Skip to main content

Selenium Bio-Fortification in Cereal Crops: An Overview

  • Chapter
  • First Online:
Mineral Biofortification in Crop Plants for Ensuring Food Security

Abstract

Selenium is a crucial element that is present in inorganic as well as in organic nature in plants and the atmosphere. In addition to being essential for human beings and animals, selenium is helpful for plant growth and is primarily involved in antioxidant defense, and tissue regeneration. Selenium deficit in diet has become a worldwide issue, and selenium concentration in soil often correlates its availability to humans and availability in food. It helps the body’s defense mechanisms against free radicals, detoxifies heavy metals, controls the immune and reproductive systems, and makes sure that the thyroid gland is functioning properly. The best tactic to increase Se in plant edible components is bio-fortification. Agronomic bio-fortification offers a practical way to raise the Se content of edible crop products through foliar or soil application of Se. Wheat, rice, maize, and barley are the cereals that people consume most frequently, agronomic bio-fortification is the best way to enrich their nutrient contents. This chapter concentrates on highlighting the Se uptake mechanisms in plants; its dual nature effect and biofortification strategies for food crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abenavoli L, Milanovic M, Procopio AC, Spampinato G, Maruca G, Perrino EV, Mannino GC, Fagoonee S, Luzza F, Musarella CM (2021) Ancient wheats: beneficial effects on insulin resistance. Minerva Med 112(5):641–650

    Article  PubMed  Google Scholar 

  • Ates D, Sever T, Aldemir S, Yagmur B, Temel HY, Kaya HB, Alsaleh A, Kahraman A, Ozkan H, Vandenberg A, Tanyolac B (2016) Identification QTLs controlling genes for se uptake in lentil seeds. PLoS One 11(3):e0149210

    Article  PubMed  PubMed Central  Google Scholar 

  • Babajani A, Iranbakhsh A, Oraghi Ardebili Z, Eslami B (2019) Differential growth, nutrition, physiology, and gene expression in Melissa officinalis mediated by zinc oxide and elemental selenium nanoparticles. Environ Sci Pollut Res Int 26(24):24430–24444

    Article  CAS  PubMed  Google Scholar 

  • Bărbieru OG, Dimitriu L, Călin M, Raut I, Constantinescu Aruxandei D, Oancea F (2019) Plant biostimulants based on selenium nanoparticles biosynthesized by Trichoderma strains. Proceedings 29(1):95

    Google Scholar 

  • Bocchini M, D’Amato R, Ciancaleoni S, Fontanella MC, Palmerini CA, Beone GM, Onofri A, Negri V, Marconi G, Albertini E et al (2018) Soil selenium (Se) biofortification changes the physiological, biochemical and epigenetic responses to water stress in Zea mays L. by inducing a higher drought tolerance. Front Plant Sci 9:1–14

    Article  Google Scholar 

  • Broadley MR, Alcock J, Alford J, Cartwright P, Foot I, Fairweather-Tait SJ, Hart DJ, Hurst R, Knott P, McGrath SP, Meacham MC (2010) Selenium biofortification of high yielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilisation. Plant Soil 332:5–18

    Article  CAS  Google Scholar 

  • Cakmak I, Marzorati M, Van den Abbeele P, Hora K, Tjalling Holwerda H, Yazici MA, Savasli E, Neri J, Du Laing G (2020) Fate and bioaccessibility of iodine in food prepared from agronomically biofortified wheat and rice and impact of cofertilization with zinc and selenium. J Agric Food Chem 68(6):1525–1535

    Article  CAS  PubMed  Google Scholar 

  • Cartes P, Gianfreda L, Mora ML (2005) Uptake of selenium and its antioxidant activity in ryegrass when applied as selenate and selenite forms. Plant Soil 276:359–367

    Article  CAS  Google Scholar 

  • Constantinescu-Aruxandei D, Frîncu RM, Capră L, Oancea F (2018) Selenium analysis and speciation in dietary supplements based on next-generation selenium ingredients. Nutrients 10:1466

    Article  PubMed  PubMed Central  Google Scholar 

  • Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe (III) uptake. Nature 409(6818):346–349. https://doi.org/10.1038/35053080

