Skip to main content

Abstract

Plant parasitic nematodes are among the most important biotic constraints with potential for causing crop yield losses of 8–15% across a wide range of crops in the world. Although chemical fumigants have proved to be most effective in controlling plant nematodes for over one and half centuries, they are costly, environmentally unfriendly, and hazardous to human and animal life. As such, alternative methods for controlling nematodes, preferably non-chemical methods, should be developed and adopted by agricultural producers. The use of host plant resistance (HPR) is one of the options that have been used in the nematode management for many years. This has been particularly successful in the control of nematode genera that exhibit specialized host-parasite interaction for part of their life cycles, for example Aphelenchoides, Ditylenchus, Globodera, Heterodera, Meloidogyne, Pratylenchus, Radopholus, Rotylenchulus, and Tylenchulus. The nematode-resistant cultivars have been developed in numerous cultivated crops including chickpea (Cicer arietinum), peach (Prunus persica), tobacco (Nicotiana tabacum), and tomato (Solanum lycopersicum) against Meloidogyne. Recent trends in the use of HPR in plant nematology have seen new approaches in genome sequencing and genome editing being used extensively to study the complex genomic/transcriptomic interactions in plants in response to pathogen attacks. The use of spray-induced gene silencing (SIGS), RNA interference (RNAi), host-induced gene silencing (HIGS), cross kingdom RNAi, and also, engineering plant susceptibility genes is among some new advances that are currently receiving attention in the development of nematode resistant cultivars. These modern technologies have potential to provide sustainable and cost-effective strategies to manage nematodes to reduce crop yield losses due to these parasites and should thus be a subject for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ali MA, Abbas A, Azeem F, Javed N, Bohlmann H (2015a) Plant-nematode interactions: from genomics to metabolomics. Int J Agric Biol 17:1071–1082

    Article  CAS  Google Scholar 

  • Ali S, Magne M, Chen S, Obradovic N, Jamshaid L, Wang X, Moffett P (2015b) Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses. Front Plant Sci 6:623

    Article  PubMed  PubMed Central  Google Scholar 

  • Banerjee S, Banerjee A, Gill SS, Gupta OP, Dahuja A, Jain PK, Sirohi A (2017) RNA interference: a novel source of resistance to combat plant parasitic nematodes. Front Plant Sci 8:834

    Article  PubMed  PubMed Central  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  CAS  PubMed  Google Scholar 

  • Bingefors S (1982) Nature of inherited nematode resistance in plants. In: Harris KF, Maramorosch K (eds) Pathogens, vectors and plant disease: approaches to control. Academic Press, New York, pp 188–219

    Google Scholar 

  • Buck AH, Coakley G, Simbari F, McSorley HJ, Quintana JF, Le Bihan T, Maizels RM (2014) Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. Nat Commun 5:1–12

    Article  Google Scholar 

  • Cai D, Kleine M, Kifle S, Harloff H-J, Sandal NN, Marcker KA, Klein-Lankhorst RM, Salentijn EM, Lange W, Stiekema WJ (1997) Positional cloning of a gene for nematode resistance in sugar beet. Science 275:832–834

    Article  CAS  PubMed  Google Scholar 

  • Cai Q, Qiao L, Wang M, He B, Lin FM, Palmquist J, Jin H (2018) Plants send small RNAs in extracellular vesicles to the fungal pathogen to silence virulence genes. Science 360:1126–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Q, He B, Jin H (2019) A safe ride in extracellular vesicles-small RNA trafficking between plant hosts and pathogens. Curr Opin Plant Biol 52:140–148

    Article  CAS  Google Scholar 

  • Cai Q, He B, Wang S, Fletcher S, Niu D, Mitter N, Jin H (2021) Message in a bubble: shuttling small RNAs and proteins between cells and interacting organisms using extracellular vesicles. Annu Rev Plant Biol 72:497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook R, Evans K (1987) Resistance and tolerance. In: Brown RH, Kerry BR (eds) Principles and practice of nematode control in crops. Academic Press, Orlando, pp 179–231

    Google Scholar 

  • Cotton J, Lilley C, Jones L, Kikuchi T, Reid A, Thorpe P (2014) The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematod. Genome Biol 15:R43

