Skip to main content

Detection of Resistance, Susceptibility, Tolerance, and Virulence in Plant–Nematode Interactions: Part I—Sedentary Endoparasitic Nematodes

  • Protocol
  • First Online:
Plant-Nematode Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2756))

  • 135 Accesses

Abstract

The use of nonhost, tolerant, or resistant plants, to manage plant parasitic nematodes (PPNs), is an appealing, economic, and environmentally friendly agronomic practice, which is effective when precise information on the identification of PPN species and their virulence to target host crops is available. This chapter describes suggested protocols to evaluate the reaction of the most important crops and fruit trees to infestation by the most damaging PPN with sedentary endoparasitic habits, with the aim of assessing resistance and tolerance traits, sources of resistance in progenies from breeding programs, the reaction to nematodes of newly released cultivars, and the virulence of the most noxious PPNs. These protocols consist of classical screening techniques not involving biochemical and molecular analyses. PPN species and genera considered in this chapter include (i) the most important species of root-knot nematodes Meloidogyne spp., including also M. chitwoodi, M. enterolobii, and M. graminicola, and (ii) the cyst-forming nematodes of the genera Globodera and Heterodera, such as the potato cyst nematodes (PCNs) Globodera rostochiensis and G. pallida, and also Heterodera avenae group, H. ciceri, H. glycines, and H. schachtii. Schemes are given to identify virulence groups for most of these nematodes.

Author Nicola Greco is now retired.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rich JR, Dunn RA, Noling JW (2004) Nematicides: past and present uses. In: Chen ZX, Chen SY, Dikson DW (eds) Nematology: advances and perspectives: nematode management and utilization, vol 2. CABI, Wallingford, pp 1179–1200

    Chapter  Google Scholar 

  2. Ahmar S, Gill RA, Jung K-H, Faheem A, Qasim MU, Mubeen Mand Zhou W (2020) Conventional and future outlook. Int J Mol Sci 21:2590. https://doi.org/10.3390/ijms21072590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pratap A, Das A, Kumar S, Gupta S (2021) Perspectives on introgression breeding in food legumes. Front Plant Sci 11. https://doi.org/10.3389/fpls.2020.589189

  4. Owen K (2022) A triumph of tolerance: managing the threat to wheat production by the root lesion nematode Pratylenchus thornei in the subtropical grain region of eastern Australia. In: Sikora RA, Desaeger J, Molendijk LPG (eds) Integrated nematode management: state-of-the-art and vision for the future. CABI, Wallingford, pp 13–19

    Google Scholar 

  5. Sikora RA, Molendijk LPG, Desaeger J (2022) Integrated nematode management and crop health: future challenges and opportunities. In: Sikora RA, Desaeger J, Molendijk LPG (eds) Integrated nematode management: state-of-the-art and vision for the future. CABI, Wallingford, pp 3–10

    Google Scholar 

  6. Roberts PA (1990) Resistance to nematodes: definitions, concepts, and consequences. In: Starr JL (ed) Methods for evaluating plant species for resistance to plant-parasitic nematodes. Society of Nematology, Hyattsville, pp 1–15

    Google Scholar 

  7. Roberts PA (2002) Concept and consequence of resistance. In: Starr JL, Bridge J, Cook R (eds) Plant resistance to parasitic nematodes. CABI, Wallingford, pp 23–41

    Chapter  Google Scholar 

  8. Trudgill DL (1991) Resistance to and tolerance of plant parasitic nematodes in plants. Annu Rev Phytopathol 29:167–192

    Article  Google Scholar 

  9. Andrews M, Andrews ME (2017) Specificity in legume-rhizobia symbioses. Int Int J Mol Sci 18:705. https://doi.org/10.3390/ijms18040705

    Article  CAS  PubMed  Google Scholar 

  10. Warschefsky EJ, Klein LL, Frank MH, Chitwood DH, Londo JP, von Wettberg EGB, Miller AJ (2016) Rootstocks: diversity, domestication, and impacts on shoot phenotypes. Trends Plant Sci 21:418–437. https://doi.org/10.1016/j.tplants.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  11. Sharma SB, Jain KC, Lingaraju S (2000) Tolerance to reniform nematode (Rotylenchulus reniformis) race A in pigeonpea (Cajanus cajan) genotypes. Ann Appl Biol 136:247–252

