a) PGPR: current vogue in sustainable crop production. In: Kumar V (ed) Probiotics and plant health. Springer Nature, Singapore, pp 455–472

    Chapter  Google Scholar 

  • Ansari RA, Mahmood I, Rizvi R, Sumbul A, Safiuddin (2017b) Siderophores: augmentation of soil health and crop productivity. In: Kumar V (ed) Probiotics in agroecosystem. Springer Nature, Singapore, pp 291–312

    Chapter  Google Scholar 

  • Ansari RA, Sumbul A, Rizvi R, Mahmood I (2019a) Potential role of plant growth promoting Rhizobacteria in alleviation of biotic stress. In: Ansari RA, Mahmood I (eds) Plant health under biotic stress, Microbial interactions, vol II. Springer Nature, Singapore, pp 177–188

    Google Scholar 

  • Ansari RA, Sumbul A, Rizvi R, Mahmood I (2019b) Organic soil amendments: potential tool for soil and plant health management. In: Ansari RA, Mahmood I (eds) Plant health under biotic stress, Organic strategies, vol I. Springer Nature, Singapore, pp 1–35

    Google Scholar 

  • Ansari RA, Rizvi R, Mahmood I (eds) (2020a) Management of phytonematodes: recent advances and future challenges. Springer, Singapore

    Google Scholar 

  • Ansari RA, Rizvi R, Sumbul A, Mahmood I (2020b) Plant-growth-promoting Rhizobacteria (PGPR)-based sustainable management of phytoparasitic nematodes: current understandings and future challenges. In: Ansari RA et al (eds) Management of phytonematodes: recent advances and future challenges. Springer Nature, Singapore. https://doi.org/10.1007/978-981-15-4087-5_3

    Chapter  Google Scholar 

  • Avnery S, Mauzerall DL, Liu JF, Horowitz LW (2011) Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution. Atmos Environ 45:2297e2309

    Article  Google Scholar 

  • Bago B, Pfeffer PE, Shachar-Hill Y (2000) Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol 124(3):949–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baier M, Kandlbinder A, Golldack D, Dietz KJ (2005) Oxidative stress and ozone: perception, signalling and response. Plant Cell Environ 28(8):1012–1020

    Article  CAS  Google Scholar 

  • Balík J, Kulhánek M, Černý J, Sedlář O, Suran P, Asrade DA (2022) The influence of organic and mineral fertilizers on the quality of soil organic matter and glomalin content. Agronomy 12(6):1375

    Article  Google Scholar 

  • Barrow CJ (2012) Biochar: potential for countering land degradation and for improving agriculture. Appl Geogr 34:21–28

    Article  Google Scholar 

  • Bati CB, Santilli E, Lombardo L (2015) Effect of arbuscular mycorrhizal fungi on growth and on micronutrient and macronutrient uptake and allocation in olive plantlets growing under high total Mn levels. Mycorrhiza 25:97–108. https://doi.org/10.1007/s00572-014-0589-0

    Article  CAS  Google Scholar 

  • Bécard G, Kosuta S, Tamasloukht M, Séjalon-Delmas N, Roux C (2004) Partner communication in the arbuscular mycorrhizal interaction. Can J Bot 82(8):1186–1197

    Article  Google Scholar 

  • Becklin KM, Walker SM, Way DA, Ward JK (2017) CO 2 studies remain key to understanding a future world. New Phytol 214(1):34–40

    Article  CAS  PubMed  Google Scholar 

  • Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M et al (2019) Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front Plant Sci 10:1068

    Article  PubMed  PubMed Central  Google Scholar 

  • Bell JNB, Clough WS (1973) Depression of yield in ryegrass exposed to sulphur dioxide. Nature 241(5384):47–49

    Article  CAS  Google Scholar 

  • Bencherif K, Djaballah Z, Brahimi F, Boutekrabt A, Dalpè Y, Sahraoui ALH (2019) Arbuscular mycorrhizal fungi affect total phenolic content and antimicrobial activity of Tamarix gallica in natural semi-arid Algerian areas. South Afr J Bot 125:39–45

    Article  CAS  Google Scholar 

  • Bennett AE, Classen AT (2020) Climate change influences mycorrhizal fungal–plant interactions, but conclusions are limited by geographical study bias. Ecology 101(4):e02978

    Article  PubMed  Google Scholar 

  • Bevege DI, Bowen GD, Skinner MF (1975) Comparative carbohydrate physiology of ecto-and endomycorrhizas. In: Endomycorrhizas; proceedings of a symposium

    Google Scholar 

  • Bever JD (2002) Negative feedback within a mutualism: host–specific growth of mycorrhizal fungi reduces plant benefit. Proc R Soc Lond B Biol Sci 269(1509):2595–2601

    Article  Google Scholar 

  • Black VJ, Stewart CA, Roberts JA, Black CR (2012) Timing of exposure to ozone affects reproductive sensitivity and compensatory ability in Brassica campestris. Environ Exp Bot 75:225–234

    Article  CAS  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat Commun 1(1):48

    Article  PubMed  Google Scholar 

  • Booker F, Muntifering R, McGrath M, Burkey K, Decoteau D, Fiscus E et al (2009) The ozone component of global change: potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species. J Integr Plant Biol 51(4):337–351

    Article  CAS  PubMed  Google Scholar 

  • Bruisson S, Maillot P, Schellenbaum P, Walter B, Gindro K, Deglène-Benbrahim L (2016) Arbuscular mycorrhizal symbiosis stimulates key genes of the phenylpropanoid biosynthesis and stilbenoid production in grapevine leaves in response to downy mildew and grey mould infection. Phytochemistry 131:92–99

    Article  CAS  PubMed  Google Scholar 

  • Bunn R, Lekberg Y, Zabinski C (2009) Arbuscular mycorrhizal fungi ameliorate temperature stress in thermophilic plants. Ecology 90(5):1378–1388. https://doi.org/10.1890/07-2080.1

    Article  PubMed  Google Scholar 

  • Calatayud V, García-Breijo FJ, Cervero J, Reig-Armiñana J, Sanz MJ (2011) Physiological, anatomical and biomass partitioning responses to ozone in the Mediterranean endemic plant Lamottea dianae. Ecotoxicol Environ Safe 74:1131–1138

    Article  CAS  Google Scholar 

  • Castellanos-Morales V, Villegas J, Wendelin S, Vierheilig H, Eder R, Cárdenas-Navarro R (2010) Root colonisation by the arbuscular mycorrhizal fungus Glomus intraradices alters the quality of strawberry fruits (Fragaria× ananassa Duch.) at different nitrogen levels. J Sci Food Agric 90(11):1774–1782

    CAS  PubMed  Google Scholar 

  • Castillo CG, Borie F, Godoy R, Rubio R, Sieverding E (2012) Diversity of mycorrhizal plant species and arbuscular mycorrhizal fungi in evergreen forest, deciduous forest and grassland ecosystems of Southern Chile.