  • D’Amato R, Regni L, Falcinelli B, Mattioli S, Benincasa P, Dal Bosco A, Pacheco P, Proietti P, Troni E, Santi C, Businelli D (2020) Current knowledge on selenium biofortification to improve the nutraceutical profile of food: a comprehensive review. J Agric Food Chem 68:4075–4097

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng X, Liu K, Li M, Zhang W, Zhao X, Zhao Z (2017) Field crops research difference of selenium uptake and distribution in the plant and selenium form in the grains of rice with foliar spray of selenite or selenate at different stages. Field Crop Res 211:165–171

    Article  Google Scholar 

  • Eich-Greatorex S, Sogn TA, Øgaard AF, Aasen I (2007) Plant availability of inorganic and organic selenium fertiliser as influenced by soil organic matter content and pH. Nutr Cycl Agroecosyst 79:221–231

    Article  CAS  Google Scholar 

  • El Mehdawi AF, Jiang Y, Guignardi ZS, Esmat A, Pilon M, Pilon- Smits EAH, Schiavon M (2018) Influence of sulfate supply on selenium uptake dynamics and expression of sulfate/ selenate transporters in selenium hyperaccumulator and non-hyper-accumulator Brassicaceae. New Phytol 217:194–205

    Article  PubMed  Google Scholar 

  • El-Ramady H, Faizy SED, Abdalla N, Taha H, Domokos-Szabolcsy É, Fari M, Elsakhawy T, Omara AED, Shalaby T, Bayoumi Y (2020) Selenium and nano-selenium biofortification for human health: opportunities and challenges. Soil Syst 4:57–58

    Article  CAS  Google Scholar 

  • El-Ramady H, Abdalla N, Alshaal T, El-Henawy A, Faizy SEDA, Shams MS, Shalaby T, Bayoumi Y, Elhawat N, Shehata S et al (2015) Selenium and its role in higher plants. In: Lichtfouse E, Schwarzbauer J, Robert D (eds) Pollutants in buildings, water and living organisms, Environmental Chemistry for a Sustainable World. Springer, Cham, pp 235–296

    Chapter  Google Scholar 

  • Feng R, Wei C, Tu S (2013) The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot 87:58–68

    Article  CAS  Google Scholar 

  • Finley JW (2005) Selenium accumulation in plant foods. Nutr Rev 63:196–202

    Article  PubMed  Google Scholar 

  • Funes-Collado V, Morell-Garcia A, Rubio R, López-Sánchez JF (2013) Selenium uptake by edible plants from enriched peat. Sci Hortic 164:428–433

    Article  CAS  Google Scholar 

  • Garvin DF, Welch RM, Finley JW (2006) Historical shifts in the seed mineral micronutrient concentration of US hard red winter wheat germplasm. J Sci Food Agric 86:2213–2220

    Article  CAS  Google Scholar 

  • Germ M, Stibilj V (2007) Selenium and plants. Acta Agric Slov 89:1

    Article  Google Scholar 

  • Golob A, Novak T, Maršić NK, Šircelj H, Stibilj V, Jerše A, Kroflič A, Germ M (2020) Biofortification with selenium and iodine changes morphological properties of Brassica oleracea L. var. gongylodes and increases their contents in tubers. Plant Physiol Biochem 150:234–243

    Article  CAS  PubMed  Google Scholar 

  • Golubkina N, Zamana S, Seredin T, Poluboyarinov P, Sokolov S, Baranova H, Krivenkov L, Pietrantonio L, Caruso G (2019) Effect of selenium biofortification and beneficial microorganism inoculation on yield, quality and antioxidant properties of shallot bulbs. Plan Theory 8(4):102

    CAS  Google Scholar 

  • Gupta M, Gupta S (2017) An overview of selenium uptake, metabolism, and toxicity in plants. Front Plant Sci 7:1–14

    Article  Google Scholar 

  • Hart DJ, Fairweather-Tait SJ, Broadley MR, Dickinson SJ, Foot I, Knott P, McGrath SP, Mowat H, Norman K, Scott PR et al (2011) Selenium concentration and speciation in biofortified flour and bread: retention of selenium during grain biofortification, processing and production of se-enriched food. Food Chem 126:1771–1778

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Bhuyan MHMB, Raza A, Hawrylak-Nowak B, Al M-GR, Mahmud J, Nahar K, Fujita M (2020) Selenium in plants: boon or bane? Environ Exp Bot 178:104170