    Article  Google Scholar 

  12. Reuther M, Lang C, Grundler FMW (2017) Nematode-tolerant sugar beet varieties resistant or susceptible to the beet cyst nematode Heterodera schachtii. Sugar Ind 142:277–284

    Article  Google Scholar 

  13. Perry RN, Moens M, Starr JL (eds) (2009) Root-knot nematodes. CABI, Wallingford, p 488

    Google Scholar 

  14. Smith PG (1944) Embryo culture of a tomato species hybrid. Proc Am Soc Hortic Sci 44:413–416

    Google Scholar 

  15. Hussey RS, Barker KR (1973) A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Dis Reptr 57:1025–1028

    Google Scholar 

  16. Coolen WA (1979) Methods for the extraction of Meloidogyne spp. and other nematodes from roots and soil. In: Lamberti F, Taylor CE (eds) Root-knot nematodes (Meloidogyne spp.) – systematics, biology and control. Academic, London, pp 317–329

    Google Scholar 

  17. Jenkins WP (1964) A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Dis Reptr 48:692

    Google Scholar 

  18. Cabasan MTN, Fernandez L, De Waele D (2016) Host response of Oryza glaberrima and O. sativa rice genotypes to the rice root-knot nematode Meloidogyne graminicola in a hydroponic system under growth chamber. Arch Phytopath Plant Prot 48:740–750. https://doi.org/10.1080/03235408.2016.1140608

    Article  Google Scholar 

  19. Hoagland Dr. Arnon DI (1950) The water-culture method for growing plants without soil (Revised by Arnon DI). California Agricultural Experiment Station, Berkeley CA, USA. Circular 347:32

    Google Scholar 

  20. Hothen SD, Marley KA, Larson RA (2003) Photochemistry in Hoagland’s nutrient solution. J Plant Nutr 26:845–854. https://doi.org/10.1081/PLN-120018569

    Article  CAS  Google Scholar 

  21. Nkurunziza R (2018) Analysis of resistance in rice (Oryza sativa L.) genotypes LD24 and Khao Pahk Maw to root-knot nematodes (Meloidogyne spp.) and root-lesion nematode (Pratylenchus zeae). Master thesis 2017–2018, University of Ghent, Belgium

    Google Scholar 

  22. Cladius-Cole AO, Salam AO, Mande S (2018) Host status of interspecific upland rice progenies (Oryza sativa × Oryza barthii) to Meloidogyne incognita. J Rice Res 6:4. https://doi.org/10.4172/2375-4338-1000198

    Article  Google Scholar 

  23. Pokharel RR, Abawi GS, Duxbury JM (2011) Greenhouse evaluation of rice and wheat germplasm for resistance to Meloidogyne graminicola with comments on evaluation indices and proposal of a new one. Nematol Medit 39:157–168

    Google Scholar 

  24. Mattos VS, Leite RR, Cares JE, Gomes ACMM, Moita AW, Lobo VLS, Carneiro RMDG (2019) Oryza glumaepatula, a new source of resistance to Meloidogyne graminicola and histological characterization of its defense mechanism. Phytopathology 109:1941–1948. https://doi.org/10.1094/PHITO-02-19-0044-R

    Article  CAS  PubMed  Google Scholar 

  25. Graebner RC, Brown CR, Ingham RE, Hagerty CH, Mojtahedi H, Quick RA, Hamlin LL, Wade N, Bamberg JB, Sathuwalli V (2018) Resistance to Meloidogyne chitwoodi identified in wild potato species. Am J Potato Res 95:679–686. https://doi.org/10.1007/s12230-018-9674-9

    Article  Google Scholar 

  26. Janssen GJV, van Norel A, Verkerk-Bakker JR (1996) Resistance to Meloidogyne chitwoodi, M. fallax and M. hapla in wild tuber-bearing Solanum spp. Euphytica 92:287–294

    Article  Google Scholar 

  27. Nico AI, Jimenez-Diaz RM, Castillo P (2003) Host suitability of the olive cultivars Arbequina and Pictual for plant–parasitic nematodes. J Nematol 35:29–34