    Google Scholar 

  • Cekic FO, Unyayar S, Ortas I (2012) Effects of arbuscular mycorrhizal inoculation on biochemical parameters in capsicum annuum grown under long term salt stress. Turk J Bot 36:63–72. https://doi.org/10.3906/bot-1008-32

    Article  CAS  Google Scholar 

  • Cheng L, Booker FL, Tu C, Burkey KO, Zhou L, Shew HD et al (2012) Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science 337(6098):1084–1087

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekaran, M., Chanratana, M., Kim, K., Seshadri, S., & Sa, T. (2019). Impact of arbuscular mycorrhizal fungi on photosynthesis, water status, and gas exchange of plants under salt stress–a meta-analysis. Frontiers in Plant Science, 10, 457.

    Google Scholar 

  • Clapperton MJ (1991) An Ecophysiological study of the interaction of vesicular-arbuscular mycorrhizal fungi and sulphur dioxide of the growth of phleum pratense L. University of Calgary

    Google Scholar 

  • Clapperton MJ, Parkinson D (1990) The effect of SO2 on the vesicular–arbuscular mycorrhizae associated with a submontane mixed grass prairie in Alberta, Canada. Can J Bot 68(8):1646–1650

    Article  CAS  Google Scholar 

  • Clapperton MJ, Reid DM, Parkinson D (1990) Effects of sulphur dioxide fumigation on Phleum pratense and vesicular-arbuscular mycorrhizal fungi. New Phytol 115(3):465–469

    Article  CAS  PubMed  Google Scholar 

  • Dai J, Hu J, Lin X, Yang A, Wang R, Zhang J, Wong MH (2013) Arbuscular mycorrhizal fungal diversity, external mycelium length, and glomalin-related soil protein content in response to long-term fertilizer management. J Soils Sediments 13:1–11

    Article  CAS  Google Scholar 

  • De La Peña E, Echeverría SR, Van Der Putten WH, Freitas H, Moens M (2006) Mechanism of control of root-feeding nematodes by mycorrhizal fungi in the dune grass Ammophila arenaria. New Phytol 169(4):829–840

    Article  PubMed  Google Scholar 

  • Declerck S, Risède JM, Rufyikiri G, Delvaux B (2002) Effects of arbuscular mycorrhizal fungi on severity of root rot of bananas caused by Cylindrocladium spathiphylli. Plant Pathol 51(1):109–115

    Article  Google Scholar 

  • Diagne N, Ngom M, Djighaly PI, Fall D, Hocher V, Svistoonoff S (2020) Roles of arbuscular mycorrhizal fungi on plant growth and performance: Importance in biotic and abiotic stressed regulation. Diversity 12(10):370

    Article  CAS  Google Scholar 

  • Dighton J, Jansen AE (1991) Atmospheric pollutants and ectomycorrhizae: more questions than answers? Environ Pollut 73(3-4):179–204

    Article  CAS  PubMed  Google Scholar 

  • Dowarah B, Gill SS, Agarwala N (2021) Arbuscular mycorrhizal fungi in conferring tolerance to biotic stresses in plants. J Plant Growth Regul 41:1429–1444

    Article  Google Scholar 

  • Drigo B, Pijl AS, Duyts H, Kielak AM, Gamper HA, Houtekamer MJ et al (2010) Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc Natl Acad Sci U S A 107(24):10938–10942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan X, Neuman DS, Reiber JM, Green CD, Arnold M, Saxton AM et al (1996) Mycorrhizal influence on hydraulic and hormonal factors implicated in the control of stomatal conductance during drought. J Exp Bot 47(303):1541–1550. https://doi.org/10.1093/jxb/47.10.1541

    Article  CAS  Google Scholar 

  • Duckmanton L, Widden P (1994) Effect of ozone on the development of vesicular-arbuscular mycorrhizae in sugar maple saplings. Mycologia 86(2):181–186

    Article  CAS  Google Scholar 

  • Elhindi KM, El-Din SA, Elgorban AM (2017) The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi J Biol Sci 24:170–179. https://doi.org/10.1016/j.sjbs.2016.02.010

    Article  CAS  PubMed  Google Scholar 

  • El-Nashar YI (2017) Response of snapdragon Antirrhinum majus L. to blended water irrigation and arbuscular mycorrhizal fungi inoculation: uptake of minerals and leaf water relations. Photosynthetica 55(2):201–209. https://doi.org/10.1007/s11099-016-0650-7

    Article  CAS  Google Scholar 

  • Eom AH, Hartnett DC, Wilson GW (2000) Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie. Oecologia 122:435–444

    Article  PubMed  Google Scholar 

  • Feng Z, Kobayashi K, Ainsworth EA (2008) Impact of elevated ozone concentration on growth, physiology, and yield of wheat (Triticum aestivum L.): a meta-analysis. Glob Change Biol 14(11):2696–2708

    Article  Google Scholar 

  • Fitter AH, Heinemeyer A, Staddon PL (2000) The impact of elevated CO2 and global climate change on arbuscular mycorrhizas: a mycocentric approach. New Phytol 147(1):179–187

    Article  CAS  Google Scholar 

  • Fowler D, Unsworth MH (1974) Dry deposition of sulphur dioxide on wheat. Nature 249(5455):389–390

    Article  CAS  Google Scholar 

  • Francis R, Read DJ (1984) Direct transfer of carbon between plants connected by vesicular–arbuscular mycorrhizal mycelium. Nature 307(5946):53–56

    Article  CAS  Google Scholar 

  • Gaffney JS, Streit GE, Spall WD, Hall JH (1987) Beyond acid rain. Do soluble oxidants and organic toxinsinteract with SO2 and NOx to increase ecosystem effects? Environ Sci Technol 21(6):519–524