    Article  CAS  Google Scholar 

  • Haug A, Graham R, Christophersen O, Lyons G (2007) How to use the world’s scarce selenium resources efficiently to increase the selenium concentration in food. Microbiol Ecol Health Dis 19(4):209–228

    CAS  Google Scholar 

  • Hawkesford MJ, Zhao FJ (2007) Strategies for increasing the selenium content of wheat. J Cereal Sci 46:282–292

    Article  CAS  Google Scholar 

  • Izydorczyk G, Ligas B, Mikula K, Witek-Krowiak A, Moustakas K, Chojnacka K (2020) Biofortification of edible plants with selenium and iodine—a systematic literature review. Sci Total Environ 754:141983

    Article  PubMed  Google Scholar 

  • Jha AB, Warkentin TD (2020) Biofortification of pulse crops: status and future perspectives. Plan Theory 9:73

    CAS  Google Scholar 

  • Jiang Y, Schiavon M, Lima LW, Tripti JRR, El Mehdawi AF, Royer S, Zeng Z, Hu Y, Pilon-Smits EAH, Pilon M (2018) Comparison of ATP sulfurylase 2 from seleniumhyperaccumulator Stanleya pinnata and non-accumulator Stanleya elata reveals differential intracellular localization and enzyme activity levels. Biochim Biophys Acta Gen Subj. S0304-4165(18)30076-X

    Google Scholar 

  • Juárez-Maldonado A, Ortega-Ortíz H, Morales-Díaz AB, González-Morales S, Morelos-Moreno Á, Cabrera-De la Fuente M, Sandoval-Rangel A, Cadenas-Pliego G, Benavides-Mendoza A (2019) Nanoparticles and nanomaterials as plant biostimulants. Int J Mol Sci 20(1):162

    Article  PubMed  PubMed Central  Google Scholar 

  • Kápolna E, Hillestrøm PR, Laursen KH, Husted S, Larsen EH (2009) Effect of foliar application of selenium on its uptake and speciation in carrot. Food Chem 115:1357–1363

    Article  Google Scholar 

  • Kaseva ME et al (2000) Fortification of potatoes with selenium using agronomic biofortification. J Agric Food Chem 48:5300–5304

    Google Scholar 

  • Kuznetsov V, Kuznetsov V (2003) Selenium regulates the water status of plants exposed to drought. Dokl Biol Sci 390:266–268

    Article  CAS  PubMed  Google Scholar 

  • Li HF et al (2017) Effect of selenium fertilization on yield, quality, and selenium content of winter wheat (Triticum aestivum L.) in China. Field Crops Res 201:121–127

    Google Scholar 

  • Lidon FC, Oliveira K, Ribeiro MM, Pelica J, Pataco I, Ramalho JC, Leitão AE, Almeida AS, Campos PS, Ribeiro-Barros AI, Pais IP (2018) Selenium biofortification of rice grains and implications on macronutrients quality. J Cereal Sci 81:22–29

    Article  CAS  Google Scholar 

  • Lyons G (2018) Biofortification of cereals with foliar selenium and iodine could reduce hypothyroidism. Front Plant Sci 9:1–8

    Article  CAS  Google Scholar 

  • Lyons GH, Stangoulis JCR, Graham RD (2004) Exploiting micronutrient interaction to optimize biofortification programs: the case for inclusion of selenium and iodine in the HarvestPlus program. Nutr Rev 62:247–252

    Article  PubMed  Google Scholar 

  • Malagoli M, Schiavon M, Dall’ Acqua S, Pilon-Smits EAH (2015) Effects of selenium biofortification on crop nutritional quality. Front Plant Sci 6:1–5

    Article  Google Scholar 

  • Márquez VG, Moreno ÁM, Mendoza AB, Macías JM (2020) Ionic selenium and nanoselenium as biofortifiers and stimulators of plant metabolism. Agronomy 10:1399

    Article  Google Scholar 

  • Mayer JE, Pfeifer WH, Beyer P (2008) Biofortified crops to alleviate micronutrient malnutrition. Curr Opin Plant Biol 11:166–179

    Article  CAS  PubMed  Google Scholar 

  • Miller DD, Welch RM (2013) Food system strategies for preventing micronutrient malnutrition. Food Policy 42:115–128