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sasanelli N, Fontanazza G, Lamberti F, D’Addabbo T, Patumi M, Vergani G (1997) Reaction of olive cultivars to Meloidogyne species. Nematol Medit 25:183–190

    Google Scholar 

  29. Di Vito M, Greco N, Carella A (1986) The effect of Meloidogyne incognita and importance of the inoculum on eggplant. J Nematol 18:487–490

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Greco N, Di Vito M (2009) Population dynamics and damage levels. In: Perry RN, Moens M, Starr JL (eds) Root-Knot Nematodes. CABI, Wallingford, pp 246–274

    Chapter  Google Scholar 

  31. Sasanelli N, D’Addabbo T, Dell’Orco P, Mencuccini M (2000) The in vitro use of olive explants in screening trials for resistance to the root-knot nematode, Meloidogyne incognita. Nematropica 30:101–106

    Google Scholar 

  32. Pinochet J, Verdejo-Lucas S, Marull J (1989) Evaluacion de siete patrones de prunus a tres especies de Meloidogyne en España. Nematropica 19:125–134

    Google Scholar 

  33. Taylor AL, Sasser JN (1978) Biology, identification and control of root-knot nematodes (Meloidogyne spp.). North Carolina State University Graphics, Raleigh, p 111

    Google Scholar 

  34. Qiu S, Maquillan MND, Brito JA, Beckman TG, Dickson DW (2021) Susceptibility of Flordaguard peach rootstock to a resistant-breaking population of Meloidogyne floridensis and two populations of Meloidogyne arenaria. J Nematol 53. https://doi.org/10.21307/jonem-2021-111

  35. Thies JA, Merril SB, Corley EL (2002) Red food coloring stain: new safer procedures for staining nematodes in roots and egg masses on root surface. J Nematol 34:179–181

    PubMed  PubMed Central  Google Scholar 

  36. Nyczepir AP, Bekman T, Gand Reighard GL (1999) Reproduction and development of Meloidogyne incognita and M. javanica on Guardian peach rootstock. J Nematol 31:334–340

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Mezza P, Soto B, Rojas L, Esmenjaud D (2016) Identification of Meloidogyne species from the central valley of Chile and interaction with stone fruit rootstocks. Plant Dis 100:1358–1363

    Article  Google Scholar 

  38. Yagci KG, Devran Z (2019) Reaction of peach and nectarine root-stocks to different populations of Meloidogyne incognita (kofoid & White 1919) and Meloidogyne javanica (Treub, 1885). Turk Entomol Derg 43:171–178

    Google Scholar 

  39. Esmenjaud D, Voisin R, van Ghelder C, Bosselut N, Lafargue B, Di Vito M, Dirlewanger E, Poëssel JL, Kleinhentz M (2008) Genetic dissection of resistance to root-knot nematodes Meloidogyne spp. in plum, peach, almond, and apricot from various segregating interspecific prunus progenies. Tree Genet Genomes 5:279–289. https://doi.org/10.1007/s11295-008-0173-x

    Article  Google Scholar 

  40. Saucet SB, Ghelder CV, Abad P, Duval H, Esmenjaud D (2016) Resistance to root-knot nematodes Meloidogyne spp. in woody plants. New Phytol 211:41–56. https://doi.org/10.1111/nph.13933

    Article  CAS  PubMed  Google Scholar 

  41. Esmenjaud D (2021) Deciphering resistance to root-knot nematodes in Prunus for rootstock breeding: sources, genetics and characterization of the Ma locus. Horticulturae 7:564. https://doi.org/10.3390//horticulturae7120564

    Article  Google Scholar 

  42. Stirling GR, Cox MC, Ogden-Brown J (2011) Resistance to plant parasitic nematodes (Pratylenchus zeae and Meloidogyne javanica) in Erianthus and crosses between Erianthus and sugarcane. Int Sugar J 114:230–237

    Google Scholar 

  43. Bhuiyan SA, Croft BJ, Stirling GR, Wong E, Jackson P, Cox M (2016) Assessment of resistance to root-lesion and root-knot nematodes in Australian hybrid clones of sugarcane and its wild relatives. Australas Plant Pathol 45:166–173

    Article  Google Scholar 

  44. Bhuiyan SA, Garlick K (2021) Evaluation of root-knot nematode resistance assay for sugarcane accessions lines in Australia. J Nematol 53. https://doi.org/10.21307/jofnem-2021-006