    Article  CAS  PubMed  Google Scholar 

  • Gamalero E, Pivato B, Bona E, Copetta A, Avidano L, Lingua G, Berta G (2010) Interactions between a fluorescent pseudomonad, an arbuscular mycorrhizal fungus and a hypovirulent isolate of Rhizoctonia solani affect plant growth and root architecture of tomato plants. Plant Biosyst 144(3):582–591

    Article  Google Scholar 

  • Garg N, Chandel S (2012) Role of arbuscular mycorrhizal (AM) fungi on growth, cadmium uptake, osmolyte, and phytochelatin synthesis in Cajanus cajan (L.) Millsp. under NaCl and Cd stresses. J Plant Growth Regul 31(3):292–308. https://doi.org/10.1007/s00344-011-9239-3

    Article  CAS  Google Scholar 

  • Gavito ME, Curtis PS, Mikkelsen TN, Jakobsen I (2000) Atmospheric CO2 and mycorrhiza effects on biomass allocation and nutrient uptake of nodulated pea (Pisum sativum L.) plants. J Exp Bot 51(352):1931–1938

    Article  CAS  PubMed  Google Scholar 

  • Gavito ME, Olsson PA, Rouhier H, Medinapeñafiel A, Jakobsen I, Bago A (2005) Temperature constraints on the growth and functioning of root organ cultures with arbuscular mycorrhizal fungi. New Phytol 168:179–188. https://doi.org/10.1111/j.1469-8137.2005.01481.x

    Article  CAS  PubMed  Google Scholar 

  • Gehring CA, Whitham TG (2002) Mycorrhizae-herbivore interactions: population and community consequences. In: Mycorrhizal ecology. Springer, Berlin, pp 295–320

    Chapter  Google Scholar 

  • Gelang J, Selldén G, Younis S, Pleijel H (2001) Effects of ozone on biomass, non-structural carbohydrates and nitrogen in spring wheat with artificially manipulated source/sink ratio. Environ Exp Bot 46:155–169

    Article  CAS  Google Scholar 

  • George E, Marschner H, Jakobsen I (1995) Role of arbuscular mycorrhizal fungi in uptake of phosphorus and nitrogen from soil. Crit Rev Biotechnol 15(3-4):257–270

    Article  Google Scholar 

  • Gholamhoseini M, Ghalavand A, Dolatabadian A, Jamshidi E, Khodaei-Joghan A (2013) Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agric Water Manag 117:106–114. https://doi.org/10.1016/j.agwat.2012.11.007

    Article  Google Scholar 

  • Gómez-Bellot MJ, Ortuño MF, Nortes PA, Vicente-Sánchez J, Banon S, Sánchez-Blanco MJ (2015) Mycorrhizal euonymus plants and reclaimed water: biomass, water status and nutritional responses. Sci Hortic 186:61–69

    Article  Google Scholar 

  • Graves JD, Watkins NK, Fitter AH, Robinson D, Scrimgeour C (1997) Intraspecific transfer of carbon between plants linked by a common mycorrhizal network. Plant Soil 192(2):153–159

    Article  CAS  Google Scholar 

  • Grime JP, Mackey JML, Hillier SH, Read DJ (1987) Floristic diversity in a model system using experimental microcosms. Nature 328(6129):420–422

    Article  Google Scholar 

  • Guidi L, Degl’Innocenti E, Soldatini GF (2002) Assimilation of CO2, enzyme activation and photosynthetic electron transport in bean leaves, as affected by high light and ozone. New Phytol 156(3):377–388

    Article  CAS  PubMed  Google Scholar 

  • Gujre N, Soni A, Rangan L, Tsang DC, Mitra S (2021) Sustainable improvement of soil health utilizing biochar and arbuscular mycorrhizal fungi: a review. Environ Pollut 268:115549

    Article  CAS  PubMed  Google Scholar 

  • Gunze CMB, Hennessy CMR (1980) Effect of host-applied auxin on development of endomycorrhiza in cowpeas. Trans Br Mycol Soc 74(2):247–251

    Article  CAS  Google Scholar 

  • Häikiö E, Freiwald V, Julkunen-Tiitto R, Beuker E, Holopainen T, Oksanen E (2009) Differences in leaf characteristics between ozone-sensitive and ozone-tolerant hybrid aspen (Populus tremula× Populus tremuloides) clones. Tree Physiol 29(1):53–66

    Article  PubMed  Google Scholar 

  • Harrison MJ (1999) Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu Rev Plant Biol 50(1):361–389

    Article  CAS  Google Scholar 

  • Hart M, Ehret DL, Krumbein A, Leung C, Murch S, Turi C, Franken P (2015) Inoculation with arbuscular mycorrhizal fungi improves the nutritional value of tomatoes. Mycorrhiza 25:359–376

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Gill SS, Fujita M (2013) Physiological role of nitric oxide in plants grown under adverse environmental conditions. In: Tuteja N, Gill SS (eds) Plant acclimation to environmental stress. Springer, New York, pp 269–322. https://doi.org/10.1007/978-1-4614-5001-6_11

    Chapter  Google Scholar 

  • Hashem A, Abd Allah EF, Alqarawi AA, Aldubise A, Egamberdieva D (2015) Arbuscular mycorrhizal fungi enhances salinity tolerance of Panicum turgidum Forssk by altering photosynthetic and antioxidant pathways. J Plant Interact 10(1):230–242

    Article  Google Scholar 

  • Hashem A, Alqarawi AA, Radhakrishnan R, Al-Arjani AF, Aldehaish HA, Egamberdieva D et al (2018) Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi J Biol Sci 25(6):1102–1114. https://doi.org/10.1016/j.sjbs.2018.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He L, Li C, Liu R (2017) Indirect interactions between arbuscular mycorrhizal fungi and Spodoptera exigua alter photosynthesis and plant endogenous hormones. Mycorrhiza 27:525–535

    Article  CAS  PubMed  Google Scholar 

  • Heidari M, Karami V (2014) Effects of different mycorrhiza species on grain yield, nutrient uptake and oil content of sunflower under water stress. J Saudi Soc Agric Sci 13(1):9–13

