Skip to main content

Conventional Breeding and Advance Approaches to Mitigate Drought and Salt Stress in Crop Plants

  • Chapter
  • First Online:
Salinity and Drought Tolerance in Plants

Abstract

Extreme environmental conditions are the key constraints in agricultural production and productivity. Environmental stresses due to salt and water play a cardinal role as they influence photosynthesis directly or indirectly, hence reducing the crop productivity significantly. Various molecular mechanisms play pivotal role in combating these stresses by the plants. Also, the extent of stress tolerance depends upon genetic makeup of the plant and its interactions with the external environment at different developmental stages. Comprehensive studies on drought and salt tolerance have helped in designing strategies to improve plant architecture through conventional and modern techniques, thereby enhancing crop yields. Conventional breeding tools have scope for successful transfer of stress tolerant genes only when there is presence of ample genetic variability for the same and no barrier to crossing. However, the genetic variability for drought and salt stress is very limited in the germplasm for most of the crops, and it is further hindered by reproductive barriers. Advance breeding techniques like marker-assisted selection, quantitative trait loci (QTL) mapping, genetic engineering, genome editing, etc. have enormous potential to develop stress tolerant crop cultivars. The role of conventional as well as advance approaches in breeding for the development of drought and salt stress tolerant crop varieties and their future scope has been described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alkharabsheh HM, Seleiman MF, Hewedy OA, Battaglia ML, Jalal RS, Alhammad BA, Schillaci C, Ali N, Al-Doss A (2021) Field crop responses and management strategies to mitigate soil salinity in modern agriculture: a review. Agronomy 11:2299

    Article  Google Scholar 

  • Ashraf M, Athar HR, Harris PJC, Kwon TR (2008) Some prospective strategies for improving crop salt tolerance. Adv Agron 97:45–110

    Article  Google Scholar 

  • Ayadi M, Brini F, Masmoudi K (2019) Overexpression of a wheat aquaporin gene, Td PIP2; 1, enhances salt and drought tolerance in transgenic durum wheat cv. Maali. Int J Mol Sci 20:2389

    Article  PubMed  PubMed Central  Google Scholar 

  • Badhan S, Ball AS, Mantri N (2021) First report of CRISPR/Cas9 mediated DNA-free editing of 4CL and RVE7 genes in chickpea protoplasts. Int J Mol Sci 22:396

    Article  PubMed  PubMed Central  Google Scholar 

  • Bänziger M, Diallo AO (2004) Progress in developing drought and stress tolerant maize cultivars for eastern Africa. In: Friesen DK, Palmer AFE (eds) Integrated approaches to higher maize productivity in the new millennium: Proceedings of the 7th Eastern and Southern Africa Regional Maize Conference February 5–11, 2002. CIMMYT and Kenya Agriculture Research Institute (KARI), Nairobi, pp 189–194

    Google Scholar 

  • Beyene Y, Semagn K, Mugo S, Tarekegne A, Babu R, Meisel B, Sehabiague P, Makumbi D, Magorokosho C, Oikeh S, Gakunga J, Vargas M, Olsen M, Prasanna BM, Banziger M, Crossa J (2015) Genetic gains in grain yield through genomic selection in eight bi-parental maize populations under drought stress. Crop Sci 55:154–163

    Google Scholar 

  • Blum A, Sullivan CY (1986) The comparative drought resistance of landraces of sorghum and millet from dry and humid regions. Ann Bot 57:835–846

    Article  Google Scholar 

  • Boursier P, Lauchli A (1990) Growth responses and mineral nutrient relations of salt-stressed sorghum. Crop Sci 30:1126–1233

    Article  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, MD, pp 1158–1249

    Google Scholar 

  • Chen H, Cui S, Fu S, Gai J, Yu D (2008) Identification of quantitative trait loci associated with salt tolerance during seedling growth in soybean (Glycine max L.). Crop Past Sci 59:1086–1091

    Article  Google Scholar 

  • Dalal M, Tayal D, Chinnusamy V, Bansal KC (2009) Abiotic stress and ABA-inducible Group 4 LEA from Brassica napus plays a key role in salt and drought tolerance. J Biotechnol 139:137–145