  45. Villain L, Aribi J, Rèversat G, Anthon F (2010) A high-throughput method for early screening of coffee (Coffea spp.) genotypes for resistance to root-knot nematodes (Meloidogyne spp.). J Plant Pathol 128:451–458. https://doi.org/10.1007/s10658.010-9671-4ì+

    Article  Google Scholar 

  46. Aoki S, Sipe B, Astorga C, Nagai C (2012) Resistance of semi wild Coffea Arabica L. from Ethiopia to a root-knot nematode, Meloidogyne konaensis. Nematropica 42:131–136

    Google Scholar 

  47. Ferris H, Zheng L, Walker MA (2012) Resistance of grape rootstock to plant-parasitic nematodes. J Nematol 44:377–386

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Madani M, Akhiani A, Mamazdadeh M, Kheiri A (2012) Resistance evaluation of the pistachio rootstocks to Meloidogyne spp. in Iran. J Appl Hortic 14:134–138

    Article  Google Scholar 

  49. Freitas VM, Silva JGP, Gomes CB, Castro JMC, Correa VR, Carneiro RMDG (2017) Host status of selected fruit crops to Meloidogyne enterolobii. Eur J Plant Path 148:307–319. https://doi.org/10.1007/s10658-16-1090-8

    Article  Google Scholar 

  50. Gomes VM, Ribeiro RM, Viana AP, de Souza RM, Santos EA, Rodrigues DL, de Almeida OF (2016) Inheritance of resistance to Meloidogyne enterolobii and individual selection in segregating populations of Psidium spp. Eur J Plant Path 148:699–708. https://doi.org/10.1007/s10658-016-1128-y

    Article  CAS  Google Scholar 

  51. Subbotin SA, Mundo-Ocampo M, Baldwin JG (2010) Systematics of cyst nematodes (Nematode: Heteroderina). In: Hunt JD, Perry RN (eds) Nematology monographs and perspectives 8A. BRILL, Leiden/Boston, p 351

    Google Scholar 

  52. Subbotin SA, Mundo-Ocampo M, Baldwin JG (2010b) Systematics of cyst nematodes (Nematode: Heteroderinae). In: Hunt JD, Perry RN (eds) Nematology Monographs and Perspectives 8B. BRILL, Leiden/Boston, 512

    Google Scholar 

  53. Smiley RW, Maafi ZT, Dadabat AA, Peng D, Iqbal S, Sa S, Jones MGK, Waeyenberge L (2017) Cereal cyst nematodes: a complex and destructive group of Heterodera species. Plant Dis 101:1692–1720. https://doi.org/10.1094/PDIS-03-17-0355-FE

    Article  CAS  PubMed  Google Scholar 

  54. Cui J, Jiao Y, Zhou B, Ren H, Li H, Liu S, Jiang S, Meng H, Li M, Dadabat AA, Peng D (2020) Pathotype, resistance classification, and seed-coating control of Heterodera avenae and H. filipjevi in the north China plain. Plant Dis 104:3230–3238. https://doi.org/10.1094/PDIS-02-20-0258-RE

    Article  CAS  PubMed  Google Scholar 

  55. Dadabat AA, Imren M, Özer G, Mokrini F, Duman N, Paulitz T (2020) Genetic and pathogenic variation in Heterodera latipons populations from Turkey. Nematology 22:1–10. https://doi.org/10.1163/15685411-bja-10029

    Article  Google Scholar 

  56. Dadabat AA, Ferney G-BH, ErginbasOrakci G, Dreisigacker IM, Toktay H, Elekchoglu HI, Mekete T, Nicol JM, Ansari O, Ogbonnaya F (2016) Association analysis of resistance to cereal cyst nematodes (Heterodera avenae) and root lesion nematodes (Pratylenchus neglectus and P. thornei) in CIMMIT advanced spring wheat lines for semi-arid conditions. Breed Sci 66:692–702. https://doi.org/10.1270/jsbbs.15158

    Article  CAS  Google Scholar 

  57. Pariyar SR, Dadabat AA, Siddique S, Erginbas-Orakci G, Elashry A, Morgounov A, Grundler FMW (2016) Identification and characterization of resistance to cereal cyst nematode Heterodera filipjevi in winter wheat. Nematology 18:377–402

