Skip to main content

CCL2–CCR2 Signaling Axis in Cancer

  • Chapter
  • First Online:
Cytokine and Chemokine Networks in Cancer

Abstract

In the present era, one of the common diseases that are considered a highly mortal disease is cancer, and day after day, it is increasing at an alarming rate. In the earlier times, it was not such a common disease, but day after day, new properties of cancerous cells are discovered by which this disease becomes more and more prone to humans. Cancer uses all the molecular pathways and the cell's molecules to grow and invade all tissues and organs of the patient’s body. Nowadays, chemokines and cytokines are mainly targeted by the scientists as these are also one of the basic pathways by which cancer grows and develops to other parts of the body, so as to find out new therapeutic targets and as soon as to get rid of such dreadful disease. CCL2–CCR2 pathway helps the cancerous cell to progress and metastasize fully. In this chapter, we will focus on this particular axis and its relation to various cancers and how this axis is used as a therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allavena P et al (1994) Induction of natural killer cell migration by monocyte chemotactic protein-1, -2 and -3. Eur J Immunol 24(12):3233–3236

    Article  CAS  PubMed  Google Scholar 

  • Apel A-K et al (2019) Crystal structure of CC chemokine receptor 2A in complex with an orthosteric antagonist provides insights for the design of selective antagonists. Structure 27(3):427–438.e425

    Article  CAS  PubMed  Google Scholar 

  • Aras S, Zaidi MR (2017) TAMeless traitors: macrophages in cancer progression and metastasis. Br J Cancer 117:1583–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arendt LM et al (2013) Obesity promotes breast cancer by CCL2-mediated macrophage recruitment and angiogenesis. Cancer Res 73(19):6080–6093

    Article  CAS  PubMed  Google Scholar 

  • Arimont M et al (2017) Structural analysis of chemokine receptor–ligand interactions. J Med Chem 60(12):4735–4779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachelerie F et al (2014a) International Union of Pharmacology. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 66(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  • Bachelerie F et al (2014b) New nomenclature for atypical chemokine receptors. Nat Immunol 15(3):207–208

    Article  CAS  PubMed  Google Scholar 

  • Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4(7):540–550

    Article  CAS  PubMed  Google Scholar 

  • Begley LA et al (2008) CXCL5 promotes prostate cancer progression. Neoplasia 10(3):244–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhusal RP et al (2020) Structural basis of chemokine and receptor interactions: key regulators of leukocyte recruitment in inflammatory responses. Protein Sci 29(2):420–432

    Article  CAS  PubMed  Google Scholar 

  • Boring L et al (1997) Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in CC chemokine receptor 2 knockout mice. J Clin Invest 100(10):2552–2561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brana I et al (2015) Carlumab, an anti-CC chemokine ligand 2 monoclonal antibody, in combination with four chemotherapy regimens for the treatment of patients with solid tumors: an open-label, multicenter phase 1b study. Target Oncol 10(1):111–123

    Article  PubMed  Google Scholar 

  • Bromberg J et al (1999) Stat3 as an oncogene. Cell 98:295–303

    Article  CAS  PubMed  Google Scholar 

  • Bunney TD, Katan M (2010) Phosphoinositide signalling in cancer: beyond PI3K and PTEN. Nat Rev Cancer 10(5):342–352

    Article  CAS  PubMed  Google Scholar 

  • Cackowski FC, Roodman GD (2007) Perspective on the osteoclast: an angiogenic cell? Ann N Y Acad Sci 1117(1):12–25

    Article  CAS  PubMed  Google Scholar 

  • Cai Z et al (2009) Monocyte chemotactic protein 1 promotes lung cancer–induced bone resorptive lesions in vivo. Neoplasia 11(3):228–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cairns RA et al (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85–95

    Article  CAS  PubMed  Google Scholar 

  • Campion L et al (2009) Neutralizing CCL2 inhibits breast tumor growth via impact on the tumor/Stroma microenvironment. Cancer Res 69(24_suppl):6095

    Article  Google Scholar 

  • Carr MW et al (1994) Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc Natl Acad Sci U S A 91(9):3652–3656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang AL et al (2016) CCL2 produced by the Glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor CellsCCL2 in Treg and MDSC trafficking to Glioma. Cancer Res 76(19):5671–5682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charo IF et al (1994) Molecular cloning and functional expression of two monocyte chemoattractant protein 1 receptors reveals alternative splicing of the carboxyl-terminal tails. Proc Natl Acad Sci U S A 91(7):2752–2756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chemokine C (2002) Chemokine/chemokine receptor nomenclature. J Interferon Cytokine Res 22:1067–1068

    Article  Google Scholar 

  • Chen X, Song E (2019) Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discov 18(2):99–115

    Article  CAS  PubMed  Google Scholar 

  • Chen C et al (2015) Targeting type Iγ phosphatidylinositol phosphate kinase inhibits breast cancer metastasis. Oncogene 34(35):4635–4646

    Article  CAS  PubMed  Google Scholar 

  • Chen C et al (2017) EGFR-induced phosphorylation of type Iγ phosphatidylinositol phosphate kinase promotes pancreatic cancer progression. Oncotarget 8:42621

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen C et al (2018) LNMAT1 promotes lymphatic metastasis of bladder cancer via CCL2 dependent macrophage recruitment. Nat Commun 9(1):3826

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiu H-Y et al (2012) Autocrine CCL2 promotes cell migration and invasion via PKC activation and tyrosine phosphorylation of paxillin in bladder cancer cells. Cytokine 59(2):423–432