    Google Scholar 

  • Hibbett DS, Gilbert LB, Donoghue MJ (2000) Evolutionary instability of ectomycorrhizal symbiosis in basidiomycetes. Nature 407(6803):506–508

    Article  CAS  PubMed  Google Scholar 

  • Hijri M (2016) Analysis of a large dataset form field mycorrhizal inoculation trials on potato showed highly significant increase in yield. Mycorrhiza 2:209–214. https://doi.org/10.1007/s00572-015-0661-4

    Article  Google Scholar 

  • Hodge A (2000) Microbial ecology of the arbuscular mycorrhiza. FEMS Microbiol Ecol 32:91–96. https://doi.org/10.1111/j.1574-6941.2000.tb00702.x

    Article  CAS  PubMed  Google Scholar 

  • Hodge A, Fitter AH (2010) Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc Natl Acad Sci U S A 107(31):13754–13759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooker JE, Jaizme-Vega M, Atkinson D (1994) Biocontrol of plant pathogens using arbuscular mycorrhizal fungi. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser Verlag, Basel, pp 191–200

    Chapter  Google Scholar 

  • Ho, I., & Trappe, J. M. (1984). Effects of ozone exposure on mycorrhiza formation and growth of Festuca arundinacea. Environmental and experimental Botany, 24(1), 71–74.

    Google Scholar 

  • Impa SM, Nadaradjan S, Jagadish SVK (2012) Drought stress induced reactive oxygen species and anti-oxidants in plants. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer, New York, NY, pp 131–147. https://doi.org/10.1007/978-1-4614-0634-1_7

    Chapter  Google Scholar 

  • Insam H, Bååth E, Berreck M, Frostegård Å, Gerzabek MH, Kraft A et al (1999) Responses of the soil microbiota to elevated CO2 in an artificial tropical ecosystem. J Microbiol Methods 36(1-2):45–54

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2014) Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. In: Core Writing Team, Pachauri RK, Meyer LA (eds) Climate change 2014: Synthesis report. IPCC, Geneva, p 151

    Google Scholar 

  • Ismail IM, Basahi JM, Hassan IA (2014) Gas exchange and chlorophyll fluorescence of pea (Pisum sativum L.) plants in response to ambient ozone at a rural site in Egypt. Sci Total Environ 497:585–593

    Article  PubMed  Google Scholar 

  • Jabaji-Hare, S. H., & Stobbs, L. W. (1984). Electron microscopic examination of tomato roots coinfected with Glomus sp. and tobacco mosaic virus. Phytopathology, 74(3), 277–279.

    Google Scholar 

  • Jaizme-Vega MC (1998) He rn لndez BS, Hern لndez JM. Interaction of arbuscular mycorrhizal fungi and the soil pathogen Fusarium oxysporum f. sp. Cubense on the first stages of micropropagated Grande Naine banana. Acta Hortic 490:285–295

    Article  Google Scholar 

  • Jaizme-Vega M, Rodríguez-Romero AS, Hermoso CM, Declerck S (2003) Growth of micropropagated bananas colonized by root-organ culture produced arbuscular mycorrhizal fungi entrapped in Ca-alginate beads. Plant Soil 254:329–335

    Article  CAS  Google Scholar 

  • Jakobsen I, Smith SE, Smith FA (2003) Function and diversity of arbuscular mycorrhizae in carbon and mineral nutrition. In: Mycorrhizal ecology. Springer, pp 75–92

    Google Scholar 

  • James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ et al (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443(7113):818–822

    Article  CAS  PubMed  Google Scholar 

  • Janouškova M, Pavlíková D (2010) Cadmium immobilization in the rhizosphere of arbuscular mycorrhizal plants by the fungal extraradical mycelium. Plant Soil 332:511–520. https://doi.org/10.1007/s11104-010-0317-2

    Article  CAS  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Article  Google Scholar 

  • Jones JT, Haegeman A, Danchin EG, Gaur HS, Helder J, Jones MG et al (2013) Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol 14(9):946–961

    Article  PubMed  PubMed Central  Google Scholar 

  • Kapoor R, Evelin H, Mathur P, Giri B (2013) Arbuscular mycorrhiza: approaches for abiotic stress tolerance in crop plants for sustainable agriculture. In: Tuteja N, Gill SS (eds) Plant acclimation to environmental stress. Springer, New York, NY, pp 359–401. https://doi.org/10.1007/978-1-4614-5001-6_14

    Chapter  Google Scholar 

  • Kaur S, Suseela V (2020) Unraveling arbuscular mycorrhiza-induced changes in plant primary and secondary metabolome. Metabolites 10(8):335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kayama M, Yamanaka T (2014) Growth characteristics of ectomycorrhizal seedlings of Quercus glauca, Quercus salicina, and Castanopsis cuspidata planted on acidic soil. Trees 28:569–583

    Article  CAS  Google Scholar 

  • Khaliq A, Perveen S, Alamer KH, Zia Ul Haq M, Rafique Z, Alsudays IM et al (2022) Arbuscular mycorrhizal fungi symbiosis to enhance plant–soil interaction. Sustainability 14(13):7840

    Article  CAS  Google Scholar 

  • Kiers ET, Heijden MGVD (2006) Mutualistic stability in the arbuscular mycorrhizal symbiosis: exploring hypotheses of evolutionary cooperation. Ecology 87(7):1627–1636

    Article  PubMed  Google Scholar 

  • Klironomos JN, Ursic M, Rillig M, Allen MF (1998) Interspecific differences in the response of arbuscular mycorrhizal fungi to Artemisia tridentata grown under elevated atmospheric CO2. New Phytol 138(4):599–605

    Article  Google Scholar 

  • Klironomos JN, McCune J, Hart M, Neville J (2000) The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecol Lett 3(2):137–141

    Article  Google Scholar 

  • Klironomos J, Zobel M, Tibbett M, Stock WD, Rillig MC, Parrent JL et al (2011) Forces that structure plant communities: quantifying the importance of the mycorrhizal symbiosis. New Phytol 189(2):366–370

    Article  PubMed  Google Scholar 

  • Kohler A, Kuo A, Nagy LG, Morin E, Barry KW, Buscot F et al (2015) Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet 47(4):410–415