    Article  PubMed  PubMed Central  Google Scholar 

  • Coyne DL, Cortada L, Dalzell JJ, Claudius-Cole AO, Haukeland S, Luambano N, Talwana H (2018) Plant-parasitic nematodes and food security in Sub-Saharan Africa. Annu Rev Phytopathol 6:381–403

    Article  Google Scholar 

  • Davies LJ, Elling AA (2015) Resistance genes against plant-parasitic nematodes: a durable control strategy? Nematology 17:249–263

    Article  Google Scholar 

  • Dawadi S, Shrestha S, Giri RA (2021) Mixed-methods research: a discussion on its types, challenges, and criticisms. J Pract Stud Educ 2:25–36

    Article  Google Scholar 

  • Decraemer W, Hunt DJ (2006) Structure and classification. In: Perry RN, Moen M (eds) Plant nematology, vol 32. CABI, Oxfordshire, p 4

    Google Scholar 

  • Diaz-Granados A, Petrescu AJ, Goverse A, Smant G (2016) SPRYSEC effectors: a versatile protein-binding platform to disrupt plant innate immunity. Front Plant Sci 7:1575

    Article  PubMed  PubMed Central  Google Scholar 

  • Eves-van den Akker S, Lilley CJ, Jones JT, Urwin PE (2014) Identification and characterisation of a hyper-variable apoplastic effector gene family of the potato cyst nematodes. PLoS Pathog 10:e1004391

    Article  PubMed Central  Google Scholar 

  • Fuller VL, Lilley CJ, Urwin PE (2008) Nematode resistance. New Phytol 180:27–44

    Article  CAS  PubMed  Google Scholar 

  • Garcia N, Grenier E, Buisson A, Folcher L (2022) Diversity of plant parasitic nematodes characterized from fields of the French national monitoring programme for the Columbia root-knot nematode. PLoS One 17:e0265070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Ruiz H (2018) Susceptibility genes to plant viruses. Viruses 10:484

    Article  PubMed  Google Scholar 

  • Garcia-Ruiz H, Szurek B, Van den Ackerveken G (2021) Stop helping pathogens: engineering plant susceptibility genes for durable resistance. Curr Opin Biotechnol 70:187–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gavrin A, Rey T, Torode TA, Toulotte J, Chatterjee A, Kaplan JL, Schornack S (2020) Developmental modulation of root cell wall architecture confers resistance to an oomycete pathogen. Curr Biol 30:4165–4176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gheysen G, Mitchum MG (2019) Phytoparasitic nematode control of plant hormone pathways. Plant Physiol 179:1212–1226

    Article  CAS  PubMed  Google Scholar 

  • Goverse A, Smant G (2014) The activation and suppression of plant innate immunity by parasitic nematodes. Annu Rev Phytopathol 52:243

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Wang J, Gardner M, Fukuda H, Kondo Y, Etchells JP, Mitchum MG (2017) Identification of cyst nematode B-type CLE peptides and modulation of the vascular stem cell pathway for feeding cell formation. PLoS Pathog 13:e1006142

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris AR (1983) Resistance of some Vitis rootstocks to Xiphinema index. J Nematol 15:405–409

    CAS  PubMed Central  Google Scholar 

  • Harris AR (1990) Evaluating resistance to ectoparasitic nematodes. In: Starr JL (ed) Methods for evaluating plant species for resistance to plant-parasitic nematodes. Society of Nematologists, pp 67–86

    Google Scholar 

  • Hewezi T, Juvale PS, Piya S, Maier TR, Rambani A, Rice JH, Baum TJ (2015) The cyst nematode effector protein 10A07 targets and recruits host posttranslational machinery to mediate its nuclear trafficking and promote parasitism in Arabidopsis. Plant Cell 27:891–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holbein J, Grundler FMW, Shahid Siddique S (2016) Plant basal resistance to nematodes: an update. J Exp Bot 67:2049–2061

    Article  CAS  PubMed  Google Scholar 

  • Hussey RS, Janssen GJW (2001) Root-knot nematodes: Meloidogyne species. In: Starr JL, Cook RB (eds) Plant resistance to parasitic nematodes. CABI, London, pp 43–65

    Google Scholar 

  • Hussey RS, Mims CW, Westcott SW (1991) Ultrastructure of food ceils in roots parasitized by Criconemella xenoplax. J Nematol 23:533–534