    Article  CAS  PubMed  Google Scholar 

  • Choi S et al (2013) IQGAP1 is a novel phosphatidylinositol 4, 5 bisphosphate effector in regulation of directional cell migration. EMBO J 32(19):2617–2630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chraa D et al (2019) T lymphocyte subsets in cancer immunity: friends or foes. J Leukoc Biol 105(2):243–255

    Article  CAS  PubMed  Google Scholar 

  • Chun E et al (2015) CCL2 promotes colorectal carcinogenesis by enhancing polymorphonuclear myeloid-derived suppressor cell population and function. Cell Rep 12(2):244–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen R et al (2019) Association of primary resistance to immune checkpoint inhibitors in metastatic colorectal cancer with misdiagnosis of microsatellite instability or mismatch repair deficiency status. JAMA Oncol 5:551–555

    Article  PubMed  Google Scholar 

  • Condeelis J, Pollard J (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124(2):263–266

    Article  CAS  PubMed  Google Scholar 

  • Conti I, Rollins BJ (2004) CCL2 (monocyte chemoattractant protein-1) and cancer. Semin Cancer Biol 14:149–154

    Article  CAS  PubMed  Google Scholar 

  • Craig MJ et al (2006) CCL2 (monocyte Chemoattractant Protein-1) in cancer bone metastases. Cancer Metastasis Rev 25(4):611–619

    Article  CAS  PubMed  Google Scholar 

  • Crawford E (2003) Epidemiology of prostate cancer. Urology 62(6):3–12

    Article  PubMed  Google Scholar 

  • Dagouassat M et al (2010) Monocyte chemoattractant protein-1 (MCP-1)/CCL2 secreted by hepatic myofibroblasts promotes migration and invasion of human hepatoma cells. Int J Cancer 126(5):1095–1108

    Article  CAS  PubMed  Google Scholar 

  • Deshmane SL et al (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 29:313–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz-Montero CM et al (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin–cyclophosphamide chemotherapy. Cancer Immunol Immunother 58:49–59

    Article  CAS  PubMed  Google Scholar 

  • Do HTT et al (2020) Chemokines and their receptors: multifaceted roles in cancer progression and potential value as cancer prognostic markers. Cancers (Basel) 12(2):287

    Article  CAS  PubMed  Google Scholar 

  • Dutta P et al (2018) MCP-1 is overexpressed in triple-negative breast cancers and drives cancer invasiveness and metastasis. Breast Cancer Res Treat 170(3):477–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dwyer R et al (2007) Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res 13(17):5020–5027

    Article  CAS  PubMed  Google Scholar 

  • Fader AN et al (2010) CCL2 expression in primary ovarian carcinoma is correlated with chemotherapy response and survival outcomes. Anticancer Res 30(12):4791–4798

    CAS  PubMed  Google Scholar 

  • Fang WB et al (2012) CCL2/CCR2 chemokine signaling coordinates survival and motility of breast cancer cells through Smad3 protein-and p42/44 mitogen-activated protein kinase (MAPK)-dependent mechanisms. J Biol Chem 287(43):36593–36608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flores-Toro JA et al (2020) CCR2 inhibition reduces tumor myeloid cells and unmasks a checkpoint inhibitor effect to slow progression of resistant murine gliomas. Proc Natl Acad Sci U S A 117(2):1129–1138

    Article  CAS  PubMed  Google Scholar 

  • Fridlender ZG et al (2010) CCL2 blockade augments cancer ImmunotherapyCCL2 blockade augments cancer immunotherapy. Cancer Res 70(1):109–118

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto H et al (2009) Stromal MCP-1 in mammary tumors induces tumor-associated macrophage infiltration and contributes to tumor progression. Int J Cancer 125(6):1276–1284

    Article  CAS  PubMed  Google Scholar 

  • Fujita S et al (2017) The CCL2-CCR2 axis in lymph node metastasis from oral squamous cell carcinoma: an immunohistochemical study. J Oral Maxillofac Surg 75(4):742–749

    Article  PubMed  Google Scholar 

  • Funes SC et al (2018) Implications of macrophage polarization in autoimmunity. Immunology 154(2):186–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabrilovich DI et al (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12:253–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gazzaniga S et al (2007) Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft. J Invest Dermatol 127(8):2031–2041

    Article  CAS  PubMed  Google Scholar 

  • Ge Y et al (2019) Tumor-specific regulatory T cells from the bone marrow orchestrate antitumor immunity in breast cancer. Cancer Immunol Res 7(12):1998–2012

    Article  CAS  PubMed  Google Scholar 

  • Gorlov IP et al (2010) Prioritizing genes associated with prostate cancer development. BMC Cancer 10(1):599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grossman JG et al (2018) Recruitment of CCR2+ tumor associated macrophage to sites of liver metastasis confers a poor prognosis in human colorectal cancer. Oncoimmunology 7(9):e1470729

    Article  PubMed  PubMed Central  Google Scholar 

  • Groth C et al (2019) Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br J Cancer 120:16–25

    Article  CAS  PubMed  Google Scholar 

  • Gu L et al (2000) Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature 404(6776):407–411

    Article  CAS  PubMed  Google Scholar 

  • Gupta V et al (2018) Bipolar tumor-associated macrophages in ovarian cancer as targets for therapy. Cancers (Basel) 10:366

    Article  CAS  PubMed  Google Scholar 

  • Han R et al (2018) Estrogen promotes progression of hormone-dependent breast cancer through CCL2-CCR2 axis by upregulation of twist via PI3K/AKT/NF-κB signaling. Sci Rep 8(1):1–13

    Google Scholar 

  • Hanahan D, Weinberg R (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • He S-Q et al (2015) Glycyrrhizic acid inhibits leukemia cell growth and migration via blocking AKT/mTOR/STAT3 signaling. Int J Clin Exp Pathol 8(5):5175