    Article  Google Scholar 

  58. Cui J-k, Huang W-k, Peng H, Liu S-m, Wang G-f, Kong L-a, Peng D-l (2015) A new pathotype characterization of Daxing and Huangyuan population of cereal cyst nematode (Heterodera avenae) in China. J Integr Agr 14:724–731. https://doi.org/10.1016/s-2095-3119(14)60982-5

    Article  Google Scholar 

  59. Smiley RW, Yan G, Pinkerton JN (2011) Resistance of wheat, barley and oat to Heterodera avenae in the Pacific Northwest, USA. Nematology 13:539–552. https://doi.org/10.1163/138855410X531862

    Article  Google Scholar 

  60. Schmitt DP, Wrather JA, Riggs RD (eds) (2004) Biology and management of soybean cyst nematode. Schmitt & Associates of Marceline, Marceline, p 262

    Google Scholar 

  61. Schmitt DP, Shannon G (1992) Differentiating soybean cyst nematode race and resistance response of soybean. Crop Sci 32:275–277

    Article  Google Scholar 

  62. Niblack TL, Arelli PL, Noel GR, Opperman CH, Orf JH, Schmitt DP, Shannon JC, Tylca GL (2002) A revised classification scheme for genetically diverse populations of Heterodera glycines. J Nematol 34:279–288

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Niblack TL, Tylca GL, Arelli P et al (2009) A standard greenhouse method for assessing soybean cyst nematode resistance in soybean: SCEo8 (standardized Cyst Evaluation 2008). Online. Plant Health Prog 10:1. https://doi.org/10.1094/PHP-2009-0513-01-RV

    Article  Google Scholar 

  64. Acharya K, Tande C, Byamukama E (2017) Assessment of commercial soybean cultivars for resistance against prevalent Heterodera glycines populations of South Dakota. Plant Health Prog 18:156–161. https://doi.org/10.1094/PHP-03-17-0017-RS

    Article  Google Scholar 

  65. Wen L, Yuan C, Herman TK (2017) Accessions of perennial Glycine species with resistance to multiple types of soybean cyst nematode (Heterodera glycines). Plant Dis 101:1201–1206. https://doi.org/10.1094/PDIS-10-16-1472-RE

    Article  CAS  PubMed  Google Scholar 

  66. Howland A, Monning N, Mathesius J, Nathan M, Mitchum MG (2018) Survey of Heterodera glycines population densities and virulence phenotypes during 2015-2016 in Missouri. Plant Dis 102:2407–2410. https://doi.org/10.1094/PDIS-04-18-0650-

    Article  PubMed  Google Scholar 

  67. Kim M-S, Sung M-K, Kim M-W, Seo H-J, Kim D-G, Chung J-I (2013) Investigation of soybean cyst nematode Heterodera glycines type and evaluation of resistance on soybean varieties and germplasm in Korea. Korean J Crop Sci 58:161–168. https://doi.org/10.7740/kjcs.2013.58.2.161

    Article  Google Scholar 

  68. Hua C, Li C, Hu Y, Mao Y, You J, Wang M, Chen J, Tian Z, Wang C (2018) Identification of HG types of soybean cyst nematode Heterodera glycines and resistance screening on soybean genotypes in northeast China. J Nematol 50. https://doi.org/10.21307/jofnema-2018-007

  69. St-Amour VTB, Mimee B, Torkamaneh D, Jean M, Belzile F, O’Donoughue LS (2020) Characterizing resistance to soybean cyst nematode in PI 494182, an early maturing soybean accession. Crop Sci 60:2053–2069. https://doi.org/10.1002/csc2.20162

    Article  CAS  Google Scholar 

  70. Savitsky H, Price C (1965) Resistance to sugarbeet cyst nematode (Heterodera schachtii) in F1 tetraploid hybrids between Beta vulgaris and Beta patellaris. JASSBT 15:370–373

    Google Scholar 

  71. Lance W, Müller J, De Bock TSM (1993) Virulence in the beet cyst nematode (Heterodera schachtii) versus some alien genes for resistance in beet. Fund App Nematol 16:447–454