    Google Scholar 

  • Ibrahim HM, Ahmad EM, Martínez-Medina A, Aly MA (2019) Effective approaches to study the plant-root knot nematode interaction. Plant Physiol Biochem 141:332–342

    Article  CAS  PubMed  Google Scholar 

  • Ji HM, Mao HY, Li SJ, Feng T, Zhang ZY, Cheng L, Ouyang SQ (2021) Fol-milR1, a pathogenicity factor of Fusariumoxysporum, confers tomato wilt disease resistance by impairing host immune responses. New Phytol 232:705–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones FGW (1985) Modelling multigenic resistance to potato cyst nematodes. OEPP/EPPO Bull 15:155–166

    Article  Google Scholar 

  • Kaloshian I, Desmond OJ, Atamian HS (2011) Disease resistancegenes and defense responses during incompatible interactions. Springer

    Google Scholar 

  • Kantor M, Handoo Z, Kantor C, Carta L (2022) Top ten most important U.S.-regulated and emerging plant-parasitic nematodes. Horticulturae 8

    Google Scholar 

  • Kaplan DT, Keen NT (1980) Mechanisms conferring plant incompatibility to nematodes. Revue Nématol 3:123–134

    Google Scholar 

  • Karavina C, Mandumbu R (2012) Phytoparasitic nematode management postmethyl bromide: where to for Zimbabwe? J Agric Technol 8:1141–1160

    CAS  Google Scholar 

  • Khan MR (2007) Prospects of microbial control of root-knot nematodes infecting vegetable crops. In: Sharma N, Singh HB (eds) Biotechnology: plant heatlh management. International Book Distributing, Co., pp 643–665

    Google Scholar 

  • Khan MR (2008) Plant nematodes: methodology, morphology, systematics, biology and ecology, 1st edn. CRC Press, p 378. https://doi.org/10.1201/9780367803582

    Book  Google Scholar 

  • Khan MR (2016) Nematode biocontrol agents: Diversity and effectiveness against phytonematodes in sustainable crop protection. Indian Phytopathology 69(4s):453–463

    Google Scholar 

  • Khan MR (2023) Plant nematodes, an underestimated constraint in the global food production. In: Nematode diseases of crops and their sustainable management. Academic Press, pp 3–26

    Chapter  Google Scholar 

  • Khan MR, Akram M (2020) Nanoparticles and their fate in soil ecosystem. In: Biogenic nano-particles and their use in agro-ecosystems. Springer, Singapore, pp 221–245

    Chapter  Google Scholar 

  • Khan MR, Altaf S, Mohiddin FA, Khan U, Anwer A (2009) Biological control of plant nematodes with phosphate solubilizing microorganisms. In: Khan MS, Zaidi A (eds) Phosphate solubilizing microbes for crop improvement. Nova Science Publishers, Inc., New York, pp 395–426

    Google Scholar 

  • Khan MR, Rizvi TF, Ahamad F (2019a) Application of nanomaterials in plant disease diagnosis and management. Nanobiotechnology Applications in Plant Protection 2:19–33

    Article  Google Scholar 

  • Khan MR, Adam V, Rizvi TF, Zhang B, Ahamad F, Jośko I, Zhu Y, Yang M, Mao C (2019b) Nanoparticle–plant interactions: two-way traffic. Small 15(37):1901794

    Article  Google Scholar 

  • Khan MR, Fromm KM, Rizvi TF, Giese B, Ahamad F, Turner RJ, Füeg M, Marsili E (2020) Metal nanoparticle-microbe interactions: synthesis and antimicrobial effects. In: Particle and particle systems characterization. USA. https://doi.org/10.1002/ppsc.201900419

  • Kieu NP, Lenman M, Wang ES, Petersen BL, Andreasson E (2021) Mutations introduced in susceptibility genes through CRISPR/Cas9 genome editing confer increased late blight resistance in potatoes. Sci Rep 11:1–12

    Article  Google Scholar 

  • Knip M, Constantin ME, Thordal-Christensen H (2014) Trans-kingdom cross-talk: small RNAs on the move. PLoS Genet 10:e1004602

    Article  PubMed  PubMed Central  Google Scholar 

  • Koch A, Kogel KH (2014) New wind in the sails: improving the agronomic value of crop plants through RNA i-mediated gene silencing. Plant Biotechnol J 12:821–831