    PubMed  PubMed Central  Google Scholar 

  • Heck JN et al (2007) A conspicuous connection: structure defines function for the phosphatidylinositol-phosphate kinase family. Crit Rev Biochem Mol Biol 42:15–39

    Article  CAS  PubMed  Google Scholar 

  • Hefler L et al (1999) Monocyte chemoattractant protein-1 serum levels in ovarian cancer patients. Br J Cancer 81(5):855–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinlein CA, Chang C (2004) Androgen receptor in prostate cancer. Endocr Rev 25(2):276–308

    Article  CAS  PubMed  Google Scholar 

  • Hemmerlein B et al (2001) Quantification and in situ localization of MCP-1 mRNA and its relation to the immune response of renal cell carcinoma. Cytokine 13(4):227–233

    Article  CAS  PubMed  Google Scholar 

  • Herman JG et al (2009) Curcumin blocks CCL2-induced adhesion, motility and invasion, in part, through down-regulation of CCL2 expression and proteolytic activity. Int J Oncol 34(5):1319–1327

    CAS  PubMed  Google Scholar 

  • Hu K et al (2007) Recombined CC chemokine ligand 2 into B16 cells induces production of Th2-dominant [correction of dominanted] cytokines and inhibits melanoma metastasis. Immunol Lett 113(1):19–28

    Article  CAS  PubMed  Google Scholar 

  • Huang S et al (1994) Expression of theJE/MCP-1 gene suppresses metastatic potential in murine colon carcinoma cells. Cancer Immunol Immunother 39(4):231–238

    Article  CAS  PubMed  Google Scholar 

  • Hughes CE, Nibbs R (2018) A guide to chemokines and their receptors. FEBS J 285(16):2944–2971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imai M et al (2004) Small molecule inhibitors of the CCR2b receptor. Part 1: discovery and optimization of homopiperazine derivatives. Bioorg Med Chem Lett 14(21):5407–5411

    Article  CAS  PubMed  Google Scholar 

  • Italiani P, Boraschi D (2014) From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Front Immunol 5:514

    Article  PubMed  PubMed Central  Google Scholar 

  • Jablonski KA et al (2015) Novel markers to delineate murine M1 and M2 macrophages. PLoS One 10(12):e0145342

    Article  PubMed  PubMed Central  Google Scholar 

  • Jan N, Qayoom H, Alkhanani M, Almilaibary A, Mir MA (2023) Elucidation of interleukin-19 as a therapeutic target for breast cancer by computational analysis and experimental validation. Saudi Journal of Biological Sciences 30(9):103774

    Article  PubMed  PubMed Central  Google Scholar 

  • Jemal A et al (2007) Cancer statistics, 2007. CA Cancer J Clin 57(1):43–66

    Article  PubMed  Google Scholar 

  • Kahlfeldt N et al (2010) Molecular basis for association of PIPKIγ-p90 with clathrin adaptor AP-2. J Biol Chem 285:2734–2749

    Article  CAS  PubMed  Google Scholar 

  • Kitamura T et al (2015) CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. J Exp Med 212(7):1043–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulbe H et al (2004) The chemokine network in cancer-much more than directing cell movement. Int J Dev Biol 48(5–6):489–496

    Article  CAS  PubMed  Google Scholar 

  • Kuroda T et al (2005) Monocyte chemoattractant protein-1 transfection induces angiogenesis and tumorigenesis of gastric carcinoma in nude mice via macrophage recruitment. Clin Cancer Res 11(21):7629–7636

    Article  CAS  PubMed  Google Scholar 

  • Law AM et al (2020) Myeloid-derived suppressor cells as a therapeutic target for cancer. Cells 9(3):561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X et al (2014) A CCL2/ROS autoregulation loop is critical for cancer-associated fibroblasts-enhanced tumor growth of oral squamous cell carcinoma. Carcinogenesis 35(6):1362–1370

    Article  CAS  PubMed  Google Scholar 

  • Li H et al (2017) Smurf1 regulates lung cancer cell growth and migration through interaction with and ubiquitination of PIPKIγ. Oncogene 36:5668–5680

    Article  CAS  PubMed  Google Scholar 

  • Li L et al (2019) Cdk5-mediated phosphorylation regulates phosphatidylinositol 4-phosphate 5-kinase type I γ 90 activity and cell invasion. FASEB J 33:631–642

    Article  CAS  PubMed  Google Scholar 

  • Li D et al (2020) Tumor-associated macrophages secrete CC-chemokine ligand 2 and induce tamoxifen resistance by activating PI3K/Akt/mTOR in breast cancer. Cancer Sci 111(1):47–58

    Article  CAS  PubMed  Google Scholar 

  • Li C et al (2021) Tumor-associated macrophages: potential therapeutic strategies and future prospects in cancer. J Immunother Cancer 9(1):e001341

    Article  PubMed  PubMed Central  Google Scholar 

  • Liew PX, Kubes P (2019) The neutrophil’s role during health and disease. Physiol Rev 99(2):1223–1248

    Article  CAS  PubMed  Google Scholar 

  • Lim SY et al (2009) Oxidative modifications of S100 proteins: functional regulation by redox. J Leukoc Biol 86(3):577–587

    Article  CAS  PubMed  Google Scholar 

  • Lim SY et al (2016) Targeting the CCL2-CCR2 signaling axis in cancer metastasis. Oncotarget 7:28697

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin T-H et al (2013) CCL2 increases αvβ3 integrin expression and subsequently promotes prostate cancer migration. Biochim Biophys Acta 1830(10):4917–4927

    Article  CAS  PubMed  Google Scholar 

  • Lin Y et al (2019) Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol 12(1):1–16