    Article  PubMed  Google Scholar 

  • De Ronde JA, Cress WA, Kruger GH, Strasser RJ, Van Staden J (2004) Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. J Plant Physiol 161:1211–1224

    Article  PubMed  Google Scholar 

  • Dencic S, Kastori R, Kobiljski B, Duggan B (2000) Evaluation of grain yield and its components in wheat cultivars and landraces under near optimal and drought conditions. Euphytica 113:43–52

    Article  Google Scholar 

  • Dewey PR (1962) Breeding crested wheatgrass for salt tolerance. Crop Sci 2:403–407

    Article  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ, Alharby H, Wu C, Wang D, Huang J (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147. https://doi.org/10.3389/fpls.2017.01147

    Article  PubMed  PubMed Central  Google Scholar 

  • Fita A, Rodríguez-Burruezo A, Boscaiu M, Prohens J, Vicente O (2015) Breeding and domesticating crops adapted to drought and salinity: a new paradigm for increasing food production. Front Plant Sci 6:978. https://doi.org/10.3389/fpls.2015.00978

    Article  PubMed  PubMed Central  Google Scholar 

  • García M, Medina E (2013) Effect of salt stress on salt accumulation in roots and leaves of two sugarcane genotypes differing in salinity tolerance. J Trop Agric 51:15–22

    Google Scholar 

  • Garg R, Verma M, Agrawal S, Shankar R, Majee M, Jain M (2013) Deep transcriptome sequencing of wild halophyte rice, Porteresia coarctata, provides novel insights into the salinity and submergence tolerance factors. DNA Res 21:69–84

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomez G, Alvarez MF, Mosquera T (2011) Association mapping, a method to detect quantitative trait loci: statistical bases. Agron Colomb 29:367–376

    Google Scholar 

  • Gorantla M, Babu PR, Reddy Lachagari VB, Feltus FA, Paterson AH, Reddy AR (2005) Functional genomics of drought stress response in rice: transcript mapping of annotated unigenes of an indica Rice (Oryza sativa L. cv. Nagina 22). Curr Sci 89(3):496–514

    Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 131:149–190

    Article  Google Scholar 

  • Guo Y, Abernathy B, Zeng Y, Ozias-Akins P (2015) TILLING by sequencing to identify induced mutations in stress resistance genes of peanut (Arachis hypogaea). BMC Genomics 16:1–13

    Article  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink J (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci U S A 103:12987–12992

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang XY, Chao DY, Gao JP, Zhu MZ, Shi M, Lin HX (2009) A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev 23:1805–1817

    Article  PubMed  PubMed Central  Google Scholar 

  • Jamil A, Riaz S, Ashraf M, Foolad MR (2011) Gene expression profiling of plants under salt stress. CRC Crit Rev Plant Sci 30:435–458

    Article  Google Scholar 

  • Jia TJ, Li JJ, Wang LF, Cao YY, Ma J, Wang H, Zhang DF, Li HY (2020) Evaluation of drought tolerance in ZmVPP1-overexpressing transgenic inbred maize lines and their hybrids. J Integr Agric 19:2177–2187

    Article  Google Scholar 

  • Kashiwagi J, Krishnamurthy L, Purushothaman R, Upadhyaya HD, Gaur PM, Gowda CLL, Ito O, Varshney RW (2015) Scope for improvement of yield under drought through the root traits in chickpea (Cicer arietinum L.). Field Crop Res 170:47–54

    Article  Google Scholar 

  • King IP, Forster BP, Law CC, Cant KA, Orford SE, Gorham J, Reader S, Miller TE (1997) Introgression of salt-tolerance genes from Thinopyrum bessarabicum into wheat. New Phytol 137:75–81

    Article  Google Scholar 

  • Krishnamurthy SL, Lokeshkumar BM, Rathor S, Warraich AS, Yadav S, Gautam RK, Singh RK, Sharma PC (2022) Development of salt-tolerant rice varieties to enhancing productivity in salt-affected environments. Environ Sci Proc 13:30