    Article  CAS  PubMed  Google Scholar 

  • Kusch S, Panstruga R (2017) MLO-based resistance: an apparently universal “weapon” to defeat powdery mildew disease. Mol Plant-Microbe Interact 30:179–189

    Article  CAS  Google Scholar 

  • Lehman PS, Cochran CR (1991) How to use resistant vegetable cultivars to control root-knot nematode in home gardens. In: Florida Department of Agriculture & Consumer Services (ed) Nematology circular, vol 189

    Google Scholar 

  • Leonetti P, Accotto GP, Hanafy MS, Pantaleo V (2018) Viruses and phytoparasitic nematodes of Cicer arietinum L.: biotechnological approaches in interaction studies and for sustainable control. Front Plant Sci 9:319

    Article  PubMed Central  Google Scholar 

  • Manosalva P, Manohar M, Von Reuss SH, Chen S, Koch A, Kaplan F, Klessig DF (2015) Conserved nematode signalling molecules elicit plant defenses and pathogen resistance. Nat Commun 6:1–8

    Article  Google Scholar 

  • Martin J, Rosa BA, Ozersky P, Hallsworth-Pepin K, Zhang X, Bhonagiri-Palsikar V, Mitreva M (2015) Helminth.net: expansions to Nematode.net and an introduction to Trematode.net. Nucleic Acids Res 43:D698–D706

    Article  CAS  PubMed  Google Scholar 

  • Mathew R, Opperman CH (2020) Current insights into migratory endoparasitism: deciphering the biology, parasitism mechanisms, and management strategies of key migratory endoparasitic phytonematodes. Plants (Basel) 9:671

    Article  CAS  PubMed  Google Scholar 

  • Mei Y, Wright KM, Haegeman A, Bauters L, Diaz-Granados A, Goverse A, Mantelin S (2018) The Globodera pallida SPRYSEC effector Gp SPRY-414-2 that suppresses slant defenses targets a regulatory component of the dynamic microtubule network. Front Plant Sci 9:1019

    Article  PubMed  PubMed Central  Google Scholar 

  • Mendy B, Wang’ombe MW, Radakovic ZS, Holbein J, Ilyas M, Chopra D, Siddique S (2017) Arabidopsis leucine-rich repeat receptor-like kinase NILR1 is required for induction of innate immunity to parasitic nematodes. PLoS Pathog 13:e1006284

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitter N, Worrall EA, Robinson KE, Xu ZP, Carroll BJ (2017) Induction of virus resistance by exogenous application of double-stranded RNA. Curr Opin Virol 26:49–55

    Article  CAS  PubMed  Google Scholar 

  • Muitia A, Lo’pez Y, Starr JL, Schubert AM, Burow MD (2006) Introduction of resistance to root-knot nematode (Meloidogyne arenaria Neal (Chitwood)) into high-oleic peanut. Peanut Sci 33:97–103

    Article  Google Scholar 

  • Nicol JM, Turner SJ, Coyne DL, Den Nijs L, Hockland S, Maafi ZT, Jones JT, Gheysen G, Fenoll C (2011) Genomics and molecular genetics of plant-nematode interactions. Curr Nematode Threats World Agric 2:21–26

    Google Scholar 

  • Niu D, Hamby R, Sanchez JN, Cai Q, Yan Q, Jin H (2021) RNAs—a new frontier in crop protection. Curr Opin Biotechnol 70:204–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunes CC, Dean RA (2012) Host-induced gene silencing: a tool for understanding fungal host interaction and for developing novel disease control strategies. Mol Plant Pathol 13:519–529

    Article  CAS  PubMed  Google Scholar 

  • Okie WR, Nyczepir AP, Reilly CC (1987) Screening of peach and other Priunus species for resistance to ring nematode in the greenhouse. J Am Soc Hortic Sci 112:67–70

    Article  Google Scholar 

  • Oliva R, Ji C, Atienza-Grande G, Huguet-Tapia JC, Perez-Quintero A, Li T, Yang B (2019) Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat Biotechnol 37:1344–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onkendi EM, Kariuki GM, Marais M, Moleleki LN (2014) The threat of root-knot nematodes (Meloidogyne spp.) in Africa: a review. Plant Pathol 63:727–737

    Article  Google Scholar 

  • Palomares-Rius JE, Escobar C, Cabrera J, Vovlas A, Castillo P (2017) Anatomical alterations in plant tissues induced by plant-parasitic nematodes. Front Plant Sci 8

    Google Scholar 

  • Paudel RW, Wang K-H (2021) Exploiting the innate potential of sorghum/sorghum-sudangrass cover crops to improve soil microbial profile that can lead to suppression of plant-parasitic nematodes. Microorganisms 9:1831

    Article  PubMed  PubMed Central  Google Scholar 

  • Petitot AS, Dereeper A, Agbessi M, Da Silva C, Guy J, Ardisson M, Fernandez D (2016) Dual RNA-seq reveals Meloidogyne graminicola transcriptome and candidate effectors during the interaction with rice plants. Mol Plant Pathol 17:860–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Politowski K, Browning JA (1978) Tolerance and resistance to disease: an epidemiological study. Ecol Epidemiol 68:1177–1185

    Google Scholar 

  • Przybylska A, Obrępalska-Stęplowska A (2020) Plant defense responses in monocotyledonous and dicotyledonous host plants during root-knot nematode infection. Plant Soil 451:239–260

    Article  CAS  Google Scholar 

  • Qiao L, Lan C, Apriotti L, Ah-Fong A, Nino Sanchez J, Hamby R, Jin H (2021) Spray-induced gene silencing for disease control is dependent on the efficiency of pathogen RNA uptake. Plant Biotechnol J 19:1756–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rey T, Bonhomme M, Chatterjee A, Gavrin A, Toulotte J, Yang W, Schornack S (2017) The Medicago truncatula GRAS protein RAD1 supports arbuscular mycorrhiza symbiosis and Phytophthora palmivora susceptibility. J Exp Bot 68:5871–5881

    Article  CAS  PubMed  Google Scholar 

  • Roberts PA (1992) Current status of the availability, development, and use of host plant resistance to nematodes. J Nematol 24:213–227

    CAS  PubMed  Google Scholar 

  • Roberts PA, Dalmasso A, Cap GB, Castagnone-Sereno P (1990) Resistance in Lycopersicon peruvianum to isolates of Mi gene-compatible Meloidogyne populations. J Nematol 22:585–589

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz SH, Hendrix B, Hoffer P, Sanders RA, Zheng W (2020) Carbon dots for efficient small interfering RNA delivery and gene silencing in plants. Plant Physiol 184:647–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sibanda Z, Wanjohi W, Kimenju W, Luambano-Nyoni N, Massawe C, Davies KG, Manzanilla-López RH, Hunt DJ, Sikora RA, Coyne DL, Gowen SR, Kerry BR (2016) Agricultural nematology in East and Southern Africa: problems, management strategies and stakeholder linkages. Pest Manag Sci 72:226–245

    Article  PubMed  Google Scholar 

  • Siddique S, Grundler FMW (2018) Parasitic nematodes manipulate plant development to establish feeding sites. Curr Opin Microbiol 46:102–108

    Article  Google Scholar 

  • Siddique S, Radakovic ZS, De La Torre CM, Chronis D, Novák O, Ramireddy E, Grundler FMW (2015) A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants. Proc Natl Acad Sci 112:12669–12674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh SK, Hodda M, Ash GJ (2013) Plant-parasitic nematodes of potential phytosanitary importance, their main hosts and reported yield losses. EPPO Bull 43:334–374

    Article  Google Scholar 

  • Singh S, Singh B, Singh AP (2015) Nematodes: a threat to sustainability of agriculture. Procedia Environ Sci 29:215–216

    Article  Google Scholar 

  • Thomazella D, Brail Q, Dahlbeck D, Staskawicz B (2016) CRISPR-Cas9 mediated mutagenesis of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. BioRxiv 064824. https://doi.org/10.1101/064824

  • Tian J, Xu G, Yuan M (2020) Towards engineering broad-spectrum disease-resistant crops. Trends Plant Sci 25:424–427

    Article  CAS  PubMed  Google Scholar 

  • van Butselaar T, Van den Ackerveken G (2020) Salicylic acid steers the growth-immunity tradeoff. Trends Plant Sci 25:566–576

    Article  PubMed  Google Scholar 

  • Verma A, Lee C, Morriss S, Odu F, Kenning C, Rizzo N, Mitchum MG (2018) The novel cyst nematode effector protein 30D08 targets host nuclear functions to alter gene expression in feeding sites. New Phytol 219:697–713

    Article  CAS  PubMed  Google Scholar 

  • Vieira P, Gleason C (2019) Plant-parasitic nematode effectors-insights into their diversity and new tools for their identification. Curr Opin Plant Biol 50:37–43

    Article  CAS  PubMed  Google Scholar 

  • Vijayapalani P, Hewezi T, Pontvianne F, Baum TJ (2018) An effector from the cyst nematode Heterodera schachtii derepresses host rRNA genes by altering histone acetylation. Plant Cell 30:2795–2812

    Article  CAS  PubMed Central  Google Scholar 

  • Wang M, Weiberg A, Lin FM, Thomma BP, Huang HD, Jin H (2016) Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat Plants 2:1–10

    Article  CAS  Google Scholar 

  • Wang B, Sun Y, Song N, Zhao M, Liu R, Feng H, ang, Z. (2017a) Puccinia striiformis f. sp. tritici mi microRNA-like RNA 1 (Pst-milR1), an important pathogenicity factor of Pst, impairs wheat resistance to Pst by suppressing the wheat pathogenesis-related 2 gene. New Phytol 215:338–350

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Thomas N, Jin H (2017b) Cross-kingdom RNA trafficking and environmental RNAi for powerful innovative pre-and post-harvest plant protection. Curr Opin Plant Biol 38:133–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z, Kaloshian I, Jin H (2013) Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342:118–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiberg A, Bellinger M, Jin H (2015) Conversations between kingdoms: small RNAs. Curr Opin Biotechnol 32:207–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wendimu GY (2021) Biology, taxonomy, and management of the root-knot nematode (Meloidogyne incognita) in sweet potato. Adv Agric 2021:1–3

    Google Scholar 

  • Whangbo JS, Hunter CP (2008) Environmental RNA interference. Trends Genet 24:297–305

    Article  CAS  PubMed  Google Scholar 

  • Willett DS, Filgueiras CC, Benda ND, Zhang J, Kenworthy KE (2020) Sting nematodes modify metabolomic profiles of host plants. Sci Rep 10:1–10

    Article  Google Scholar 

  • Williamson VM, Kumar A (2006) Nematode resistance in plants: the battle underground. Trends Genet 22:396–403

    Article  CAS  PubMed  Google Scholar 

  • Wubben MJ, Gavilano L, Baum TJ, Davis EL (2015) Sequence and spatiotemporal expression analysis of CLE-motif containing genes from the reniform nematode (Rotylenchulus reniformis Linford & Oliveira). J Nematol 47:159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wubie M, Temesgen Z (2019) Resistance mechanisms of tomato (Solanum lycopersicum) to root-knot nematodes (Meloidogyne species). J Plant Breed Crop Sci 11:33–40

    Article  CAS  Google Scholar 

  • Yadav BC, Veluthambi K, Subramaniam K (2006) Host-generated double-stranded RNA induces RNAi in plant-parasitic nematodes and protects the host from infection. Mol Biochem Parasitol 148:219–222

    Article  CAS  PubMed  Google Scholar 

  • Zeilmaker T, Ludwig NR, Elberse J, Seidl MF, Berke L, Van Doorn A, Van den Ackerveken G (2015) Downy mildew resistant 6 and DMR 6-like oxygenase 1 are partially redundant but distinct suppressors of immunity in Arabidopsis. Plant J 81:210–222

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Peng H, Zhu S, Xing J, Li X, Zhu Z, Yu F (2020) Nematode-encoded RALF peptide mimics facilitate parasitism of plants through the FERONIA receptor kinase. Mol Plant Pathol 13:1434–1454

    CAS  Google Scholar 

  • Zwart RS, Thudi M, Channale S, Manchikatla PK, Varshney RK, Thompson JP (2019) Resistance to plant-parasitic nematodes in chickpea: current status and future perspectives. Front Plant Sci 10:966

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mashavakure, N., Bandaru, G. (2023). Host Resistance, Current Status, and Emerging Advances. In: Khan, M.R. (eds) Novel Biological and Biotechnological Applications in Plant Nematode Management. Springer, Singapore. https://doi.org/10.1007/978-981-99-2893-4_4

Download citation

Publish with us

Policies and ethics