    Article  Google Scholar 

  • Lindholm PF et al (2015) Monocyte-induced prostate cancer cell invasion is mediated by chemokine ligand 2 and nuclear factor-κB activity. J Clin Cell Immunol 6(2):308

    PubMed  PubMed Central  Google Scholar 

  • Liu P et al (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8(8):627–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S et al (2018) Bindarit attenuates pain and cancer-related inflammation by influencing myeloid cells in a model of bone cancer. Arch Immunol Ther Exp (Warsz) 66(3):221–229

    Article  CAS  PubMed  Google Scholar 

  • Loberg RD et al (2006) CCL2 is a potent regulator of prostate cancer cell migration and proliferation. Neoplasia 8(7):578–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loberg RD et al (2007a) Targeting CCL2 with systemic delivery of neutralizing antibodies induces prostate cancer tumor regression in vivo. Cancer Res 67(19):9417–9424

    Article  CAS  PubMed  Google Scholar 

  • Loberg RD et al (2007b) CCL2 as an important mediator of prostate cancer growth in vivo through the regulation of macrophage infiltration. Neoplasia 9(7):556–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lokeshwar BL et al (2020) Atypical chemokine receptors in tumor cell growth and metastasis. Adv Cancer Res 145:1–27

    Article  PubMed  Google Scholar 

  • Low-Marchelli JM et al (2013) Twist1 induces CCL2 and recruits macrophages to promote angiogenesis. Cancer Res 73(2):662–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loyher P-L et al (2016) CCR2 influences T regulatory cell migration to tumors and serves as a biomarker of cyclophosphamide sensitivity. Cancer Res 76(22):6483–6494

    Article  CAS  PubMed  Google Scholar 

  • Lu Y et al (2007) PTHrP-induced MCP-1 production by human bone marrow endothelial cells and osteoblasts promotes osteoclast differentiation and prostate cancer cell proliferation and invasion in vitro. Int J Cancer 121(4):724–733

    Article  CAS  PubMed  Google Scholar 

  • Lu Y et al (2009) Activation of MCP-1/CCR2 axis promotes prostate cancer growth in bone. Clin Exp Metastasis 26(2):161–169

    Article  PubMed  Google Scholar 

  • Lu H et al (2017) Melatonin represses oral squamous cell carcinoma metastasis by inhibiting tumor-associated neutrophils. Am J Transl Res 9(12):5361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luster AD (1998) Chemokines—chemotactic cytokines that mediate inflammation. N Engl J Med 338(7):436–445

    Article  CAS  PubMed  Google Scholar 

  • Luther SA, Cyster J (2001) Chemokines as regulators of T cell differentiation. Nat Immunol 2(2):102–107

    Article  CAS  PubMed  Google Scholar 

  • Maman S, Witz I (2018) A history of exploring cancer in context. Nat Rev Cancer 18(6):359–376

    Article  CAS  PubMed  Google Scholar 

  • Mandal PK et al (2018) CCL2 conditionally determines CCL22-dependent Th2-accumulation during TGF-β-induced breast cancer progression. Immunobiology 223(2):151–161

    Article  CAS  PubMed  Google Scholar 

  • Mantovani A, Sica A (2010) Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 22:231–237

    Article  CAS  PubMed  Google Scholar 

  • Mantovani A et al (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555

    Article  CAS  PubMed  Google Scholar 

  • Marvel D, Gabrilovich D (2015) Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. J Clin Invest 125:3356–3364

    Article  PubMed  PubMed Central  Google Scholar 

  • Masuda T et al (2020) Phase I dose-escalation trial to repurpose propagermanium, an oral CCL2 inhibitor, in patients with breast cancer. Cancer Sci 111(3):924–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsushima K et al (1989) Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line. J Exp Med 169(4):1485–1490

    Article  CAS  PubMed  Google Scholar 

  • Mehraj U et al (2021a) Tumor microenvironment promotes breast cancer chemoresistance. Cancer Chemother Pharmacol 87(2):147–158

    Article  PubMed  Google Scholar 

  • Mehraj U et al (2021b) The tumor microenvironment as driver of stemness and therapeutic resistance in breast cancer: new challenges and therapeutic opportunities. Cell Oncol 44:1209–1229

    Article  Google Scholar 

  • Mehraj U et al (2022a) Expression pattern and prognostic significance of chemokines in breast cancer: an integrated bioinformatics analysis. Clin Breast Cancer 22(6):567–578

    Article  CAS  PubMed  Google Scholar 

  • Mehraj U et al (2022b) Chemokines in triple-negative breast cancer heterogeneity: new challenges for clinical implications. Semin Cancer Biol 86(Pt 2):769–783

    Article  CAS  PubMed  Google Scholar 

  • Mir MA (2015a) Introduction to costimulation and costimulatory molecules. In: Mir MA (ed) Developing costimulatory molecules for immunotherapy of diseases. Academic Press, London, pp 1–43

    Google Scholar 

  • Mir MA (2015b) T-cell costimulation and its applications in diseases. In: Mir MA (ed) Developing costimulatory molecules for immunotherapy of diseases. Academic Press, London, pp 255–292

    Chapter  Google Scholar 

  • Mir MA (2021) Combination therapies and their effectiveness in breast cancer treatment. Nova Biomedical Science Publishers, USA, pp 1–411. https://doi.org/10.52305/WXJL6770. ISBN: 978-1-68507-195-0, https://novapublishers.com/shop/combination-therapies-and-their-effectiveness-in-breast-cancer-treatment/

    Book  Google Scholar 

  • Mir MA (2022) Role of tumor microenvironment in breast cancer and targeted therapies. Elsevier