    Google Scholar 

  • Kudo M, Kidokoro S, Yoshida T, Mizoi J, Todaka D, Fernie AR, Shinozaki K, Yamaguchi-Shinozaki K (2017) Double overexpression of DREB and PIF transcription factors improves drought stress tolerance and cell elongation in transgenic plants. Plant Biotechnol J 15:458–471

    Article  PubMed  Google Scholar 

  • Kumari N, Avtar R, Kumari A, Sharma B, Rani B, Sheoran RK (2018) Antioxidative response of Indian mustard subjected to drought stress. J Oilseed Brass 9:40–44

    Google Scholar 

  • Kumari N, Malik K, Rani B, Jattan M, Sushil AR, Devi S, Arya SS (2019) Insights in the physiological, biochemical and molecular basis of salt stress tolerance in plants. In: Giri B, Varma A (eds) Microorganism in saline environments: strategies and function. Soil biology, vol 56. Springer Nature, Basel, pp 353–374

    Chapter  Google Scholar 

  • Ludwig F, Rosenthal DM, Johnston JA, Kane NC, Gross BL, Lexer C, Dudley SA, Rieseberg LH, Donovan LA (2004) Selection on leaf ecophysiological traits in a desert hybrid Helianthus species and early-generation hybrids. Evolution 58:2682–2692

    PubMed  PubMed Central  Google Scholar 

  • Mitra J (2001) Genetics and genetic improvement of drought resistance in crop plants. Curr Sci 80:758–763

    Google Scholar 

  • Munns R, Gilliham M (2015) Salinity tolerance of crops-what is the cost? New Phytol 208:668–673

    Article  PubMed  Google Scholar 

  • Nakhla WR, Sun W, Fan K, Yang K, Zhang C, Yu S (2021) Identification of QTLs for salt tolerance at the germination and seedling stages in rice. Plants 10:428

    Article  PubMed  PubMed Central  Google Scholar 

  • Ndjiondjop MN, Manneh B, Cissoko M, Drame NK, Kakai RG, Bocco R, Baimey H, Wopereis M (2010) Drought resistance in an interspecific backcross population of rice (Oryza spp.) derived from the cross WAB56-104 (O. sativa)× CG14 (O. glaberrima). Plant Sci 179:364–373

    Article  Google Scholar 

  • Ogata T, Ishizaki T, Fujita M, Fujita Y (2020) CRISPR/Cas9-targeted mutagenesis of OsERA1 confers enhanced responses to abscisic acid and drought stress and increased primary root growth under nonstressed conditions in rice. PLoS One 15:e0243376

    Article  PubMed  PubMed Central  Google Scholar 

  • Pasapula V, Shen G, Kuppu S, Valencia JP, Mendoza M, Hou P, Chen J, Qiu X, Zhu L, Zhang X, Auld D, Blumwald E, Zhang H, Gaxiola R, Payton P (2011) Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnol J 9:8899

    Article  Google Scholar 

  • Perez Alfocea E, Guerrier G, Estan MT, Bolarin MC (1994) Comparative salt responses at cell and whole plant levels of cultivated and wild tomato species and their hybrid. J Hortic Sci 69:639–644

    Article  Google Scholar 

  • Quamruzzaman M, Manik SMN, Shabala S, Cao F, Zhou M (2022) Genome-wide association study reveals a genomic region on 5AL for salinity tolerance in wheat. Theor Appl Genet 135:709–721

    Article  PubMed  Google Scholar 

  • Quan R, Shang M, Zhang H, Zhao Y, Zhang J (2004) Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnol J 2:477–486

    Article  PubMed  Google Scholar 

  • Reynolds M, Dreccer F, Trethowan R (2007) Drought-adaptive traits derived from wheat wild relatives and landraces. J Exp Bot 58:177–186

    Article  PubMed  Google Scholar 

  • Saglam A, KadioÄŸlu A, Demiralay M, Terzi R (2014) Leaf rolling reduces photosynthetic loss in maize under severe drought. Acta Bot Croat 73:315–332

    Article  Google Scholar 

  • Santosh Kumar VV, Verma RK, Yadav SK, Yadav P, Watts A, Rao MV, Chinnusamy V (2020) CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010. Physiol Mol Biol Plants 26:1099–1110

    Article  PubMed  PubMed Central  Google Scholar 

  • Shahzad A, Qian M, Sun B, Mahmood U, Li S, Fan Y, Chang W, Dai L, Zhu H, Li J, Qu C, Lu K (2021) Genome-wide association study identifies novel loci and candidate genes for drought stress tolerance in rapeseed. Oil Crop Sci 6:12–22

    Article  Google Scholar 

  • Shelake RM, Kadam US, Kumar R, Pramanik D, Singh AK, Kim JY (2022) Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: targets, tools, challenges, and perspectives. Plant Commun 3:100417

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE (2017) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15(2):207–216

    Article  PubMed  Google Scholar 

  • Shikha M, Kanika A, Rao AR, Mallikarjuna MG, Gupta HS, Nepolean T (2017) Genomic selection for drought tolerance using Genome-Wide SNPs in maize. Front Plant Sci 8:550

    Article  PubMed  PubMed Central  Google Scholar 

  • Sohail Q, Inoue T, Tanaka H, Eltayeb AE, Matsuoka Y, Tsujimoto H (2011) Applicability of Aegilops tauschii drought tolerance traits to breeding of hexaploid wheat. Breed Sci 61:347–357

    Article  PubMed  PubMed Central  Google Scholar 

  • Steele KA, Virk DS, Kumar R, Prasad SC, Witcombe JR (2007) Field evaluation of upland rice lines selected for QTLs controlling root traits. Field Crop Res 101:180–186

    Article  Google Scholar 

  • Subbarao GV, Johansen C, Kumar Rao JVDK, Jana MK (1990) Salinity tolerance in F1 hybrids of pigeon pea and a tolerant wild relative. Crop Sci 30:785–788

    Article  Google Scholar 

  • Tanveer M, Shabala S (2018) Targeting redox regulatory mechanisms for salinity stress tolerance in crops. In: Salinity responses and tolerance in plants, vol 1. Springer, New York, NY, pp 213–234

    Google Scholar 

  • Wang L, Chen L, Li R, Zhao R, Yang M, Sheng J, Shen L (2017) Reduced drought tolerance by CRISPR/Cas9-mediated SlMAPK3 mutagenesis in tomato plants. J Agric Food Chem 65(39):8674–8682

    Article  PubMed  Google Scholar 

  • Wang T, Xun H, Wang W, Ding X, Tian H, Hussain S, Dong Q, Li Y, Cheng Y, Wang C, Lin R, Li G, Qian X, Pang J, Feng X, Dong Y, Liu B, Wang S (2021) Mutation of GmAITR genes by CRISPR/Cas9 genome editing results in enhanced salinity stress tolerance in soybean. Front Plant Sci 12:779598. https://doi.org/10.3389/fpls.2021.779598

    Article  PubMed  PubMed Central  Google Scholar 

  • Waziri A, Kumar P, Purty RS (2016) Saltol QTL and their role in salinity tolerance in rice. Austin J Biotechnol Bioeng 3(3):1067

    Google Scholar 

  • Xue D, Huang Y, Zhang G, Wei K, Westcott S, Li C, Chen M, Zhang X, Lance R (2010) Identification of QTLs associated with salinity tolerance at late growth stage in barley. Euphytica 169(2):187–196

    Article  Google Scholar 

  • Yadav OP (2014) Developing drought-resilient crops for improving productivity of drought-prone ecologies. Indian J Genet Plant Breed 74:548–552

    Article  Google Scholar 

  • Yadav RS, Hash CT, Bidinger FR, Devos KM, Howarth CJ (2004) Genomic regions associated with grain yield and aspects of post flowering drought tolerance in pearl millet across environments and tester background. Euphytica 136:265–277

    Article  Google Scholar 

  • Yadav S, Modi P, Dave A, Vijapura A, Patel D, Patel M (2020) Effect of abiotic stress on crops. Sustainable crop production. IntechOpen, London, pp 1–21

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jattan, M. et al. (2023). Conventional Breeding and Advance Approaches to Mitigate Drought and Salt Stress in Crop Plants. In: Kumar, A., Dhansu, P., Mann, A. (eds) Salinity and Drought Tolerance in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-99-4669-3_7

Download citation

Publish with us

Policies and ethics