Skip to main content
Log in

Carlumab, an anti-C-C chemokine ligand 2 monoclonal antibody, in combination with four chemotherapy regimens for the treatment of patients with solid tumors: an open-label, multicenter phase 1b study

  • Original Research
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

C-C chemokine ligand 2 (CCL2) stimulates tumor growth, metastasis, and angiogenesis. Carlumab, a human IgG1κ anti-CCL2 mAb, has shown antitumor activity in preclinical and clinical trials. We conducted a first-in-human phase 1b study of carlumab with one of four chemotherapy regimens (docetaxel, gemcitabine, paclitaxel + carboplatin, and pegylated liposomal doxorubicin HCl [PLD]). Patients had advanced solid tumors for which ≥1 of these regimens was considered standard of care or for whom no other treatment options existed. Dose-limiting toxicities included one grade 4 febrile neutropenia (docetaxel arm) and one grade 3 neutropenia (gemcitabine arm). Combination treatment with carlumab had no clinically relevant pharmacokinetic effect on docetaxel (n = 15), gemcitabine (n = 12), paclitaxel or carboplatin (n = 12), or PLD (n = 14). Total serum CCL2 concentrations increased post-treatment with carlumab alone, consistent with carlumab-CCL2 binding, and continued increase in the presence of all chemotherapy regimens. Free CCL2 declined immediately post-treatment with carlumab but increased with further chemotherapy administrations in all arms, suggesting that carlumab could sequester CCL2 for only a short time. Neither antibodies against carlumab nor consistent changes in circulating tumor cells (CTCs) or circulating endothelial cells (CECs) enumeration were observed. Three of 19 evaluable patients showed a 30 % decrease from baseline urinary cross-linked N-telopeptide of type I collagen (uNTx). One partial response and 18 (38 %) stable disease responses were observed. The most common drug-related grade ≥3 adverse events were docetaxel arm—neutropenia (6/15) and febrile neutropenia (4/15); gemcitabine arm—neutropenia (2/12); paclitaxel + carboplatin arm—neutropenia, thrombocytopenia (4/12 each), and anemia (2/12); and PLD arm—anemia (3/14) and stomatitis (2/14). Carlumab could be safely administered at 10 or 15 mg/kg in combination with standard-of-care chemotherapy and was well-tolerated, although no long-term suppression of serum CCL2 or significant tumor responses were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Censored

References

  1. Guilloton F, Caron G, Ménard C, Pangault C, Amé-Thomas P, Dulong J, De Vos J, Rossille D, Henry C, Lamy T, Fouquet O, Fest T, Tarte K (2012) Mesenchymal stromal cells orchestrate follicular lymphoma cell niche through the CCL2-dependent recruitment and polarization of monocytes. Blood 119:2556–2567. doi:10.1182/blood-2011-08-370908

    Article  CAS  PubMed  Google Scholar 

  2. Carr MW, Roth SJ, Luther E, Rose SS, Springer TA (1994) Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc Natl Acad Sci U S A 91:3652–3656

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Moore BB, Kolodsick JE, Thannickal VJ, Cooke K, Moore TA, Hogaboam C, Wilke CA, Toews GB (2005) CCR2-mediated recruitment of fibrocytes to the alveolar space after fibrotic injury. Am J Pathol 166:675–684. doi:10.1016/S0002-9440(10)62289-4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Kokubo S, Sakai N, Furuichi K, Toyama T, Kitajima S, Okumura T, Matsushima K, Kaneko S, Wada T (2012) Activation of p38 mitogen-activated protein kinase promotes peritoneal fibrosis by regulating fibrocytes. Perit Dial Int 32:10–19. doi:10.3747/pdi.2010.00200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Tang C-H, Tsai C-C (2012) CCL2 increases MMP-9 expression and cell motility in human chondrosarcoma cells via the Ras/Raf/MEK/ERK/NF-κB signaling pathway. Biochem Pharmacol 83:335–344. doi:10.1016/j.bcp.2011.11.013

    Article  CAS  PubMed  Google Scholar 

  6. Allavena P, Bianchi G, Giardina P, Polentarutti N, Zhou D, Introna M, Sozzani S, Mantovani A (1996) Migratory response of human NK cells to monocyte-chemotactic proteins. Methods 10:145-149. doi:10.1006/meth.1996.0088

  7. Ksiazkiewicz M, Gottfried E, Kreutz M, Mack M, Hofstaedter F, Kunz-Schughart LA (2010) Importance of CCL2-CCR2A/2B signaling for monocyte migration into spheroids of breast cancer-derived fibroblasts. Immunobiology 215:737–747. doi:10.1016/j.imbio.2010.05.019