    Google Scholar 

  • Mir MA, Gul A (2022) The extracellular matrix in breast cancer, Chapter-8. In: Role of tumor microenvironment in breast cancer and targeted therapies. Elsevier Inc, San Diego, pp 194–220. https://doi.org/10.1016/B978-0-443-18696-7.00006-3. ISBN 978-0-443-18696-7

    Chapter  Google Scholar 

  • Mir MA, Mehraj U (2019) Double-crosser of the immune system: macrophages in tumor progression and metastasis. Curr Immunol Rev 15(2):172–184

    Article  CAS  Google Scholar 

  • Mir MA, Mir AY, Mushtaq T (2022) Role of tumor-associated macrophages in the breast tumor microenvironment, Chapter-6. In: Role of tumor microenvironment in breast cancer and targeted therapies. Elsevier Inc, San Diego, pp 137–170. https://doi.org/10.1016/B978-0-443-18696-7.00003-8. ISBN 978-0-443-18696-7

    Chapter  Google Scholar 

  • Mir MA, Qayoom H, Mehraj U, Nisar S, Bhat B, Wani NA (2020) Targeting different pathways using novel combination therapy in triple negative breast cancer. Curr Cancer Drug Targets 20(8):586–602. https://doi.org/10.2174/1570163817666200518081955. PMID: 32418525

    Article  CAS  PubMed  Google Scholar 

  • Mir MA, Sofi S, Qayoom H (2022a) Role of immune system in TNBC, Chapter-5. In: Combinational therapy in triple negative breast cancer. Elsevier Inc, San Diego, pp 121–148. https://doi.org/10.1016/B978-0-323-96136-3.00014-5. ISBN: 978-0-323-96136-3

    Chapter  Google Scholar 

  • Mir MA, Sofi S, Qayoom H (2022b) The interplay of immunotherapy, chemotherapy, and targeted therapy in tripple negative breast cancer (TNBC), Chapter-6. In: Combinational therapy in triple negative breast cancer. Elsevier Inc, San Diego, pp 149–176. https://doi.org/10.1016/B978-0-323-96136-3.00001-7. ISBN: 978-0-323-96136-3

    Chapter  Google Scholar 

  • Mira MA, ul Haq B (2022) Targeting tumor microenvironment for breast cancer treatment, Chapter-10. In: Role of tumor microenvironment in breast cancer and targeted therapies. Elsevier Inc, San Diego, pp 249–298. https://doi.org/10.1016/B978-0-443-18696-7.00008-7. ISBN 978-0-443-18696-7

    Chapter  Google Scholar 

  • Mir MA et al (2022a) The tumor microenvironment. In: Mir MA (ed) Role of tumor microenvironment in breast cancer and targeted therapies. Academic Press, London, pp 31–58

    Chapter  Google Scholar 

  • Mir MA et al (2022b) Targeting biologically specific molecules in triple negative breast cancer (TNBC). In: Mir MA (ed) Combinational therapy in triple negative breast cancer. Academic Press, London, pp 177–200

    Chapter  Google Scholar 

  • Mir MA, Qayoom H, Sofi S, Jan N (2023a) Proteomics: application of next-generation proteomics in cancer research. In: Proteomics. Academic Press, pp 55–76

    Chapter  Google Scholar 

  • Mir MA, Qayoom H, Sofi S, Jan N (2023b) Proteomics: a groundbreaking development in cancer biology. In: Proteomics. Academic Press, pp 31–53

    Chapter  Google Scholar 

  • Mirzadegan T et al (2000) Identification of the binding site for a novel class of CCR2b chemokine receptor antagonists: binding to a common chemokine receptor motif within the helical bundle. J Biol Chem 275(33):25562–25571

    Article  CAS  PubMed  Google Scholar 

  • Mizutani K et al (2009) The chemokine CCL2 increases prostate tumor growth and bone metastasis through macrophage and osteoclast recruitment. Neoplasia 11(11):1235–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moisan F et al (2014) Enhancement of paclitaxel and carboplatin therapies by CCL2 blockade in ovarian cancers. Mol Oncol 8(7):1231–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mondini M et al (2019) CCR2-dependent recruitment of tregs and monocytes following radiotherapy is associated with TNFα-mediated resistance treg and monocyte cross-talk dampens radiotherapy efficacy. Cancer Immunol Res 7(3):376–387

    Article  CAS  PubMed  Google Scholar 

  • Monti P et al (2003) The CC chemokine MCP-1/CCL2 in pancreatic cancer progression: regulation of expression and potential mechanisms of antimalignant activity. Cancer Res 63(21):7451–7461

    CAS  PubMed  Google Scholar 

  • Mosser DM, Edwards J (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mu X-Y et al (2019) RS 504393 inhibits M-MDSCs recruiting in immune microenvironment of bladder cancer after gemcitabine treatment. Mol Immunol 109:140–148

    Article  CAS  PubMed  Google Scholar 

  • Mukaida N, Baba T (2012) Chemokines in tumor development and progression. Exp Cell Res 318(2):95–102

    Article  CAS  PubMed  Google Scholar 

  • Murphy EA et al (2011) Curcumin’s effect on intestinal inflammation and tumorigenesis in the Apc min/+ mouse. J Interferon Cytokine Res 31(2):219–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray PJ et al (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41(1):14–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagaraj S et al (2010) Mechanism of T cell tolerance induced by myeloid-derived suppressor cells. J Immunol 184:3106–3116

    Article  CAS  PubMed  Google Scholar 

  • Nagarsheth N et al (2017) Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol 17(9):559–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Najafi M et al (2019) Contribution of regulatory T cells to cancer: a review. J Cell Physiol 234(6):7983–7993