    Article  CAS  PubMed  Google Scholar 

  • Kubikova E, Moore JL, Ownlew BH, Mullen MD, Augé RM (2001) Mycorrhizal impact on osmotic adjustment in Ocimum basilicum during a lethal drying episode. J Plant Physiol 158:1227–1230. https://doi.org/10.1078/0176-1617-00441

    Article  CAS  Google Scholar 

  • Kuhn G, Hijri M, Sanders IR (2001) Evidence for the evolution of multiple genomes in arbuscular mycorrhizal fungi. Nature 414(6865):745–748

    Article  CAS  PubMed  Google Scholar 

  • Kytöviita MM, Le Thiec D, Dizengremel P (2001) Elevated CO2 and ozone reduce nitrogen acquisition by Pinus halepensis from its mycorrhizal symbiont. Physiol Plant 111(3):305–312

    Article  PubMed  Google Scholar 

  • Lanfranco L, Bonfante P, Genre A (2016) The mutualistic interaction between plants and arbuscular mycorrhizal fungi. Microbiol Spectr 4(6):4–6

    Article  Google Scholar 

  • Leifheit EF, Veresoglou SD, Lehmann A, Morris EK, Rillig MC (2014) Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—a meta-analysis. Plant Soil 374(1):523–537

    Article  CAS  Google Scholar 

  • Lerat S, Gauci R, Catford JG, Vierheilig H, Piché Y, Lapointe L (2002) 14C transfer between the spring ephemeral Erythronium americanum and sugar maple saplings via arbuscular mycorrhizal fungi in natural stands. Oecologia 132(2):181–187

    Article  PubMed  Google Scholar 

  • Lewis J, Thomas RB, Strain BR (1994) Effect of elevated CO2 on mycorrhizal colonization of loblolly pine (Pinus taeda L.) seedlings. Plant and Soil 165(1):81–88

    Article  CAS  Google Scholar 

  • Li XL, George E, Marschner H (1991) Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant Soil 136(1):41–48

    Article  Google Scholar 

  • Li H, Luo N, Zhang LJ, Zhao HM, Li YW, Cai QY et al (2016a) Do arbuscular mycorrhizal fungi affect cadmium uptake kinetics, subcellular distribution and chemical forms in rice? Sci Total Environ 571:1183–1190

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zeng R, Liao H (2016b) Improving crop nutrient efficiency through root architecture modifications. J Integr Plant Biol 58:193–202. https://doi.org/10.1111/jipb.12434

    Article  PubMed  Google Scholar 

  • Liu X, Song Q, Tang Y, Li W, Xu J, Wu J et al (2013) Human health risk assessment of heavy metals in soil–vegetable system: a multi-medium analysis. Sci Total Environ 463–464:530–540. https://doi.org/10.1016/j.scitotenv.2013.06.064

    Article  CAS  PubMed  Google Scholar 

  • López-Ráez JA, Shirasu K, Foo E (2017) Strigolactones in plant interactions with beneficial and detrimental organisms: the Yin and Yang. Trends Plant Sci 22(6):527–537

    Article  PubMed  Google Scholar 

  • Lu F, Lee C, Wang C (2015) The influence of arbuscular mycorrhizal fungi inoculation on yam (Dioscorea spp.) tuber weights and secondary metabolite content. Peer J. 3:12–66. https://doi.org/10.7717/peerj.1266

    Article  CAS  Google Scholar 

  • Ludwikow A, Sadowski J (2008) Gene networks in plant ozone stress response and tolerance. Journal of Integrative Plant Biology 50(10):1256–1267

    Article  CAS  PubMed  Google Scholar 

  • Luginbuehl LH, Oldroyd GE (2017) Understanding the arbuscule at the heart of endomycorrhizal symbiosis in plants. Curr Biol 27(17):R952–R963

    Article  CAS  PubMed  Google Scholar 

  • Mahoney MJ, Chevone BI, Skelly JM, Moore LD (1985) Influence of mycorrhizae on the growth of loblolly pine seedlings exposed to ozone and sulfur dioxide. Phytopathology 75(6):679–682

    Article  CAS  Google Scholar 

  • Majernik O, Mansfield TA (1970) Direct effect of SO2 pollution on the degree of opening of stomata. Nature 227(5256):377–378

    Article  CAS  PubMed  Google Scholar 

  • Mansfeld-Giese K, Larsen J, Bødker L (2002) Bacterial populations associated with mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. FEMS Microbiol Ecol 41(2):133–140

    Article  CAS  PubMed  Google Scholar 

  • McGrath JM, Betzelberger AM, Wang S, Shook E, Zhu XG, Long SP, Ainsworth EA (2015) An analysis of ozone damage to historical maize and soybean yields in the United States. Proc Natl Acad Sci U S A 112(46):14390–14395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mena-Violante HG, Ocampo-Jimenez O, Dendooven L, Martinez-Soto G, Gonzalez-Castafeda J, Davies FT et al (2006) Arbuscular mycorrhizal fungi enhance fruit growth and quality of chile ancho Capsicum annuum L. cv San Luis plants exposed to drought. Mycorrhiza 16:261–267. https://doi.org/10.1007/s00572-006-0043-z

    Article  PubMed  Google Scholar 

  • Mikkelsen BL, Rosendahl S, Jakobsen I (2008) Underground resource allocation between individual networks of mycorrhizal fungi. New Phytol 180(4):890–898

    Article  PubMed  Google Scholar 

  • Mills G, Wagg S, Harmens H (2013). Ozone pollution: impacts on ecosystem services and biodiversity. NERC/Centre for Ecology & Hydrology

    Google Scholar 

  • Miransari M (2017) Arbuscular mycorrhizal fungi and heavy metal tolerance in plants. In: Wu QS (ed) Arbuscular mycorrhizas and stress tolerance of plants. Springer Nature, Singapore, pp 174–161. https://doi.org/10.1007/978-3-319-68867-1_4

    Chapter  Google Scholar 

  • Moghadam HRT (2016) Application of super absorbent polymer and ascorbic acid to mitigate deleterious effects of cadmium in wheat. Pesqui Agropecu Trop 6(1):9–18. https://doi.org/10.1590/1983-40632016v4638946

    Article  Google Scholar 

  • Moradtalab N, Roghieh H, Nasser A, Tobias EH, Günter N (2019) Silicon and the association with an arbuscular-mycorrhizal fungus (Rhizophagus clarus) mitigate the adverse effects of drought stress on strawberry. Agronomy 9:41. https://doi.org/10.3390/agronomy9010041