    Article  Google Scholar 

  • Natasha Shahid M, Niazi NK, Khalid S, Murtaza B, Bibi I, Rashid MI (2018) A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environ Pollut 234:915–934

    Article  PubMed  Google Scholar 

  • Nayantara KP (2018) Biosynthesis of nanoparticles using ecofriendly factories and their role in plant pathogenicity: a review. Biotech Res Innov 2:63–73

    Article  Google Scholar 

  • Neuhierl B et al (2019) Impact of selenium on growth and quality of crops. Plan Theory 8:217

    Google Scholar 

  • Newman R, Waterland N, Moon Y, Tou JC (2019) Selenium biofortification of agricultural crops and effects on plant nutrients and bioactive compounds important for human health and disease prevention—a review. Plant Foods Hum Nutr 74:449–460

    Article  CAS  PubMed  Google Scholar 

  • Ngigi PB, Lachat C, Masinde PW, Du Laing G (2019) Agronomic biofortification of maize and beans in Kenya through selenium fertilization. Environ Geochem Health 41:2577–2591

    Article  CAS  PubMed  Google Scholar 

  • Pezzarossa B, Remorini D, Gentile ML, Massai R (2012) Effects of foliar and fruit addition of sodium selenate on selenium accumulation and fruit quality. J Sci Food Agric 92:781–786

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits EA, LeDuc DL (2009) Phytoremediation of selenium using transgenic plants. Curr Opin Biotechnol 20(2):207–212

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits EAH (2019) On the ecology of selenium accumulation in plants. Plan Theory 8:197

    CAS  Google Scholar 

  • Prom-u-thai C, Rashid A, Ram H (2020) Simultaneous biofortifcation of rice with zinc, iodine, iron and selenium through foliar treatment of a micronutrient cocktail in five countries. Front Plant Sci 11:589835

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramkissoon C, Degryse F, da Silva RC, Baird R, Young SD, Bailey EH, McLaughlin MJ (2019) Improving the efficacy of selenium fertilizers for wheat biofortification. Sci Rep 9:19520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rayman MP (2008) Food-chain selenium and human health: emphasis on intake. Braz J Nutr 100:254–268

    Article  CAS  Google Scholar 

  • Ríos JJ, Rosales MA, Blasco B, Cervilla LM, Romero L, Ruiz JM (2008) Biofortification of se and induction of the antioxidant capacity in lettuce plants. Sci Hortic 116:248–255

    Article  Google Scholar 

  • Ros G, van Rotterdam A, Bussink D, Bindraban P (2016) Selenium fertilization strategies for bio-fortification of food: an agro-ecosystem approach. Plant Soil 404:99–112

    Article  CAS  Google Scholar 

  • Sarwar N, Akhtar M, Kamran MA, Imran M, Riaz MA, Kamran K, Hussain S (2020) Selenium biofortification in food crops: key mechanisms and future perspectives. J Food Compos Anal 93:103615

    Article  CAS  Google Scholar 

  • Schiavon M, Berto C, Malagoli M, Trentin A, Sambo P, Dall’Acqua S, Pilon-Smits EAH (2016) Selenium biofortification in radish enhances nutritional quality via accumulation of methyl-selenocysteine and promotion of transcripts and metabolites related to glucosinolates, phenolics amino acids. Front Plant Sci 7:1371

    Google Scholar 

  • Schiavon M, Nardi S, dalla Vecchia F, Ertani A (2020) Selenium biofortification in the 21st century: status and challenges for healthy human nutrition. Plant Soil 453:245–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sotoodehnia-Korani S, Iranbakhsh A, Ebadi M, Majd A, Ardebili ZO (2020) Selenium nanoparticles induced variations in growth, morphology, anatomy, biochemistry, gene expression, and epigenetic DNA methylation in Capsicum annuum; an in vitro study. Environ Pollut 265:114727

    Article  CAS  PubMed  Google Scholar 

  • Ullrey DE et al (1983) Elevated selenium in tissues of beef cattle fed high-selenium alfalfa. J Animal Sci 57:926–993

    Google Scholar 

  • Van Hoewyk D (2013) A tale of two toxicities: malformed selenoproteins and oxidative stress both contribute to selenium stress in plants. Ann Bot 112:965–972