    Article  CAS  PubMed  Google Scholar 

  • Negus R et al (1995) The detection and localization of monocyte chemoattractant protein-1 (MCP-1) in human ovarian cancer. J Clin Invest 95(5):2391–2396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niiya M et al (2003) Induction of TNF-α, uPA, IL-8 and MCP-1 by doxorubicin in human lung carcinoma cells. Cancer Chemother Pharmacol 52(5):391–398

    Article  PubMed  Google Scholar 

  • O’Connor T et al (2015) CCL2-CCR2 signaling in disease pathogenesis. Endocr Metab Immune Disord Drug Targets 15:105–118

    Article  PubMed  Google Scholar 

  • Obmolova G et al (2012) Structural basis for high selectivity of anti-CCL2 neutralizing antibody CNTO 888. Mol Immunol 51(2):227–233

    Article  CAS  PubMed  Google Scholar 

  • Ohta M et al (2002) Monocyte chemoattractant protein-1 expression correlates with macrophage infiltration and tumor vascularity in human esophageal squamous cell carcinomas. Int J Cancer 102(3):220–224

    Article  CAS  PubMed  Google Scholar 

  • Ohta M et al (2003) Monocyte chemoattractant protein-1 expression correlates with macrophage infiltration and tumor vascularity in human gastric carcinomas. Int J Oncol 22(4):773–778

    CAS  PubMed  Google Scholar 

  • Ono SJ et al (2003) Chemokines: roles in leukocyte development, trafficking, and effector function. J Allergy Clin Immunol 111(6):1185–1199

    Article  CAS  PubMed  Google Scholar 

  • Ostrand-Rosenberg S et al (2012) Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin Cancer Biol 22:275–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pausch TM et al (2020) Metastasis-associated fibroblasts promote angiogenesis in metastasized pancreatic cancer via the CXCL8 and the CCL2 axes. Sci Rep 10(1):1–12

    Article  Google Scholar 

  • Peters W et al (2000) A mechanism for the impaired IFN-γ production in CC chemokine receptor 2 (CCR2) knockout mice: role of CCR2 in linking the innate and adaptive immune responses. J Immunol 165(12):7072–7077

    Article  CAS  PubMed  Google Scholar 

  • Pienta KJ, Bradley D (2006) Mechanisms underlying the development of androgen-independent prostate cancer. Clin Cancer Res 12(6):1665–1671

    Article  CAS  PubMed  Google Scholar 

  • Pienta KJ et al (2013) Phase 2 study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancer. Invest New Drugs 31(3):760–768

    Article  CAS  PubMed  Google Scholar 

  • Qayoom H, Sofi S, Mir MA (2023) Targeting tumor microenvironment using tumor-infiltrating lymphocytes as therapeutics against tumorigenesis. Immunol Res. https://doi.org/10.1007/s12026-023-09376-2. Epub ahead of print. PMID: 37004645

  • Qayoom H, Alkhanani M, Almilaibary A, Alsagaby SA, Mir MA (2023) Mechanistic elucidation of Juglanthraquinone C targeting breast cancer: a network pharmacology-based investigation. Saudi Journal of Biological Sciences 30(7):103705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian B-Z, Pollard J (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian DZ et al (2010) CCL2 is induced by chemotherapy and protects prostate cancer cells from docetaxel-induced cytotoxicity. Prostate 70(4):433–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian B-Z et al (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475:222–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rana AK et al (2018) Monocytes in rheumatoid arthritis: circulating precursors of macrophages and osteoclasts and, their heterogeneity and plasticity role in RA pathogenesis. Int Immunopharmacol 65:348–359

    Article  CAS  PubMed  Google Scholar 

  • Rani A et al (2019) Prostate cancer: the role of inflammation and chemokines. Am J Pathol 189(11):2119–2137

    Article  CAS  PubMed  Google Scholar 

  • Rego SL et al (2013) Soluble tumor necrosis factor receptors shed by breast tumor cells inhibit macrophage chemotaxis. J Interferon Cytokine Res 33(11):672–681

    Article  CAS  PubMed  Google Scholar 

  • Roberts CA et al (2015) The interplay between monocytes/macrophages and CD4+ T cell subsets in rheumatoid arthritis. Front Immunol 6:571

    Article  PubMed  PubMed Central  Google Scholar 

  • Roblek M et al (2015) Targeted delivery of CCR2 antagonist to activated pulmonary endothelium prevents metastasis. J Control Release 220:341–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roca H et al (2008) CCL2 protects prostate cancer PC3 cells from autophagic death via phosphatidylinositol 3-kinase/AKT-dependent survivin up-regulation. J Biol Chem 283(36):25057–25073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruffell B et al (2010) Lymphocytes in cancer development: polarization towards pro-tumor immunity. Cytokine Growth Factor Rev 21(1):3–10

    Article  CAS  PubMed  Google Scholar 

  • Sahai E et al (2020) A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer 20(3):174–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Said N et al (2012) RhoGDI2 suppresses lung metastasis in mice by reducing tumor versican expression and macrophage infiltration. J Clin Invest 122(4):1503–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saji H et al (2001) Significant correlation of monocyte chemoattractant protein-1 expression with neovascularization and progression of breast carcinoma. Cancer 92(5):1085–1091

    Article  CAS  PubMed  Google Scholar 

  • Sallusto F et al (1998) Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur J Immunol 28:2760–2769

    Article  CAS  PubMed  Google Scholar 

  • Sandhu SK et al (2013) A first-in-human, first-in-class, phase I study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 in patients with solid tumors. Cancer Chemother Pharmacol 71(4):1041–1050

    Article  CAS  PubMed  Google Scholar 

  • Saraon P et al (2011) Molecular alterations during progression of prostate cancer to androgen independence. Clin Chem 57(10):1366–1375