    Article  CAS  Google Scholar 

  • Morgan PB, Ainsworth EA, Long SP (2003) How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield. Plant Cell Environ 26(8):1317–1328

    Article  CAS  Google Scholar 

  • Morison JIL, Lawlor DW (1999) Interactions between increasing CO2 concentration and temperature on plant growth. Plant Cell Environ 22(6):659–682

    Article  CAS  Google Scholar 

  • Nagahashi G, Douds DD (2000) Partial separation of root exudate components and their effects upon the growth of germinated spores of AM fungi. Mycol Res 104(12):1453–1464

    Article  Google Scholar 

  • Nagy R, Drissner D, Amrhein N, Jakobsen I, Bucher M (2009) Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated. New Phytol 181(4):950–959

    Article  CAS  PubMed  Google Scholar 

  • Navarro JM, Pérez-Tornero O, Morte A (2014) Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance. J Plant Physiol 171(1):76–85

    Article  CAS  PubMed  Google Scholar 

  • NOVA (2021) NOVA research news, Carbon dioxide peaks near 420 parts per million at Mauna Loa observatory. https://research.noaa.gov/article/ArtMID/587/ArticleID/2764/Coronavirus-response-barely-slows-rising-carbon-dioxide

  • Noyes RD (1980) The comparative effects of sulfur dioxide on photosynthesis and translocation in bean. Physiol Plant Pathol 16(1):73–79

    Article  CAS  Google Scholar 

  • Obermeier WA, Lehnert LW, Kammann CI, Müller C, Grünhage L, Luterbacher J et al (2017) Reduced CO2 fertilization effect in temperate C3 grasslands under more extreme weather conditions. Nat Climate Change 7(2):137–141

    Article  CAS  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbiosis. Nat Rev Microbiol 6(10):763–775

    Article  CAS  PubMed  Google Scholar 

  • Pellegrini E (2014) PSII photochemistry is the primary target of oxidative stress imposed by ozone in Tilia americana. Urban For Urban Greening 13(1):94–102

    Article  Google Scholar 

  • Plassard C, Dell B (2010) Phosphorus nutrition of mycorrhizal trees. Tree Physiol 30(9):1129–1139

    Article  CAS  PubMed  Google Scholar 

  • Plassard C, Becquer A, Garcia K (2019) Phosphorus transport in mycorrhiza: how far are we? Trends Plant Sci 24(9):794–801

    Article  CAS  PubMed  Google Scholar 

  • Poorter H (1993) Interspecific variation in the growth response of plants to an elevated ambient CO 2 concentration. In: CO2 and biosphere. Springer, Dordrecht, pp 77–98

    Chapter  Google Scholar 

  • Prasad A, Kumar S, Khaliq A, Pandey A (2011) Heavy metals and arbuscular mycorrhizal (AM) fungi can alter the yield and chemical composition of volatile oil of sweet basil (Ocimum basilicum L.). Biol Fertil Soils 47:853–861

    Article  CAS  Google Scholar 

  • Pringle A, Bever JD, Gardes M, Parrent JL, Rillig MC, Klironomos JN (2009) Mycorrhizal symbiosis and plant invasions. Annu Rev Ecol Evol Syst 40:699–715

    Article  Google Scholar 

  • Punamiya P, Datta R, Sarkar D, Barber S, Patel M, Da P (2010) Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass Chrysopogon zizanioides L. J Hazard Mater 177:465–474. https://doi.org/10.1016/j.jhazmat.2009.12.056

    Article  CAS  PubMed  Google Scholar 

  • Qiao, X., Bei, S., Li, C., Dong, Y., Li, H., Christie, P., … & Zhang, J. (2015). Enhancement of faba bean competitive ability by arbuscular mycorrhizal fungi is highly correlated with dynamic nutrient acquisition by competing wheat. Scientific Reports, 5(1), 8122.

    Google Scholar 

  • Rajtor M, Piotrowska-Seget Z (2016) Prospects for arbuscular mycorrhizal fungi (AMF) to assist in phytoremediation of soil hydrocarbon contaminants. Chemosphere 162:105–116

    Article  CAS  PubMed  Google Scholar 

  • Raklami A, Bechtaoui N, Tahiri AI, Anli M, Meddich A, Oufdou K (2019) Use of rhizobacteria and mycorrhizae consortium in the open field as a strategy for improving crop nutrition, productivity and soil fertility. Front Microbiol 10:1106

    Article  PubMed  PubMed Central  Google Scholar 

  • Rani B (2016) Effect of arbuscular mycorrhiza fungi on biochemical parameters in wheat Triticum aestivum L. under drought conditions. Doctoral dissertation,. CCSHAU, Hisar

    Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47(4):376–391

    Article  Google Scholar 

  • Redecker D (2002) Molecular identification and phylogeny of arbuscular mycorrhizal fungi. In: Diversity and integration in mycorrhizas: proceedings of the 3rd international conference on mycorrhizas (ICOM3) Adelaide, Australia, 8–13 July 2001. Springer Netherlands, pp 67–73

    Google Scholar 

  • Redecker D, Schüßler A, Stockinger H, Stürmer SL, Morton JB, Walker C (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515–531

    Article  PubMed  Google Scholar 

  • Requena N, Serrano E, Ocón A, Breuninger M (2007) Plant signals and fungal perception during arbuscular mycorrhiza establishment. Phytochemistry 68(1):33–40

    Article  CAS  PubMed  Google Scholar 

  • Rice PM, Pye LH, Boldi R, O’Loughlin J, Tourangeau PC, Gordon CC (1978) The effects of ‘low level SO2’exposure sulphur accumulation and various plant life responses of some major grassland species on the ZAPS sites. In: Bioenvironmental impact of a coal. pp 494–591

    Google Scholar 

  • Rizvi R, Singh G, Safiuddin, Ansari RA, Tiyagi SA, Mahmood I (2015) Sustainable management of root-knot disease of tomato by neem cake and Glomus fasciculatum. Cogent Food Agric 1:1008859

    Article  Google Scholar 

  • Rogers HH, Prior SA, Runion GB, Mitchell RJ (1995) Root to shoot ratio of crops as influenced by CO2. Plant Soil 187(2):229–248