    Article  PubMed  PubMed Central  Google Scholar 

  • Wan J, Zhang M, Adhikari B (2018) Advances in selenium- enriched foods: from the farm to the fork. Trends Food Sci Tech 76:1–5

    Article  CAS  Google Scholar 

  • Wang YD, Wang X, Wong YS (2013) Generation of selenium-enriched rice with enhanced grain yield, selenium content and bioavailability through fertilization with selenite. Food Chem 141:2385–2393

    Article  CAS  PubMed  Google Scholar 

  • White PJ (2016) Selenium accumulation by plants. Ann Bot 117:217–235

    CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182(1):49–84

    Article  CAS  PubMed  Google Scholar 

  • Wiesner-Reinhold M, Schreiner M, Baldermann S, Schwarz D, Hanschen FS, Kipp AP, Rowan DD, Bentley-Hewitt KL, McKenzie MJ (2017) Mechanisms of selenium enrichment and measurement in brassicaceous vegetables, and their application to human health. Front Plant Sci 8:1365

    Article  PubMed  PubMed Central  Google Scholar 

  • Winkel LH, Vriens B, Jones GD, Schneider LS, Pilon-Smits E, Bañuelos GS (2015) Selenium cycling across soil-plant-atmosphere interfaces: a critical review. Nutrients 7:4199–4239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Bañuelos GS, Lin ZQ, Liu Y, Yuan L, Yin X, Li M (2015) Biofortification and phytoremediation of selenium in China. Front Plant Sci 6:136

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia Q, Yang Z, Shui Y, Liu X, Chen J, Khan S, Wang J, Gao Z (2020) Methods of selenium application differentially modulate plant growth, selenium accumulation and speciation, protein, anthocyanins and concentrations of mineral elements in purple-grained wheat. Front Plant Sci 11:1–12

    Article  Google Scholar 

  • Yang XE, Chen WR, Feng Y (2007) Improving human micronutrient nutrition through biofortification in the soil-plant system: China as a case study. Environ Geochem Health 29:413–428

    Article  CAS  PubMed  Google Scholar 

  • Yasin M, El-Mehdawi AF, Anwar A, Pilon-Smits EAH, Faisal M (2015) Microbial-enhanced selenium and iron biofortification of wheat (Triticum aestivum L.): applications in phytoremediation and biofortification. Int J Phytoremediation 17:341–347

    Article  CAS  PubMed  Google Scholar 

  • Ye Y, Qu J, Pu Y, Rao S, Xu F, Wu C (2020) Selenium biofortification of crop food by beneficial microorganisms. J Fungi 6:59

    Article  CAS  Google Scholar 

  • Zhang M, Xing G, Tang S, Pang Y, Yi Q, Huang Q, Huang X, Huang J, Li P, Fu H (2019) Improving soil selenium availability as a strategy to promote selenium uptake by high-se rice cultivar. Environ Exp Bot 163:45–54

    Article  CAS  Google Scholar 

  • Zhou X, Yang J, Kronzucker HJ, Shi W (2020) Selenium biofortification and interaction with other elements in plants: a review. Front Plant Sci 11:1–18

    Article  CAS  Google Scholar 

  • Zhu YG, Pilon-Smits EAH, Zhao FJ, Williams PN, Meharg AA (2009) Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci 14:436–442

    Article  CAS  PubMed  Google Scholar 

  • Zou C, Du Y, Rashid A, Ram H, Savasli E, Pieterse PJ, Ortiz-Monasterio I, Yazici A, Kaur C, Mahmood K, Singh S, Le Roux MR, Kuang W, Onder O, Kalayci M, Cakmak I (2019) Simultaneous biofortification of wheat with zinc, iodine, selenium, and iron through foliar treatment of a micronutrient cocktail in six countries. J Agric Food Chem 67:8096–8106

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP-HC2022/4), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Albadrani, G.M., Khalid, S., Rahman, A., Zamir, S.I., Ali, S., Hussain, S. (2023). Selenium Bio-Fortification in Cereal Crops: An Overview. In: Hasanuzzaman, M., Tahir, M.S., Tanveer, M., Shah, A.N. (eds) Mineral Biofortification in Crop Plants for Ensuring Food Security. Springer, Singapore. https://doi.org/10.1007/978-981-99-4090-5_7

Download citation

Publish with us

Policies and ethics