    Article  CAS  PubMed  Google Scholar 

  • SenGupta S et al (2019) Getting TANned: how the tumor microenvironment drives neutrophil recruitment. J Leukoc Biol 105(3):449–462

    Article  CAS  PubMed  Google Scholar 

  • Shen H et al (2016) Reprogramming of normal fibroblasts into cancer-associated fibroblasts by miRNAs-mediated CCL2/VEGFA signaling. PLoS Genet 12(8):e1006244

    Article  PubMed  PubMed Central  Google Scholar 

  • Silzle T et al (2003) Tumor-associated fibroblasts recruit blood monocytes into tumor tissue. Eur J Immunol 33(5):1311–1320

    Article  CAS  PubMed  Google Scholar 

  • Singh RK, Lokeshwar B (2009) Depletion of intrinsic expression of Interleukin-8 in prostate cancer cells causes cell cycle arrest, spontaneous apoptosis and increases the efficacy of chemotherapeutic drugs. Mol Cancer 8(1):1–15

    Article  Google Scholar 

  • Singh PP et al (2015) Immune checkpoints and immunotherapy for colorectal cancer. Gastroenterol Rep (Oxf) 3:289–297

    PubMed  Google Scholar 

  • Singh S et al (2017) Initiative action of tumor-associated macrophage during tumor metastasis. Biochim Open 4:8–18

    Article  PubMed  PubMed Central  Google Scholar 

  • Sionov RV et al (2015) The multifaceted roles neutrophils play in the tumor microenvironment. Cancer Microenviron 8(3):125–158

    Article  CAS  PubMed  Google Scholar 

  • Sofi S et al (2022) Cyclin-dependent kinases in breast cancer: expression pattern and therapeutic implications. Med Oncol 39(6):1–16

    Article  Google Scholar 

  • Sofi S, Qayoom H, Jan N, Khaliq N, Almilaibary A, Mir MA (2023) A comprehensive analysis of notch signalling genes in breast cancer: expression pattern and prognostic significance. Advances in Cancer Biology-Metastasis, p 100104

    Google Scholar 

  • Sokol CL, Luster A (2015) The chemokine system in innate immunity. Cold Spring Harb Perspect Biol 7(5):a016303

    Article  PubMed  PubMed Central  Google Scholar 

  • Soria G, Ben-Baruch A (2008) The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett 267(2):271–285

    Article  CAS  PubMed  Google Scholar 

  • Soria G et al (2008) Concomitant expression of the chemokines RANTES and MCP-1 in human breast cancer: a basis for tumor-promoting interactions. Cytokine 44(1):191–200

    Article  CAS  PubMed  Google Scholar 

  • Stadtmann A et al (2015) Cross-talk between Shp1 and PIPKIγ controls leukocyte recruitment. J Immunol 195(3):1152–1161

    Article  CAS  PubMed  Google Scholar 

  • Steidl C et al (2010) Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N Engl J Med 362:875–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y et al (2010) Type I gamma phosphatidylinositol phosphate kinase modulates invasion and proliferation and its expression correlates with poor prognosis in breast cancer. Breast Cancer Res 12:1–11

    Article  CAS  Google Scholar 

  • Tanaka K et al (2009) The expression of monocyte chemotactic protein-1 in papillary thyroid carcinoma is correlated with lymph node metastasis and tumor recurrence. Thyroid 19(1):21–25

    Article  CAS  PubMed  Google Scholar 

  • Tang C-H, Tsai C-C (2012) CCL2 increases MMP-9 expression and cell motility in human chondrosarcoma cells via the Ras/Raf/MEK/ERK/NF-κB signaling pathway. Biochem Pharmacol 83(3):335–344

    Article  CAS  PubMed  Google Scholar 

  • Teng K-Y et al (2017) Blocking the CCL2–CCR2 Axis using CCL2-neutralizing antibody is an effective therapy for hepatocellular cancer in a mouse ModelCCL2 immunotherapy suppresses hepatitis and HCC. Mol Cancer Ther 16(2):312–322

    Article  CAS  PubMed  Google Scholar 

  • Thapa N et al (2015) Phosphatidylinositol phosphate 5-kinase Iγ and phosphoinositide 3-kinase/Akt signaling couple to promote oncogenic growth. J Biol Chem 290(30):18843–18854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thapa N et al (2017) PIPKIγ and Talin couple phosphoinositide and adhesion signaling to control the epithelial to mesenchymal transition. Oncogene 36:899–911

    Article  CAS  PubMed  Google Scholar 

  • Topalian SL et al (2015) Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27:450–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuyada A, Wang SE (2013) Fibroblast-derived CCL2 induces cancer stem cells—response. Cancer Res 73(2):1032–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turley SJ et al (2015) Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol 15(11):669–682

    Article  CAS  PubMed  Google Scholar 

  • Ueno T et al (2000) Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res 6(8):3282–3289

    CAS  PubMed  Google Scholar 

  • Ugel S et al (2015) Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages. J Clin Invest 125(9):3365–3376

    Article  PubMed  PubMed Central  Google Scholar 

  • Valente AJ et al (1988) Purification of a monocyte chemotactic factor secreted by nonhuman primate vascular cells in culture. Biochemistry 27(11):4162–4168

    Article  CAS  PubMed  Google Scholar 

  • Valković T et al (2005) Macrophage level is not affected by monocyte chemotactic protein-1 in invasive ductal breast carcinoma. J Cancer Res Clin Oncol 131(7):453–458

    Article  PubMed  Google Scholar 

  • Van Coillie E et al (1999) The MCP/eotaxin subfamily of CC chemokines. Cytokine Growth Factor Rev 10(1):61–86