    Article  CAS  PubMed  Google Scholar 

  8. Biswas SK, Sica A, Lewis CE (2008) Plasticity of macrophage function during tumor progression: regulation by distinct molecular mechanisms. J Immunol 180:2011–2017. doi:10.4049/jimmunol.180.4.2011

  9. Linde N, Gutschalk CM, Hoffmann C, Yilmaz D, Mueller MM (2012) Integrating macrophages into organotypic co-cultures: a 3D in vitro model to study tumor-associated macrophages. PLoS ONE 7:e40058. doi:10.1371/journal.pone.0040058

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Hao N-B, Lü M-H, Fan Y-H, Cao Y-L, Zhang Z-R, Yang S-M (2012) Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol 2012:1–11. doi:10.1155/2012/948098

    Article  Google Scholar 

  11. Saji H, Koike M, Yamori T, Saji S, Seiki M, Matsushima K, Toi M (2001) Significant correlation of monocyte chemoattractant protein-1 expression with neovascularization and progression of breast carcinoma. Cancer 92:1085–1091. doi:10.1002/1097-0142(20010901)92:5<1085::AID-CNCR1424>3.0.CO;2-K

    Article  CAS  PubMed  Google Scholar 

  12. Ueno T, Toi M, Saji H, Muta M, Bando H, Kuroi K, Koike M, Inadera H, Matsushima K (2000) Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res 6:3282–3289

    CAS  PubMed  Google Scholar 

  13. Sun T, Lee G-SM, Oh WK, Freedman ML, Pomerantz M, Pienta KJ, Kantoff PW (2011) Inherited variants in the chemokine CCL2 gene and prostate cancer aggressiveness in a Caucasian cohort. Clin Cancer Res 17:1546–1552. doi:10.1158/1078-0432.CCR-10-2015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Deng W, Gu X, Lu Y, Gu C, Zheng Y, Zhang Z, Chen L, Yao Z, Li L-Y (2012) Down-modulation of TNFSF15 in ovarian cancer by VEGF and MCP-1 is a pre-requisite for tumor neovascularization. Angiogenesis 15:71–85. doi:10.1007/s10456-011-9244-y

    Article  CAS  PubMed  Google Scholar 

  15. Monti P, Leone BE, Marchesi F, Balzano G, Zerbi A, Scaltrini F, Pasquali C, Calori G, Pessi F, Sperti C, Di Carlo V, Allavena P, Piemonti L (2003) The CC chemokine MCP-1/CCL2 in pancreatic cancer progression: regulation of expression and potential mechanisms of antimalignant activity. Cancer Res 63:7451–7461

    CAS  PubMed  Google Scholar 

  16. Loberg RD, Day LL, Harwood J, Ying C, St. John LN, Giles R, Neeley CK, Pienta KJ (2006) CCL2 is a potent regulator of prostate cancer cell migration and proliferation. Neoplasia 8:578–586. doi:10.1593/neo.06280

  17. Li X, Loberg R, Liao J, Ying C, Snyder LA, Pienta KJ, McCauley LK (2009) A destructive cascade mediated by CCL2 facilitates prostate cancer growth in bone. Cancer Res 69:1685–1692. doi:10.1158/0008-5472.CAN-08-2164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Lebrecht A, Grimm C, Lantzsch T, Ludwig E, Hefler L, Ulbrich E, Koelbl H (2004) Monocyte chemoattractant protein-1 serum levels in patients with breast cancer. Tumor Biol 25:14–17. doi:10.1159/000077718

    Article  CAS  Google Scholar 

  19. Loberg RD, Ying C, Craig M, Day LL, Sargent E, Neeley C, Wojno K, Snyder LA, Yan L, Pienta KJ (2007) Targeting CCL2 with systemic delivery of neutralizing antibodies induces prostate cancer tumor regression in vivo. Cancer Res 67:9417–9424. doi:10.1158/0008-5472.CAN-07-1286

    Article  CAS  PubMed  Google Scholar 

  20. Gazzaniga S, Bravo AI, Guglielmotti A, van Rooijen N, Maschi F, Vecchi A, Mantovani A, Mordoh J, Wainstok R (2007) Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft. J Investig Dermatol 127:2031–2041. doi:10.1038/sj.jid.5700827

    Article  CAS  PubMed  Google Scholar 

  21. Sandhu SK, Papadopoulos K, Fong PC, Patnaik A, Messiou C, Olmos D, Wang G, Tromp BJ, Puchalski TA, Balkwill F, Berns B, Seetharam S, de Bono JS, Tolcher AW (2013) A first-in-human, first-in-class, phase I study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 in patients with solid tumors. Cancer Chemother Pharmacol 71:1041–1050. doi:10.1007/s00280-013-2099-8

    Article  CAS  PubMed  Google Scholar 

  22. Obmolova G, Teplyakov A, Malia TJ, Grygiel TLR, Sweet R, Snyder LA, Gilliland GL (2012) Structural basis for high selectivity of anti-CCL2 neutralizing antibody CNTO 888. Mol Immunol 51:227–233. doi:10.1016/j.molimm.2012.03.022

    Article  CAS  PubMed  Google Scholar 

  23. Rozel S, Galbán CJ, Nicolay K, Lee KC, Sud S, Neeley C, Snyder LA, Chenevert TL, Rehemtulla A, Ross BD, Pienta KJ (2009) Synergy between anti-CCL2 and docetaxel as determined by DW-MRI in a metastatic bone cancer model. J Cell Biochem 107:58–64. doi:10.1002/jcb.22056

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Moisan F, Francisco EB, Brozovic A, Duran GE, Wang YC, Seetharam S, Snyder LA, Doshi P, Sikic BI (2012) Enhancement of paclitaxel and carboplatin therapy by CCL2 blockade in ovarian cancers. Cancer Research 72 (8 suppl 1): abstr 817

  25. Pienta KJ, Machiels J-P, Schrijvers D, Alekseev B, Shkolnik M, Crabb SJ, Li S, Seetharam S, Puchalski TA, Takimoto C, Elsayed Y, Dawkins F, de Bono JS (2013) Phase 2 study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancer. Invest New Drugs 31:760–768. doi:10.1007/s10637-012-9869-8

    Article  CAS  PubMed  Google Scholar 

  26. Takimoto CH, Ng CM, Puchalski T (2011) Pharmacokinetics and pharmacodynamics. In: DeVita VTJ, Lawrence TS, Rosenberg SA (eds) DeVita, Hellman, and Rosenberg's cancer: principles & practice of oncology, 9th edn. Lippincott Williams & Wilkins, Philadelphia, pp 360–368

    Google Scholar 

  27. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247. doi:10.1016/j.ejca.2008.10.026

  28. Beumer JH, Eiseman JL, Parise RA, Joseph E, Covey JM, Egorin MJ (2008) Modulation of gemcitabine (2′,2′-difluoro-2′-deoxycytidine) pharmacokinetics, metabolism, and bioavailability in mice by 3,4,5,6-tetrahydrouridine. Clin Cancer Res 14:3529–3535. doi:10.1158/1078-0432.CCR-07-4885

    Article  CAS  PubMed  Google Scholar 

  29. Fetterly GJ, Puchalski TA, Takimoto C, Mager DE, Seetharam S, McIntosh T, De Bono JS, Tolcher A, Davis HM, Zhou H (2010) Utilizing mechanistic PK/PD modeling to simultaneously examine free CCL2, total CCL2, and CNTO 888 serum concentration time data [ASCO abstract 3029]. J Clin Oncol 28:15S

    Google Scholar 

  30. Von Hoff DD, Nieves JA, Vocila LK, Weitman SD, Cvitkovic E (2007) The complete phase Ib clinical trial: a method to accelerate new agent development [ASCO abstract 2562]. J Clin Oncol 25:18S

    Google Scholar 

  31. The complete phase Ib trial design—an approach for getting to phase II faster. A Q&A with Daniel Von Hoff, M.D. Medelis website. http://www.medelis.com/clinical-cancer-research-abstracts/complete-phase-ib-trial-design. Accessed 14 January 2013

Download references

Acknowledgments

Gianna Paone and Jennifer Han of Janssen Scientific Affairs, LLC, provided assistance with writing, editing, preparing, and submitting this manuscript. Janssen Research & Development, LLC, provided funding for the study. This trial was registered at ClinicalTrials.gov, NCT01204996.

Conflict of interest

Drs. Puchalski, Seetharam, Zhong, and de Boer are employees of Janssen, own stock in Johnson & Johnson, and/or are currently conducting research sponsored by Janssen. Antonio Calles is a Rio Hortega fellowship grant recipient from the Instituto de Salud Carlos III (CM09/00283). All remaining authors have declared no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla J. de Boer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 30.5 kb)

ESM Fig. 1

(JPG 308 kb)

ESM 2

(EPS 619 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brana, I., Calles, A., LoRusso, P.M. et al. Carlumab, an anti-C-C chemokine ligand 2 monoclonal antibody, in combination with four chemotherapy regimens for the treatment of patients with solid tumors: an open-label, multicenter phase 1b study. Targ Oncol 10, 111–123 (2015). https://doi.org/10.1007/s11523-014-0320-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-014-0320-2

Keywords

Navigation