    Article  Google Scholar 

  • Rosendahl S (2008) Communities, populations and individuals of arbuscular mycorrhizal fungi. New Phytol 178(2):253–266

    Article  PubMed  Google Scholar 

  • Rouphael Y, Franken P, Schneider C, Schwarz D, Giovannetti M, Agnolucci M (2015) Arbuscular mycorrhizal fungi act as bio-stimulants in horticultural crops. Sci Hort 196:91–108. https://doi.org/10.1016/j.scienta.2015.09.002

    Article  Google Scholar 

  • Ruiz-Lozano JM, Aroca R, Zamarreño ÁM, Molina S, Andreo-Jiménez B, Porcel R et al (2015) Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell Environ 39(2):441–452. https://doi.org/10.1111/pce.12631

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Sánchez M, Aroca R, Muñoz Y, Polón R, Ruiz-Lozano JM (2010) The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. J Plant Physiol 167:862–869. https://doi.org/10.1016/j.jplph.2010.01.018

    Article  CAS  PubMed  Google Scholar 

  • Sabia E, Claps S, Morone G, Bruno A, Sepe L, Aleandri R (2015) Field inoculation of arbuscular mycorrhiza on maize (Zea mays L.) under low inputs: preliminary study on quantitative and qualitative aspects. Italian J Agron 10(1):30–33

    Article  Google Scholar 

  • Sadhana B (2014) Arbuscular Mycorrhizal Fungi (AMF) as a biofertilizer-a review. Int J Curr Microbiol Appl Sci 3(4):384–400

    Google Scholar 

  • Santander C, Sanhueza M, Olave J, Borie F, Valentine C, Cornejo P (2019) Arbuscular mycorrhizal colonization promotes the tolerance to salt stress in lettuce plants through an efficient modification of ionic balance. J Soil Sci Plant Nutr 19(2):321–331. https://doi.org/10.1007/s42729-019-00032-z

    Article  CAS  Google Scholar 

  • Sbrana C, Avio L, Giovannetti M (2014) Beneficial mycorrhizal symbionts affecting the production of health-promoting phytochemicals. Electrophoresis 35:1535–1546. https://doi.org/10.1002/elps.201300568

    Article  CAS  PubMed  Google Scholar 

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105(12):1413–1421

    Article  Google Scholar 

  • Shafer SR, Schoeneberger MM (1991) Mycorrhizal mediation of plant-response to atmospheric change - air-quality concepts and research considerations. Environ. Pollut. 73:163e177

    Article  Google Scholar 

  • Sharma S, Prasad R, Varma A, Sharma AK (2017) Glycoprotein associated with Funneliformis coronatum, Gigaspora margarita and Acaulospora scrobiculata suppress the plant pathogens in vitro. Asian J Plant Pathol 11(4):199–202. https://doi.org/10.3923/ajppaj.2017.199.202

    Article  Google Scholar 

  • Shen H, Christie P, Li X (2006) Uptake of zinc, cadmium and phosphorus by arbuscular mycorrhizal maize (Zea mays, L.) from a low available phosphorus calcareous soil spiked with zinc and cadmium. Environ Geochem Health 28:111. https://doi.org/10.1007/s10653-005-9020-2

    Article  CAS  PubMed  Google Scholar 

  • Sheng M, Tang M, Zhang F, Huang Y (2011) Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress. Mycorrhiza 21:423–430. https://doi.org/10.1007/s00572-010-0353-z

    Article  PubMed  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Aca-demic Press Ltd., London

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Cambridge, UK, Academic Press Ltd

    Google Scholar 

  • Smith SE, Read DJ (2010) Mycorrhizal symbiosis. Academic press

    Google Scholar 

  • Smith FA, Smith SE (1997) Tansley review no. 96 structural diversity in (vesicular)–arbuscular mycorrhizal symbiosis. New Phytol 137(3):373–388

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Smith FA (2012) Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104(1):1–13

    Article  PubMed  Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133(1):16–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solanki MK, Kashyap PL, Ansari RA, Kumari B (2020) Microbiomes and plant health: panoply and their applications. Academic Press, London. https://www.elsevier.com/books/microbiomes-and-plant-health/solanki/978-0-12-819715-8

    Google Scholar 

  • Song Z, Bi Y, Zhang J, Gong Y, Yang H (2020) Arbuscular mycorrhizal fungi promote the growth of plants in the mining associated clay. Sci Rep 10(1):2663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sreenivasa MN, Chavhan T, Kulkarni S (2019) Influence of inoculation of Efficient AM fungi (Glomus fasciculatum) against wilt of tomato caused by Sclerotium rolfsii

    Google Scholar 

  • Sreeramulu KR, Onkarappa T, Swamy HN (1998) Biocontrol of damping off and black shank disease in tobacco nursery. Tob Res 24:1–4

    Google Scholar 

  • Staddon PL, Fitter AH (1998) Does elevated atmospheric carbon dioxide affect arbuscular mycorrhizas? Trends Ecol Evol 13(11):455–458

    Article  CAS  PubMed  Google Scholar 

  • Staddon PL, Reinsch S, Olsson PA, Ambus P, Lüscher A, Jakobsen I (2014) A decade of free-air CO2 enrichment increased the carbon throughput in a grass-clover ecosystem but did not drastically change carbon allocation patterns. Funct Ecol 28(2):538–545

    Article  Google Scholar 

  • Sumbul A, Mahmood I, Rizvi R, Safiuddin, Ansari RA (2017) Mycorrhiza: An alliance for the nutrient management in plants. In: Kumar V (ed) Probiotics in agroecosystem. Springer Nature, Singapore, pp 371–386

    Chapter  Google Scholar 

  • Talaat NB, Shawky BT (2014) Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity. Environ Exp Bot 98:20–31. https://doi.org/10.1016/j.envexpbot.2013.10.005

    Article  CAS  Google Scholar 

  • Tanaka Y, Yano K (2005) Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant Cell Environ 28(10):1247–1254

    Article  CAS  Google Scholar 

  • Ueno AC, Gundel PE, Omacini M, Ghersa CM, Bush LP, Martínez-Ghersa MA (2016) Mutualism effectiveness of a fungal endophyte in an annual grass is impaired by ozone. Funct Ecol 30(2):226–234

    Article  Google Scholar 

  • Van Der Heijden MG, Horton TR (2009) Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J Ecol 97(6):1139–1150

    Article  Google Scholar 

  • van Der Heijden MG, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205(4):1406–1423

    Article  PubMed  Google Scholar 

  • Veresoglou SD, Chen B, Rillig MC (2012) Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biol Biochem 46:53–62

    Article  CAS  Google Scholar 

  • Vlček V, Pohanka M (2020) Glomalin–an interesting protein part of the soil organic matter. Soil Water Res 15(2):67–74

    Article  Google Scholar 

  • Wagg C, Veiga R, van der Heijden MG (2015) Facilitation and antagonism in mycorrhizal networks. In: Horton TR (ed) Mycorrhizal networks. Springer, Dordrecht, pp 203–226

    Chapter  Google Scholar 

  • Wang DX, Lu YQ, He XL (2010) Effects of AM fungi on growth and physiological characters of Atractylodes Macrocephala under different P-applied levels. Acta Bot Bor Occi Sin 30(1):136–142

    Google Scholar 

  • Wang M-Y, Ren-Xue X, Qiang-Sheng W et al (2007) Influence of arbuscular mycorrhizal fungi on microbes and enzymes of soils from different cultivated densities of red clover. Ann Microbiol 57:1–7. https://doi.org/10.1007/BF03175042

    Article  CAS  Google Scholar 

  • Wang B, Yeun LH, Xue JY, Liu Y, Ané JM, Qiu YL (2010) Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants. New Phytol 186(2):514–525

    Article  PubMed  Google Scholar 

  • Wang S, Feng Z, Wang X, Gong W (2011) Arbuscular mycorrhizal fungi alter the response of growth and nutrient uptake of snap bean (Phaseolus vulgaris L.) to O3. J Environ Sci 23(6):968–974

    Article  CAS  Google Scholar 

  • Wang SG, Diao XJ, Li YW, Ma LM (2015) Effect of Glomus aggregatum on photosynthetic function of snap bean in response to elevated ozone. J Agric Sci 153(5):837–852

    Article  CAS  Google Scholar 

  • Wang S, Augé RM, Toler HD (2017) Arbuscular mycorrhiza formation and its function under elevated atmospheric O3: a meta-analysis. Environ Pollut 226:104–117

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang M, Li Y, Wu A, Huang J (2018) Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress. PLoS One 13(4):e0196408. https://doi.org/10.1371/journal.pone.0196408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wehner J, Antunes PM, Powell JR, Mazukatow J, Rillig MC (2010) Plant pathogen protection by arbuscular mycorrhizas: a role for fungal diversity? Pedobiologia 53(3):197–201

    Article  Google Scholar 

  • Wilkinson S, Davies WJ (2010) Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environ 33(4):510–525

    Article  CAS  PubMed  Google Scholar 

  • Wu QS, Cao MQ, Zou YN, He XH (2014) Direct and indirect effects of glomalin, mycorrhizal hyphae and roots on aggregate stability in rhizosphere of trifoliate orange. Sci Rep 4(1):5823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xavier LJ, Boyetchko SM (2004) Arbuscular mycorrhizal fungi in plant disease control. In: Fungal biotechnology in agricultural, food, and environmental applications. pp 183–194

    Google Scholar 

  • Yin R, Hao Z, Zhou X, Wu H, Feng Z, Yuan X, Chen B (2022) Ozone does not diminish the beneficial effects of arbuscular mycorrhizas on Medicago sativa L. in a low phosphorus soil. Mycorrhiza 32:33–43

    Article  CAS  PubMed  Google Scholar 

  • Yooyongwech S, Samphumphuang T, Tisarum R, Theerawitaya C, Chaum S (2016) Arbuscular mycorrhizal fungi (AMF) improved water deficit tolerance in two different sweet potato genotypes involves osmotic adjustments via soluble sugar and free proline. Sci Hort 198:107–117. https://doi.org/10.1016/j.scienta.2015.11.002

    Article  CAS  Google Scholar 

  • Yousaf B, Liu G, Wang R, Imtiaz M, Zia-ur-Rehman M, Munir MAM et al (2016) Bioavailability evaluation, uptake of heavy metals and potential health risks via dietary exposure in urban-industrial areas. Environ Sci Pollut Res 23:22443–22453. https://doi.org/10.1007/s11356-016-7449-8

    Article  CAS  Google Scholar 

  • Zangaro W, Nishidate FR, Vandresen J, Andrade G, Nogueira MA (2007) Root mycorrhizal colonization and plant responsiveness are related to root plasticity, soil fertility and successional status of native woody species in southern Brazil. J Trop Ecol 23(1):53–62

    Article  Google Scholar 

  • Zeng L, Li J, Liu J, Wang M (2014) Effects of arbuscular mycorrhizal (AM) fungi on citrus fruit quality under nature conditions. Southwest China J Agric Sci 27(5):2101–2105

    Google Scholar 

  • Zhang X, Li W, Fang M, Jixian Y, Meng S (2016) Effects of arbuscular mycorrhizal fungi inoculation on carbon and nitrogen distribution and grain yield and nutritional quality in rice (Oryza sativa L.). J Sci Food Agric 97:2919–2925. https://doi.org/10.1002/jsfa.8129

    Article  CAS  PubMed  Google Scholar 

  • Zhu XC, Song FB, Xu HW (2010) Arbuscular mycorrhizae improve low temperature stress in maize via alterations in host water status and photosynthesis. Plant Soil 331:129–137. https://doi.org/10.1007/s11104-009-0239-z

    Article  CAS  Google Scholar 

  • Zhu X, Cao Q, Sun L, Yang X, Yang W, Zhang H (2018) Stomatal conductance and morphology of arbuscular mycorrhizal wheat plants response to elevated CO2 and NaCl stress. Front Plant Sci 9:1363

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ansari, R.A., Sumbul, A., Rizvi, R., Mahmood, I. (2024). Impact of Environmental Gases on Mycorrhizal Symbiosis and Its Influence on Ecosystem Functioning Under the Current Climate Change Scenario. In: Ansari, R.A., Rizvi, R., Mahmood, I. (eds) Mycorrhizal Symbiosis and Agroecosystem Restoration. Springer, Singapore. https://doi.org/10.1007/978-981-99-5030-0_3

Download citation

Publish with us

Policies and ethics