    Article  PubMed  Google Scholar 

  • van Deventer HW et al (2013) Circulating fibrocytes prepare the lung for cancer metastasis by recruiting Ly-6C+ monocytes via CCL2. J Immunol 190(9):4861–4867

    Article  PubMed  Google Scholar 

  • Vasanthakumar A et al (2020) Sex-specific adipose tissue imprinting of regulatory T cells. Nature 579(7800):581–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vindrieux D et al (2009) Emerging roles of chemokines in prostate cancer. Endocr Relat Cancer 16(3):663

    Article  CAS  PubMed  Google Scholar 

  • Wang M et al (2017) Role of tumor microenvironment in tumorigenesis. J Cancer 8:761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West NR et al (2015) Emerging cytokine networks in colorectal cancer. Nat Rev Immunol 15:615–629

    Article  CAS  PubMed  Google Scholar 

  • Wolf MJ et al (2012) Endothelial CCR2 signaling induced by colon carcinoma cells enables extravasation via the JAK2-Stat5 and p38MAPK pathway. Cancer Cell 22(1):91–105

    Article  CAS  PubMed  Google Scholar 

  • Xiong W et al (2020) Notch3 knockout suppresses mouse mammary gland development and inhibits the proliferation of 4T1 murine mammary carcinoma cells via CCL2/CCR4 axis. Front Cell Dev Biol 8:594372

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu M et al (2021) Role of the CCL2-CCR2 signalling axis in cancer: mechanisms and therapeutic targeting. Cell Prolif 54(10):e13115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue J et al (2017) Type Iγ phosphatidylinositol phosphate kinase regulates PD-L1 expression by activating NF-κB. Oncotarget 8:42414

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav A et al (2010) MCP-1: chemoattractant with a role beyond immunity: a review. Clin Chim Acta 411(21-22):1570–1579

    Article  CAS  PubMed  Google Scholar 

  • Yang L et al (2004) Expansion of myeloid immune suppressor Gr+ CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6:409–421

    Article  CAS  PubMed  Google Scholar 

  • Yang X et al (2016) FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3–CCL2 signaling FAP via STAT3–CCL2 promote tumor immunosuppression. Cancer Res 76(14):4124–4135

    Article  CAS  PubMed  Google Scholar 

  • Yang Z et al (2019) CCL2/CCR2 axis promotes the progression of salivary adenoid cystic carcinoma via recruiting and reprogramming the tumor-associated macrophages. Front Oncol 9:231

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang H et al (2020) CCL2-CCR2 axis recruits tumor associated macrophages to induce immune evasion through PD-1 signaling in esophageal carcinogenesis. Mol Cancer 19(1):1–14

    Article  Google Scholar 

  • Yao W et al (2017) A natural CCR2 antagonist relieves tumor-associated macrophage-mediated immunosuppression to produce a therapeutic effect for liver cancer. EBioMedicine 22:58–67

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshimura T (2018) The chemokine MCP-1 (CCL2) in the host interaction with cancer: a foe or ally? Cell Mol Immunol 15(4):335–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimura T et al (1989a) Purification and amino acid analysis of two human monocyte chemoattractants produced by phytohemagglutinin-stimulated human blood mononuclear leukocytes. J Immunol 142(6):1956–1962

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura T et al (1989b) Purification and amino acid analysis of two human glioma-derived monocyte chemoattractants. J Exp Med 169(4):1449–1459

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura T et al (2013) Monocyte chemoattractant protein-1/CCL2 produced by stromal cells promotes lung metastasis of 4T1 murine breast cancer cells. PLoS One 8(3):e58791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youngs SJ et al (1997) Chemokines induce migrational responses in human breast carcinoma cell lines. Int J Cancer 71(2):257–266

    Article  CAS  PubMed  Google Scholar 

  • Yumimoto K et al (2019) Potentials of C-C motif chemokine 2–C-C chemokine receptor type 2 blockers including propagermanium as anticancer agents. Cancer Sci 110(7):2090–2099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T et al (2006) Migration of cytotoxic T lymphocytes toward melanoma cells in three-dimensional organotypic culture is dependent on CCL2 and CCR4. Eur J Immunol 36(2):457–467

    Article  CAS  PubMed  Google Scholar 

  • Zhang J et al (2010a) Multiple roles of chemokine (CC motif) ligand 2 in promoting prostate cancer growth. J Natl Cancer Inst 102(8):522–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J et al (2010b) CC chemokine ligand 2 (CCL2) promotes prostate cancer tumorigenesis and metastasis. Cytokine Growth Factor Rev 21(1):41–48

    Article  CAS  PubMed  Google Scholar 

  • Zhao L et al (2013) Recruitment of a myeloid cell subset (CD11b/Gr1mid) via CCL2/CCR2 promotes the development of colorectal cancer liver metastasis. Hepatology 57(2):829–839

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y et al (2016) Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists. Nature 540:458–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J et al (2007) Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc Natl Acad Sci U S A 104(41):16158–16163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X et al (2011) Systemic delivery of neutralizing antibody targeting CCL2 for glioma therapy. J Neurooncol 104(1):83–92

    Article  CAS  PubMed  Google Scholar 

  • Zollo M et al (2012) Targeting monocyte chemotactic protein-1 synthesis with bindarit induces tumor regression in prostate and breast cancer animal models. Clin Exp Metastasis 29(6):585–601

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manzoor Ahmad Mir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mir, M.A., Jan, U., Ishfaq (2023). CCL2–CCR2 Signaling Axis in Cancer. In: Mir, M.A. (eds) Cytokine and Chemokine Networks in Cancer. Springer, Singapore. https://doi.org/10.1007/978-981-99-4657-0_9

Download citation

Publish with us

Policies and ethics