    Google Scholar 

  72. Wright AJD, Bussell JS, Stevens M, Back MA, Sparkes DL (2018) Physiological differences between sugar beet varieties susceptible, tolerant or resistant to the beet cyst nematode, Heterodera schachtii (Schmidt) under uninfested conditions. Eur JAgr 98:37–45. https://doi.org/10.1016/j.eja.2018.05.005

    Article  Google Scholar 

  73. Müller J (1998) New pathotypes of the beet cyst nematode (Heterodera schachtii) differentiated on alien genes for resistance in beet (Beta vulgaris). Fund App Nematol 21:519–526

    Google Scholar 

  74. Nielsen EL, Baltensperger DD, Kerr ED, Rife CL (2003) Host suitability of rape seed for Heterodera schachtii. J Nematol 35:35–38

    PubMed  PubMed Central  Google Scholar 

  75. Greco N, Moreno IL (1992) Influence of Globodera rostochiensis on yield of summer, winter and spring sown potato in Chile. Nematropica 22:165–173

    Google Scholar 

  76. Jimenez N, Crozzoli R, Greco N (2000) Effect of Globodera rostochiensis on the yield of potato in Venezuela. Nematol Medit 28:295–299

    Google Scholar 

  77. Greco N, Carputo D, Frusciante L, Russo G, Brandonisio A (2005) Screening of clones of Solanum spp. for resistance to potato cyst nematodes, Globodera rostochiensis and G. pallida. Nematol Medit 33:163–170

    Google Scholar 

  78. Vovlas N, Greco N, Di Vito M (1985) Heterodera ciceri sp. n. (Nematoda: Heteroderidae) on Cicer arietinum from northern Syria. Nematol Medit 13:239–252

    Google Scholar 

  79. Greco N, Di Vito M, Saxena MC, Reddy MV (1988) Effect of Heterodera ciceri on yield of chickpea and lentil and development of this nematode on chickpea in Syria. Nematologica 34:98–114

    Article  Google Scholar 

  80. Di Vito M, Greco N, Singh KB, Saxena MC (1988) Response of chickpea germplasm line to Heterodera ciceri. Nematol Medit 16:17–18

    Google Scholar 

  81. Ellenbay C (1952) Resistance to potato root eelworm Heterodera rostochiensis Wollenweber. Nature 170:1016

    Article  Google Scholar 

  82. Handoo ZA, Carta LK, Skantar AM, Chitwood DJ (2012) Description of Globodera ellingtonae n. sp. (Nematoda: Heteroderidae) from Oregon. J Nematol 44:40–57

    PubMed  PubMed Central  Google Scholar 

  83. Castelli L, Bryan G, Block VC, Ramsay G, Fillips MS (2005) Investigation of resistance specificity amongst fifteen wild Solanum species to a range of Globodera pallida and G. rostochiensis populations. Nematology 7:689–699

    Article  Google Scholar 

  84. Faggian R, Powsel A, Slater AT (2012) Screening for resistance to potato cyst nematode in Australian potato cultivars and alternative solanaceous hosts. Australas Plant Pathol 41:453–461

    Article  Google Scholar 

  85. Limantseva L, Mironenko N, Shuvalov O, Antonova O, Khiutti A, Novikova L, Afanasenko O, Spooner D, Gavrilenko T (2014) Characterization of resistance to Globodera rostochiensis pathotype Ro1 in cultivated and wild potato species accessions from the Vavilov Institute of Plant Industry. Plant Breed 133:660–665

    Article  CAS  Google Scholar 

  86. Withworth JL, Novy RG, Zasada IA, Wang X, Dandurand LM, Kuhl JC (2018) Resistance of potato breeding clones and cultivars to three species of potato cyst nematode. Plant Dis 102:2120–2128. https://doi.org/10.1094/PDIS-12-17-1978-RE

    Article  Google Scholar 

  87. Mwangi JM, Niere B, Daub M, Finchk MR, Kiewnick S (2019) Reproduction of Globodera pallida on tissue culture-derived potato plants and their potentials use in resistance screening process. Nematology 21:613–623

    Article  Google Scholar 

  88. Milczarek D, Tatarowska B, Plich J, Podlewska-Przetachiewicz A, Flis B (2020) Solanum gourlayi – a source of cyst nematode resistance in potato breeding. Potato Res 63:589–595. https://doi.org/10.1007/s11540-020-09459-9

    Article  Google Scholar 

  89. Koroleva AK, Sivolapova AB, Voinova MS, Ivanova AS, Meleshin AA, Manankov VV (2021) Assessment of resistance of potato hybrids from the Russian Potato Research Center’s collection to Globodera rostochiensis. IOP Conf Ser Earth Environ Sci 941:012028. https://doi.org/10.1088/1755-1315/941/1/012028

    Article  Google Scholar 

  90. Silvestre R, Dandurand LM, Zasada IA, Franco J, Kuhl JC (2021) An assessment of potato cyst nematodes, (Globodera spp.) research from the Andean region of South America. Part 2: search for resistance in potato. Nematropica 51:106–130

    Google Scholar 

  91. Greco N, Brandonisio A, De Cosmis P (2007) Pathotypes and heterogeneity of Italian populations of Globodera rostochiensis and G. pallida. Nematol Medit 35:137–142

    Google Scholar 

  92. Greco N, Di Vito M, Parisi B, Ranalli P, Brandonisio A, Catalano F (2007) Resistance of new Italian potato breeding clones to cyst and root-knot nematodes. Nematol Medit 35:227–235

    Google Scholar 

  93. Molinari S, Greco N, Zouhar M (2010) Superoxide dismutase isoelectric focusing patterns as a tool to differentiate pathotypes of Globodera spp. Nematology 12:751–758

    Article  CAS  Google Scholar 

  94. Vinterhalter D, Dragićević I, Vinterhalter B (2008) Potato in vitro culture techniques and biotechnology. Fruit Veg Cereal Sci Biotech 2(Special issue 1):16–45

    Google Scholar 

  95. Yuan H-x, Sun J-w, Yanh W-x, Xing X-p, Wang Z-y, Riley IT, Li H-I (2010) New pathotype of Heterodera avenae (cereal cyst nematode) from winter wheat in Zhenzhou, Henan, China. Australasian Plant Pathol 39:107–111

    Article  Google Scholar 

  96. Mojtahedi H, Santo GS, Wilson GH (1988) Host tests to differentiate Meloidogyne chitwoodi races 1 and 2 and M. hapla. J Nematol 20:468–473

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Mojtahedi H, Brown CR, Riga E, Zhang LH (2007) A new pathotype of Meloidogyne chitwoodi race 1 from Washington State. Plant Dis 91:1051

    Article  CAS  PubMed  Google Scholar 

  98. Pokharel RR, Abawi GS, Duxubury JM, Smat CD, Wang X, Brito JA (2010) Variability and recognition of two races in Meloidogyne graminicola. Australas Plant Pathol 39:326–333

    Article  Google Scholar 

  99. Di Vito M, Greco N, Malhotra RS, Singh KB, Saxena MC, Catalano F (2001) Reproduction of eight populations of Heterodera ciceri on selected plant species. Nematol Medit 29:79–90

    Google Scholar 

  100. Verdejo-Lucas S, Cortada L, Sorribas FJ, Ornat C (2009) Selection of virulent populations of Meloidogyne javanica by repeated cultivation of Mi resistance gene tomato root-stocks under field conditions. Plant Pathol 58:990–998

    Article  Google Scholar 

  101. Verdejo-Lucas S, Talavera M, Andrés MF (2012) Virulence response to the Mi gene of Meloidogyne populations from tomato in greenhouse. Crop Prot 39:97–105

    Article  CAS  Google Scholar 

  102. Thies JA (2011) Virulence of Meloidogyne incognita to expression of N gene in pepper. J Nematol 43:90–94

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We wish to thank all colleagues who have provided suggestions and photographs, journals who have granted us permissions to reuse their photos, and Alberto Troccoli for assistance with the figures.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Greco, N., Inserra, R.N. (2024). Detection of Resistance, Susceptibility, Tolerance, and Virulence in Plant–Nematode Interactions: Part I—Sedentary Endoparasitic Nematodes. In: Molinari, S. (eds) Plant-Nematode Interactions. Methods in Molecular Biology, vol 2756. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3638-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3638-1_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3637-4

  • Online ISBN: 978-1-0716-3638-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics